
Int. J. Human—Computer Studies (1998) 49, 315—338
Article No. hc980209
A competence theory approach to problem solving
method construction-

B. J. WIELINGA

University of Amsterdam, Social Science Informatics, Roetersstraat 15,
NL-1018 WB Amsterdam, The Netherlands. email: MwielingaN@swi.psy.uva.nl

J. M. AKKERMANS

Free University Amsterdam, Computer Science Department, De Boelelaan 10812,
1081 HV Amsterdam, The Netherlands. email: HansAkkermans@cs.ucc.nl

A. TH. SCHREIBER

University of Amsterdam, Social Science Informatics, Roetersstraat 15,
NL-1018 WB Amsterdam, The Netherlands. email: MschreiberN@swi.psy.uva.nl

This paper presents a theory of the construction process of problem-solving methods
(PSMs) on the basis of the competence theory approach. This approach describes the
refinement process of an initial, abstract formalization of the required competence of
a PSM, towards an operational version of the PSM. Three major steps in this process are
identified: specification of the required competence theory, refinement of the theory into
a form that fits a PSM paradigm and the operationalization of the theory into a form that
is close to an executable specification. As an example, the ontological commitments and
assumptions underlying some problem-solving methods for classification problems are
investigated and their operational forms are presented.

(1998 Academic Press
1. Introduction

Over the years the knowledge-based system (KBS) community has developed a large
number of knowledge-based problem solvers, employing a wide variety of knowledge
structures and reasoning methods. In spite of the success in developing useful applica-
tions, KBS development has been a tedious and expensive process. Not only the
acquisition of the knowledge about the application domain is a painstaking job, the
design, implementation and testing of the reasoning methods employed in KBSs is
difficult and time-consuming. During the last decade, research efforts have aimed at the
development of models of generic reasoning processes—problem solving methods
-The work reported here was partially carried out in the course of the KACTUS and the GRASP projects,
with partial funding of the Commission of the European Union. The partners in the KACTUS project were:
Cap Gemini Innovation (F), LABEIN (Sp), Lloyd’s Register (UK), Statoil (N), CAP Programmator (S),
University of Amsterdam (NL), University of Karlsruhe (D), IBERDROLA (Sp), DELOS (I), FINCANTIERI
(I) and SINTEF (N). The partners in the GRASP project are: Metropolitan Police Service (UK), ACSE (BE), AI
ENGINEERING (NL), University of Amsterdam (NL), ASTRA (UK), LISITT (SP), Ministerio de Cultura
(SP), and ARTTIC (D). This article expresses the opinions of the authors and not necessarily those of the
consortia. JMA carried out the reported work at the University of Twente.

1071-5819/98/100315#24$30.00 (1998 Academic Press

316 B. J. WIELINGA E¹ A¸.
(PSMs)—which are not application-specific and can be reused and can be made available
in libraries. This had led to a number of descriptions of PSMs which are generic, but
which are poorly understood in terms of their applicability, scope and performance
properties. This poor understanding had led to what we would like to call the PSM
enterprise: an effort to achieve a better understanding of the competence, scope and
applicability of a PSM and to design systematic methods for developing new methods
and for adapting existing ones.

A problem-solving method (PSM) is a formal or operational account of how a class of
knowledge-intensive problems can be solved in a computationally tractable way. A prob-
lem is knowledge intensive if its solution requires a reasoning process involving a number
of non-trivial and often non-deterministic inference steps that make use of knowledge of
the application domain. A central assumption underlying the PSM enterprise is that
PSMs can be formulated as a generic description of a reasoning process such that it is
largely independent of the specific application domain. Given such a generic PSM, two
important questions have to be answered if a PSM is considered as a candidate for
solving a particular problem: ‘‘Will the PSM solve the problem in the required manner?’’
and ‘‘Will the PSM solve the problem in an efficient manner?’’. The answer to the first
question will (loosely) correspond to the notion of competence of a PSM that will be
developed in this paper and the second question addresses issues of performance. In this
paper, we will explore some formal aspects of PSMs and develop a method of stepwise
construction of a PSM that allows a relation between competence and performance to be
established.

The process of selection or construction of a PSM usually starts out with an informal
statement of a goal to be reached from some initial situation in which some facts are
known or can be obtained through interaction with the environment. The goal specifica-
tion should describe the information structures that constitute a solution and some
criteria that solutions should satisfy. Often, but not always, the informal problem
statement will also contain statements about the nature of the knowledge to be used in
the problem-solving process. In addition, the problem statement may indicate require-
ments of a pragmatic nature such as the amount of questions asked to the user, reliability
of the input, the solution time or the number of solutions allowed or required.

The problem of finding a suitable PSM from an informal problem statement can be
viewed as a process of successive refinement. Starting point is a formalization of the
problem statement in an abstract form: the initial competence theory which defines the
basic ontological commitments and the solution criteria. Through a process of concep-
tual refinement, the initial competence theory is further elaborated through the intro-
duction of new vocabulary and assumptions. A second refinement process transforms
the refined competence theory into an operational form: a specification of a set of
basic reasoning steps together with a control structure. Although the approach we
present in this paper has a strong top-down flavor, the method can also be applied in an
incremental way. The main advantage of making the competence theories at different
levels of abstraction explicit is to analyse the ontological commitments and background
assumptions that a PSM makes with regard to the domain theory and the required
reasoning.

In this paper, we apply the competence theory approach to a number of variants of
classification problems to illustrate the concepts and process of PSM construction.

A COMPETENCE THEORY APPROACH TO PSMs 317
Section 2 gives a brief overview of current approaches to the study of PSMs and their
construction. In Section 3, we give a general survey of the competence theory analysis of
PSMs. The approach will be illustrated using a simple method for classification prob-
lems. This initial description of the approach will gloss over many issues that arise when
more complex problem contexts are tackled and will focus on the nature of the various
theories rather than on the process of PSM construction. In Section 4 we introduce an
application domain for classification and a more demanding problem class. We discuss
each of the steps in the construction process in more detail in the context of the more
complex application domain and task.

2. Approaches to the study of PSMs

There are currently different lines of AI research in which the theory underlying
problem-solving in knowledge-based systems is studied. A first area is the research on
reusable problem-solving methods (McDermott, 1988; Musen, 1989; Steels, 1990; Klinker
et al., 1991; Chandrasekaran, 1988; Clancey, 1992; Chandrasekaran et al., 1992; Wielinga
et al., 1992; Schreiber et al., 1994). This research originates from the need for explicating
the strategy behind the reasoning process in large-scale knowledge-based systems.
A central topic in this research concerns the nature of decompositions of the inference
process and the knowledge-level (Newell, 1982) characterization of the types of support
knowledge used in this process. The aim here is to identify and index generic problem-
solving methods (PSMs) that can be used to build an application problem solver in
a domain, by supporting configuration-based or compositional KBS modelling and
design. Ultimately, the idea is that one can provide well-indexed libraries of PSMs that
have proven useful and reusable so that application system building reduces to combin-
ing and configuring PSMs out of such libraries in a compositional way (Breuker & Van
de Velde, 1994).

In other areas, one focuses on a specific task or domain and provides definitions of
problem-solving ingredients like problem, solution and explanation, while their interde-
pendencies are defined through an abstract specification of the derivability relation
between the solution and the problem and the knowledge base. This work may be viewed
as yielding clear, but top-level, goal specifications for a task. A good example of this line
of research is the work on logic-based diagnosis (Reiter, 1987; Poole, 1988; Console
& Torasso, 1990). This type of work is important since it provides specific PSMs for
certain tasks.

While the focus of the above-mentioned work is mostly ‘product-oriented’—it pro-
vides problem solving methods and describes their structure in detail, but leaves the
underlying construction process largely implicit—, more recent work emphasizes the
process of PSM construction. Several approaches have been taken: decomposition
operators for PSM construction (Benjamins, 1993), rewrite grammars for PSMs (van
Heijst et al., 1992), the formalization of generic inference components for PSMs (Aben,
1995), parametric design of PSMs (ten Teije et al., 1996; ten Teije, 1997), assumption
identification of PSMs (Fensel, 1995a) and executable formalizations of PSMs (Fensel,
1995b; Fensel & Groendoom, 1996; Fensel et al., 1996). These various approaches
highlight two important ideas: the use of formal methods for the precise specification of
PSMs and the use of transformational techniques for the construction of an operational

318 B. J. WIELINGA E¹ A¸.
PSM for a top-level goal. The work described in this paper is also ‘process-oriented’ and
builds upon these two ideas, but is focused on the integration of the formalization and
transformational approaches. The aim is to identify the generic elements in the process of
constructing problem-solving methods using formal methods. A framework is sketched
that shows how to construct in a generic and principled way an operational configura-
tion of a PSM starting from a top-level goal specification for a problem.

3. PSM analysis: the competence theory approach

As discussed in our previous work (Akkermans et al., 1998b, 1994; Wielinga et al., 1995),
the general starting point of the competence-theory approach to PSMs is the view taken
by Newell (1982) that knowledge is a competence-like notion and that rationality means
to apply this competence in order to achieve a given goal, that is, to solve a problem.
A problem-solving method can be ascribed a certain competence with respect to the class
of problems it has been designed to solve. Therefore, as a key element in our approach we
will employ the notion of a competence theory of a PSM (Van de Velde, 1988): a generic
description of the ability that a PSM requires in order to solve a certain class of
problems. The rational justification of a PSM lies in demonstrating its competence with
respect to the given problem. This is done by outlining how the PSM construction
process is guided all along by the conceptual refinement and operationalization of an
initial, required, competence theory that is immediately linked to a top-level goal
specification.

3.1. OVERVIEW OF THE STEPS IN PSM CONSTRUCTION

An overview of the ‘‘competence-theory’’ approach is given in Figure 1. The process
contains the following three main steps.

1. Specification of the problem space and of the requirements for the solution. This
yields a required competence theory T

0
for the PSM.

2. Conceptual refinement of this competence theory introducing the intermediate task
and domain vocabulary based on assumptions regarding the available domain
theory and the ways in which the task goal is achieved by the method. This leads to
a refined competence theory T

1
of a PSM.

3. Operationalization of this refined competence theory to inference structures and
associated control regimes that are sufficiently detailed and practical to act as
a basis for KBS design and implementation. This entails further assumptions of an
operational nature and yields an operational specification T

2
of a PSM.

This process can be seen as a special form of step-wise refinement, in which in each step
a specific type of refinement is introduced, e.g. the structure of the domain theory. The
three theories are not necessarily logically equivalent. In particular, T

2
is typically

weaker than the T
1
, because the operational assumptions usually limit in some way the

competence of the method. The same holds, although to a somewhat lesser extent for the
relation between T

0
and T

1
. The specific conceptualizations introduced in the domain

theory limit the competence. For example, in a configuration problem, the conceptualiz-
ation of design preferences may actually limit the solution space. Thus, when going from

FIGURE 1. Competence theory approach to PSM analysis and construction.

A COMPETENCE THEORY APPROACH TO PSMs 319
one theory to a next we are typically working with a weakened version of the previous
theory.

We discuss each of these steps in some more detail in the rest of this section.

3.2. FORMALIZATION OF THE COMPETENCE THEORY T
0
.

The first step in the construction of a PSM is the specification of the task and the
problem space.

Van de Velde (1988) defines the notion of problem space,), as a triple

)"SP, S, solutionT (1)

where P is the set of problems in), S is the set of solutions in) and solution is a relation
between P and S, that is, solution LP]S. A solution for a specific problem p3P in
a problem space) then is any s3S such that solution(p, s) holds. In the simplest case, the
solution relation can be fully specified directly; then, the problem-solving method boils
down to a direct match based on table look-up. However, since we are dealing with
knowledge-intensive problems that require several non-trivial reasoning steps this will
not be the case and we have to assume knowledge of the domain of application to be
present. The competence of a PSM is therefore relative to some theory of the domain.
Therefore, we extend the definition of the problem space) with an additional element:

320 B. J. WIELINGA E¹ A¸.
the domain theory D¹.

)"SP, S, D¹, solutionT (2)

Based upon this abstract definition, the process of problem specification means to analyse
in more detail what the ingredients and ontological commitments of the problem space
) are, leading to the definition of the first version of the competence theory: T

0
.

The informal problem statement usually is not precise enough to specify what compet-
ence is required from a PSM. There are several issues to be determined before a begin can
be made with the specification of an adequate PSM. The specification process needs to
address the following issues.

f What is the information structure of a problem?
f What is the information structure of a solution?
f What is the nature of the domain knowledge?
f Assumptions: what are the epistemological and ontological commitments that apply to

the task?

This process will be illustrated for a simple type of classification problem. This problem
class is characterized by a set of class definitions in terms of sets of attribute—value pairs
and observations which are also a set of attribute—value pairs. This type of problem often
is the target problem solver in machine learning applications and is discussed in many AI
textbooks such as in Stefik (1995). Even in this simple case, we have various choices of
how to formalize the notion of classification and we have numerous options for
operationalization of the competence theory as we will see below.

Table 1 defines the space of problems as the power set of observations, where an
observation is a single valued attribute-value pair (a feature). We use the symbol &! to
indicate the uniqueness quantifer meaning that there exists a unique object satisfying
the quantified formula. The notation M 2 x

i
2 N is used represent sets. For a particular

problem not all attributes need to have been observed. This definition already
contains a number of commitments. Observations can only assign a single value to an
attribute, values are confined to a predefined set and cannot be ‘‘unknown’’. Also,
the set of observations is assumed to be known before the problem-solving process
starts.
TABLE 1
Problem definition for simple classification

Attribute set: M2 a
i
2 N"A

Value set: ∀a
i
: &M2 v

ij
2 N"»

i

Feature set: M2 f
ij
2 N"F where f

ij
"Sa

i
, v

ij
T

(3)
Observation set: M2 o

i
2 N"O

Single-value observations: o
i
P& !k such that o

i
"f

ik

Problem set: M2 p
i
2 N"P"P(O)

TABLE 2
Solution and domain-theory definition for simple classification

Set of classes: M2 c
i
2 N"C

Set of class definitions: M2d
ij
2 N"D¹ where

(4)
d
ij
,c

i
P¨

k

f
jk

, c
i
3C, f

jk
3F

Solution set: M2 s
i
2 N"S, s

i
3C

TABLE 3
Solution criteria for simple classification

Solution predicate: ∀p3P, s3S solution(p, s) %

&s ∀o
i
3p sXD¹ D"o

i

(5)

A COMPETENCE THEORY APPROACH TO PSMs 321
Table 2 defines the solution space and the domain theory. Classes are represented as
simple propositions. A solution simply corresponds to a class. The domain theory
consists of class definitions in terms of a disjunction of features implied by the class. For
each class a set of such definitions can exist, corresponding to the knowledge that links
the class to the various attribute—value combinations.

An alternative choice for the representation of the class definitions—one that is often
used in KBSs—could have been a set of separate implications, such that more than one
feature for a specific attribute could be implied by a class definition. Although this type of
knowledge could be valid for a class, it cannot be valid for a particular object that is
being classified because the description of a single object in terms of observations is
assumed to have a unique value for an attribute. Since a solution is a piece of knowledge
about an individual object and not about a class, the latter representation would not
constitute a consistent competence theory.

Apart from the class names, the solution and domain ontologies in our simple example
do not introduce any new vocabulary beyond that of the problem vocabulary. The
domain theory in the example makes rather strong commitments about the structure
of the knowledge. In general, the competence theory T

0
will make much weaker

assumptions about the knowledge in the domain theory. The problem, solution and
domain-theory definitions are obviously abstractions of the application domain. No
application-specific terms are used, the mapping between the abstract ontology in T

0
and

the domain knowledge is achieved partially in T
1

and finally in T
2
.

Table 3 defines the solution predicate as the requirement to cover all observations.
This is a strong solution criterion, referred to as complete converge (Stefik, 1995). The
underlying assumption is that all observations are relevant with respect to the classifica-
tion knowledge base. Other variants of the solution criterion for classification will be
discussed in Section 4.

322 B. J. WIELINGA E¹ A¸.
Table 1—3 together specify the initial competence theory T
0
. Already in this stage,

several observations can be made about T
0
.

f There is no guarantee that for a particular problem a solution exists that satisfies the
solution criteria. If such a guarantee would be required, additional properties of the
domain theory should be enforced. For all possible sets of observations there should be
at least one class definition that covers them.

f The competence theory defined above does not enforce a solution to be unique: more
than one class can satisfy a given problem. Of course, a single solution criterion could
be added to the solution predicate. This will be shown in Section 5.

f Class definitions are not required to be unique: there can be identical class definitions
or classes can overlap.

f For classes to be viable as solutions, they should include all features that a problem
contains as observations. This implies that a DT structured as a decision tree would
only be able to produce a solution when the observed features correspond exactly to
the set of decisions in the tree that led to the solution.

f If the knowledge about the domain is incomplete, i.e. certain features are unknown for
certain classes, these could be included in the class definitions as a disjunction of all
possible features or they could be omitted from DT. In the first case observations in the
area of incomplete knowledge are accepted; in the latter case only those problems will
be solved in which the unknown attribute in the class has no corresponding observa-
tion in the problem.

These observations indicate that even in the every simple example, the construction of
the initial competence theory T

0
already involves many choices and assumptions

concerning the PSM and the DT required.

3.3. CONCEPTUAL REFINEMENT: T
1

The competence theory T
0

is still a rather abstract specification of what the PSM should
achieve and is by no means suitable for operationalization. For example, the entailment
relation in Equation 5 needs to be refined such that individual reasoning steps can be
identified.

The complete coverage solution criterion (Stefik, 1995) imposes strong requirements on
the domain theory: for a class to be admissible as a solution, its definition should include
implications of all features that occur in the problem. This is a consequence of the
ontological commitment that was made with respect to the structure of the domain
theory. We can formalize this as follows. Since observations can only assign a single
value to an attribute, we can infer from an observation that all other features are false
(Equation 6):

o
i
"f

ik
P §

jOk

2f
ij
. (6)

This means that if a feature f
ik

is observed and it occurs in the disjunction side of a class
definition, it is implied by that class definition (Equation 7). Using a shorthand notation
F
i
for the set of terms occurring in a disjunction of a class definition for attribute i,

we can derive that an observation in the disjunction of a class definition implies that

TABLE 4
Introduction of two (meta-)predicates in T

1

class(c
i
)Q c

i
3C (9)

has— features(c
i
, a

j
, »

j
)Q class(c

i
)?

»
j
"Gvjk D isdefinedAciP¨

k

f
jkB?f

jk
"Sa

j
, v

jk
TH (10)

A COMPETENCE THEORY APPROACH TO PSMs 323
observation:

AsP¨F
i
?f

ik
3F

i
?o

i
"f

ikBP(sPo
i
). (7)

In order to be able to test whether a certain formula is part of the domain theory we
introduce a meta-predicate isdefined that is true when the formula that is its argument is
in the domain theory. We can now derive

solution(p, c
i
) % ∀o

j
"f

jk
3p?isdefined AciP¨F

jB?f
jk
3F

j
. (8)

Strictly speaking, Equation 8 is not a first-order statement since it contains a meta-level
predicate. Although this problem can be solved by simple techniques, it is an indication
of a more general phenomenon that will be discussed in depth later: the need to make
statements about the structure and content of the domain theory.

Given the rewritten solution predicate (Equation 8), we can now start to design the
structure of the knowledge base and define a number of auxiliary predicates that bring us
closer to the operational from of a PSM. We first introduce two predicates: class and has
features that make some of the logical machinery (e.g. membership of domain terms)
easier to handle (Table 4).

The reason for the introduction of the predicate class is to rewrite the set membership
of the solution space in clausal form, such that we will be able to link it to the knowledge
base where we assume that the names of classes are stored.

The predicate has features is used to hide the meta-level character of Equation 8 from
the solution predicate definition. In fact, we will assume later that has features is explicity
defined in the domain knowledge base. It is important to note that where the domain
ontology in T

0
represents the class definitions as logical implications, T

1
assumes a much

more specific representation of the domain knowledge. However, the required compet-
ence of the initial theory is still logically fulfilled by T

1
. This illustrates a very important

aspect of the competence theory approach: the transformation from a general logical
theory—which is computationally intractable—to a much more specific form of the
theory, reduces the computational complexity through the restriction of the use of the
domain knowledge expressions. This provides the essential power of the knowledge-
based approach, without losing the logical rigor.

In addition to the two predicates which link the knowledge base to the competence
theory, we define a predicate explains that is true when a class entails a given feature.

TABLE 5
Refinement of the solution criteria in T

1

explains(s, f
ik
)Q &f

ik
"Sa

i
, v

ik
T?

has features(s, a
i
, »

i
)?v

ik
3»

i
(11)

solution(O, s)Q class(s)?

∀o
i
"f

ik
3O explains(s, f

ik
) (12)

324 B. J. WIELINGA E¹ A¸.
Given this new predicate and assuming that a problem is essentially a set of observations,
we can write Equation 8 as Equation 12 in Table 5.

Table 4 and 5 represent the refined competence theory T
1
. The form of Equation 12 as

a conjunction of a number (i.c. two) predicates is typical for theories of type T
1
. The

original solution criteria are transformed and decomposed in a number of terms which
can be viewed as inference steps. The structure of the conjunction of terms that make up
the solution predicate usually reflects a certain approach to the decomposition of the
problem solving process: the PSM paradigm. The conjunction in Equation 12 reflects the
Generate-and-Test PSM paradigm.

3.4. OPERATIONALIZATION T
2

The third step in the PSM construction process is concerned with the transformation of
T
1

into an operational form. With ‘‘operational’’ we mean that we specify the procedure
(or strategy) for solving a problem in practice. This requires that we define reasoning
steps and the way in which these steps need to be ordered to solve the problem.

The objective of the operationalization is to define a feasible strategy that satisfies
the application requirements. Typically, there are multiple ways in which we can
operationalize a competence theory. We show a few simple examples of the operational-
ization of the refined competence theory in the previous section. Further on,
we discuss the reasons that can underly the choices that need to be made in this
process.

Strategy 1: simple generate and test. A first simple strategy that comes to mind when
looking at Table 5 is the following.

1. Take a class (at random).
2. Check whether all the observations are explained by the feature definitions of this

class.
3. If the check succeeds, a solution has been found, else return to step 1.

We can specify this strategy through a CommonKADS inference structure and control
structure. Two basic reasoning steps (‘‘inferences’’) are required that use the domain
predicates in the refined competence theory:

Generate a class as candidate solution using the class predicate.
Test a candidate solution using the explains definition and has features predicates.

FIGURE 2. Inference structure for the simple generate-test strategy. Legend: ovals are reasoning steps (‘‘inferen-
ces’’); boxes indicate dynamic inputs of reasoning steps (‘‘dynamic roles’’); the open boxes denote the underlying

knowledge used (‘‘static roles’’).

A COMPETENCE THEORY APPROACH TO PSMs 325
The two inferences are shown in Figure 2. The control flow of the strategy can be
expressed in pseudo-code as follows:

repeat
generate(Pcandidate);

until test (candidate#observationsPsolution);

The depth first, solution driven search strategy implemented here is simple and effective if
just one solution needs to be found and if the number of classes is limited. Other search
regimes can be used if the pragmatics of the task so require. For example, if all solutions
are required and the number of classes is limited, a solution driven, candidate set pruning
method is appropriate. The next strategy is an example of such a pruning method.

Strategy 2: pure candidate set. An alternative strategy is to begin with the full set of
candidates and prune this set by eliminating candidates that are inconsistent with
observations found. For this strategy we need a slightly revised version of the inference
structure

1. We need an additional inference for selecting an observation from the observation-
set.

2. The ‘‘test’’ inference should not produce a solution, but just deliver a truth value,
indicating whether the candidate is explained by the observation and the domain
theory.

Figure 3 shows this adapted inference structure. Also, the control flow is different and
more complicated:

while more-solutions (generate) do
generate(Pcandidate);
candidate-set :"candidate union candidate-set

while more-solutions (select) and Dcandidate-set D'1 do
select (observation-setPobservation);
foreach candidate in candidate-set;

326 B. J. WIELINGA E¹ A¸.
if test (candidate#observationPfalse);
then candidate-set :"candidate-set/candidate;

Strategy 3: data-driven candidate generation. In Strategy 2, the candidate set is gener-
ated blindly: all potential solutions are placed in the candidate set. Experts often use
more refined methods for generating the initial candidate set. This third strategy is such
an example: the generate step takes as input an observation and generates only those
candidates that have this observation as a feature. For the ‘‘test’’ part, the strategy is
identical to the previous strategy. Two small changes are required to the inference
structure.

1. An observation needs to be input to the ‘‘generate’’ inference.
2. The underlying knowledge used by ‘‘generate’’ in changed from the class predicate

to the has features predicate.

Figure 4 shows the adapted inference structure. The control structure only slightly
differs from Strategy 2, namely in the first part:

select (observation-setPobservation)
while more-solutions (generate) do
generate (observationPcandidate);
candidate-set :"candidate union candidate-set

while more-solutions (select) and D candidate-set D'1 do
select (observation-setPobservation);
foreach candidate in candidate-set;

if test (candidate#observationPfalse);
then candidate-set :"candidate-set/candidate;
FIGURE 3. Adapted inferences structure for the ‘‘prune’’ strategy.

FIGURE 4. Inference structure for strategy 3: data-directed candidate generation.

A COMPETENCE THEORY APPROACH TO PSMs 327
4. A model elaborate example

This section illustrates the approach through an example. This example is in fact an
extension of the classification examples shown in the previous section, applied in the
context of the apple-classification domain. The example does not cover the full PSM
construction process for the application, but rather focuses on additional interesting
issues.

4.1. APPLE CLASSIFICATION-DOMAIN

In this section, the domain of classifying apples is used as the application domain. At
a first glance this domain is simple: a few properties are usually sufficient to classify an
apple as a member of a particular varietal class. A bright green, firm, medium-sized apple
usually is the common ‘‘Granny Smith’’. However, this simplification is deceptive: it may
hold for standard apples bought in the average European supermarket, but the task
becomes more difficult if we allow a wider range of contexts, such as apples which
have been stored for a long period of time, apples picked from wild trees, immature
apples or apples from far away places. In addition, if we widen the range of classes to
include the many tens of thousands of apple varieties that exist, the task becomes difficult
indeed.

The starting point of our journey through apple land will be the domain knowledge:
we assume a description of the object (the apple) in terms of easily observable attributes,
each with a fixed and limited set of possible values. Table 6 gives a the set of observable
attributes and their admissible value sets. Such a table could have been obtained through
an initial knowledge acquisition session with an expert on apples.

In addition to the observable attributes, context information is needed. The maturity,
cultivation context, handling history and age since harvest, can influence the properties
of an apple. Table 7 shows the relevant attributes of this type.

TABLE 6
Observable attributes in the apple domain

Attribute Values

Background colour [yellow, yellowish green, pale green, green, bright green]
Foreground colour [red, pink, bright red, cherry red, dark red, crimson]
Foreground pattern [patchy, blush, striped, even]
Foreground coverage [barely, significant, half, largely, full]
Lenticels [none, small, clearly visible]
Stem length [short, medium, long]
Texture [smooth, rough, firm, granular, gritty]
Greasiness [none, medium, strong]
Calyx [open, semi-closed, closed]
Sepal angle [horizontal, vertical, diagonal]
Russet [none, obscure, near stem only, medium, strong]
Flesh colour [white, cream, yellowish, red]
Flesh oxidation colour [white, brown, reddish]
Skin aging [smooth, ripple]
Shape [round, conical, oblong, asymmetric, flat]
Surface shape [smooth, ways, bumps, ribbing, ribs at the crown, uneven]
Size [small, medium, medium large, large, very large]
Taste [crisp, sweet, juicy, tart, dry, nutty, aromatic, aniseed, tangy]

TABLE 7
Context attributes in the apple domain

Attribute Values

Orchard [commercial, garden, wild]
Crop location [Northern Europe, Southern Europe, US, South Africa]
Maturity at harvest [mature, immature, over ripe]
Time since harvest Number of months
Time since acquisition Number of weeks
Handling history [careful, normal, rought]
Storage conditions [cooled, cellar, kitchen]

328 B. J. WIELINGA E¹ A¸.
The domain theory of the apple domain will contain class definitions of apple
properties. An informal description of an apple class could be as follows.

A typical Golden Delicious is a medium-sized dessert apple. It has a yellow or yellow—green
background, sometimes with a slight orange blush. It has a conical shape with characteristic
ribs and bumps at the crown. The flavour is excellent, sweet, sharp, juicy. Flesh colour is
white. The flavour and size will be disappointing when grown in cool climates such as
Northern Europe. In good storage conditions it can keep long. At room temperature its skin
ripples and becomes very greasy after a few weeks. Rather prone to russet in wet climates.

The domain knowledge contains properties of the class under standard conditions (e.g.
commercially grown, mature at harvest), but also some indications of changes in

A COMPETENCE THEORY APPROACH TO PSMs 329
properties depending on the context. In addition to the domain knowledge concerning
observable attributes and context, the class knowledge can have information about other
properties such as availability as a function of the time of year, functional properties (a
good cooking apple) or information about the parentage of the apple variety (e.g.
Jonagold is a crossing of Jonathan and Golden Delicious).

Classes can be organized in a number of ways: hierarchical according to variety,
hierarchical according to parentage or according to functional qualities (crap apple,
dessert, culinary, universal).

4.2. APPLE APPLICATION TASK

Input to the problem solver that is required is a description of an individual apple in
terms of its observable attributes and the context. A second input from the user is a query
about the apple class. This query may concern the name of the class or classes that match
the case, or a property of the class (‘‘is this apple a good cooking apple?’’; ‘‘what are the
storage properties of this apple?’’).

No data are given before the reasoning process starts: the problem solver will
incrementally acquire information from the user. The number of questions should be
minimal. The user should be able to indicate that the answer to a question is ‘‘unknown’’.
It is also assumed that observations are made by a perfect observer. This means that
values assigned to attributes are made conforming to a gold standard and are not subject
to doubt or subjective differences. This assumption is by no means a trivial one. Even
more or less quantifiable properties such as size, colour and stem length require carefully
defined calibration criteria to yield precise and objective observations. Other properties
such as greasiness and texture, are already more difficult to judge. Properties concerning
taste are even more difficult to standardize. In later parts of the paper we will return to
these issues.

The knowledge of the domain is assumed to be correct and certain, but not necessarily
complete.

4.3. STEP 1: COMPETENCE THEORY SPECIFICATION

Along the same line as was discussed in Section 3 we start with the definition of the
problem space):

)"SP, S, D¹, solutionT. (13)

The next step in the construction of T
0

is to define what the elements of the problem
space) are, leading to the definition of the sub-theories that constitute the problem
space. One of the steps to be made in the process of initial problem specification is to
abstract from the application knowledge to a more abstract form which is suitable to be
mapped onto a problem-oriented theory. This process involves decisions such as: which
attributes will be distinguished, are values of attributes unique, do attributes have
mutually excluding values.

Given the informal application knowledge presented in Table 6 and 7, we can start
with the assumption that all information about the object that needs to be classified will
be represented in a set of attribute-value pairs, where we distinguish between observable
attributes and context attributes. The value ‘‘unknown’’ is allowed for any attribute.

TABLE 8
Problem definition for classification

Attribute set: M2 a
i
2 N"A

Value set: ∀a
i
: &M2 v

ij
2 N"»

i

Feature set: M2 f
ij
2 N"F, where

f
ij
"Sa

i
, v

ij
T@f

ij
"Sa

i
, unknownT

Observational attributes: A
0
LA

Context attributes: A
c
LA

Derived attributes: A
d
LA (14)

Feature set partitions: F
x
"M2 f

ij
2 N where

f
ij
"Sa

i
, v

ij
T?a

i
3A

x
, x"o, c, d

Observation set: M2 o
i
"Sa

i
, vT2 N"O where a

i
3A

0
XA

c

Single-value observations: o
i
P& !k such that o

i
"f

ik

Case reference set: M2 r
i
2 N"R

Problem set: M2 p
i
"Sr

i
, a

d
T2 N"P, r

i
3R, a

d
3A

d

330 B. J. WIELINGA E¹ A¸.
Although some of the attributes in Table 6, such as taste, can be multivalued (e.g.
taste"sweet and taste"juicy), we will formalize observations as single-valued features,
as we did in Section 3. This assumption is valid if we assume that multivalued attributes
can be transformed into a set of equivalent attributes that can only have a single value
(e.g. juiciness"yes, sweetness"high). In addition to the attributes that can be
asked from the user, we need knowledge about attributes for which the values are derived
from the class definitions. These attributes can be specified in the query that the user
poses.

The fact that observations are not assumed to be given before the reasoning process
starts is somewhat difficult to capture is a static theory. One possible solution to this
problem would be to model the dynamics of the information gathering process and
define the problem as a dynamic object. A simpler, but less elegant solution is to define
a problem as a reference to the object to be classified and parameterize observations with
respect to this reference. A problem can then be represented as a tuple of the case
reference and an attribute representing the query. Table 8 defines the elements of the
problem space.

Table 9 defines the solution space. Classes are represented as simple propositions.
A solution is a disjunction of classes that apply to the reference object, and a feature that
assigns a value to the query attribute.

Class definitions in the apple domain are context dependent. Thus, we introduce the
concept context to represent classes of contexts that affect the properties of the apple
classes. Typical examples of contexts would be cool—climate, fresh—commercial or

TABLE 9
Solution and domain-theory definition for classification

Set of classes: Mc
i
N"C

Solution set: Ms
i
"SCS, Sa

i
, v

ij
TTN"S, (15)

a
i
3A

d
, v

ij
3», CS-C

A COMPETENCE THEORY APPROACH TO PSMs 331
fresh—home—grown. Rules for determining contexts and the use of contexts in class
definitions could be written in ifthen form along the following lines.

IF orchard"commercial
AND maturity at harvest"mature
AND time since acquisition"0
THEN Fresh-commercial

IF Golden Delicious
AND Fresh-commercial

THEN background colour"yellow
OR yellow—green

Given this conceptualization of the domain knowledge, we can formalize the domain
theory as in Table 10.

The next step is to formulate what actually may count as a solution to the posed
problem. In our framework, this boils down to making an assertion about the relation
between the solution predicate and the other elements in the problem space description
). Apart from), an additional input to the solution specification step are ‘‘solution
criteria’’: general requirements or constraints, often at first stated only informally, that
are imposed on the solution. They may be of the type that a solution must be optimal or
only satisfying. In the context of classification, examples of solution criteria may be
whether or not a single solution is required, whether consistency between all observa-
tions and solutions is imposed, etc. These solution criteria more or less delineate which
paradigms to choose within various possible approaches in the problem-solving process.
TABLE 10
Domain-theory definition for apple classification

Set of contexts: M2 e
i
2 N"E

Set of context definitions: M2 de
ij
2 N3D¹ where

de
ij
"§

kl

f
kl
3F

c
Pe

i
(16)

Set of class definitions: M2 d
ij
2 N3D¹ where

d
ij
"c

i
?eP¨

k

f
jk

, c
i
3C, e3E, f

jk
3F

o

332 B. J. WIELINGA E¹ A¸.
For a given problem space description), inclusion of different solution criteria leads to
different solution specifications.

In order to define the solution criteria for the example task, we need to introduce
the set of observations that is gathered during the problem-solving process. We do this
by introducing a new predicate solve-query. Given p"Sr

p
, a

p
T3p, s3S is the solution to

this problem p with O
p

being a set of observations with respect to the reference
object r

p
:

solution(p, s)% &O
p

solve-query(p, O
p
, s). (17)

We first define a predicate solves that generates candidate classes. In defining the
predicate solve we introduce the assumption that not all observations need to be
explained by the solution, only a subset O

s
. In addition, we require the full set of

observations to be consistent with the domain theory D¹. This solution criterion is
weaker than the one specified in Section 3 and corresponds to the notion of positive
coverage (Stefik, 1995). If only consistency would be required, the solution specification
would be based on conservative inclusion.

solves(p, O, s) % sXD¹4O
s
-O

?sXD¹XO DOo (18)

No specification of the set O
s

has been given here. There are several options. In
diagnostic reasoning, O

s
is often chosen to be the set of abnormal observations. In

classification tasks, we could choose a fixed set of discriminating properties or we could
dynamically determine O

s
as the set of observations that is minimally needed to find

a single solution. For the time being we leave the choice of O
s
open in T

0
.

4.4. STEP 2: COMPETENCE THEORY REFINEMENT

Given the domain theory definition in T
0
, we can introduce a number of predicates that

link the formal definitions to elements that will occur in the knowledge model of the
operational problem solver (Table 11).
TABLE 11
Introduction of domain theory predicates in T

1

class (c
i
)Q c

i
3C (19)

conditions(e
i
, F)Q isdefinedA§FPe

iB?e
i
3E (20)

has— features(c
i
, a

j
, e, »

j
)Q class (c

i
)?

»
j
"Gvjk D isdefinedAci?eP ¨

k

f
jkB

?f
jk
"Sa

j
, v

jk
TH (21)

TABLE 12
Introduction of inference predicates in T

1

context(O, e
i
)Q conditions(e

i
, f)?

∀f3Ff3O (22)

explains(O, c,Sa, vT)Q class(c)?

context(O, e)?

has features(c, a, e, »)?

v3» (23)

consistent(O, c,Sa, vT)Q class(s)?

context(O, e)?

v"unknown@(has features(c, a, e, »)Pv3») (24)

A COMPETENCE THEORY APPROACH TO PSMs 333
Statements like in Equation 20 and 21 can be viewed as KB schemata: definitions of
structures in the domain knowledge. In formal terms, the above gives axiom schemes for
the domain statements (right-hand side), a method-oriented meta-theory (left-hand side),
connected through a naming relation (a mapping that may be implemented via rewrite
rules) (van Harmelen & Balder, 1992; Akkermans et al., 1993a). The power of this type of
meta-description is that it is coupled to domain knowledge, but in a generic and reusable
fashion. This makes our approach useful in tackling the so-called indexing problem: how
to annotate problem-solving methods such that they are usable and reusable in a library
of generic KBS components (Klinker et al., 1991).

Knowledge-base schemata make explicit assumptions about the nature of the know-
ledge base e.g. a set of implication rules are interpreted as class definitions.

The next part of the refinement step is to explicate the decomposition of the solution
relation, by introducing additional relations Mq

i
N, e.g. Mq

i
N"Mcontext, explains, consis-

tentN (see Table 12).
We have now enough machinery to define the solves predicate in terms of the inference

predicates. Table 13 is the refined version of Equations 17 and 18 in T
0
. The predicate

solve-query uses solves to generate a set of candidates and solve-query computes the
intersection of the values of the query attribute. The predicate succeeds if a singleton set
remains.

Each of the statements on the right-hand side of Table 13 specifies a paradigmatic
aspect of the problem-solving method: each statement represents an essential step in the
reasoning process that the PSM must perform. Of course, one could make other
paradigmatic choices, which would then lead to different specifications and thus to
a different PSM. The essential point however is that conceptually refining a PSM
competence theory is an activity that makes the underlying problem-solving paradigms
as well as support knowledge assumptions explicit.

Clearly, theory T
1

is much closer to an operational method than the top-level
specification T

0
of the previous subsection. On the other hand, although all conceptual

ingredients are available now, the competence theory cannot yet be seen as fully

TABLE 13
Decomposition of the solves and solve-query predicates

solves(p, O, s)Q &O
s
obs—subset(O

s
, O)

?∀
o
3O

s
explains(O, s, o)

?∀@
o
3O consistent(O, s, o@) (25)

solve-query(Sr
p
, a

p
T, O

p
, SCS, vT)Q CS"Ms

i
D solves(Sr

p
, a

p
T, O

p
, s

i
)N

?context(O
p
, e)

?MvN"Y
Vi

∀c
i
3CS has features (c

i
, a

p
, »

i
) (26)

334 B. J. WIELINGA E¹ A¸.
operational. The various quantifications in Equations 25 and 26 need to be translated to
proper control structures in the operational PSM. Thus, we might say that the above
competence theory represents a conceptual breakdown of what counts as a solution to
our problem, but that we still are in need of an operational breakdown. The final step,
leading to an operational inference and control structure for a PSM, is discussed in the
next subsection.

4.5. STEP 3: OPERATIONALIZATION

So, we have to find an operationalization of the refined competence theory, in terms of
a set of inferences, roles and a specification of the strategy (the control structure). Earlier,
we saw three strategies for imposing control on the inference structure. Since the example
task requires that a query can be answered on the basis of a (partial) classification, the
strategy to prune the candidate set until a unique answer can be derived is most
plausible. In the definition of the task, we assume that the context already has been
determined and that the set of observations that must be explained is explicitly given in
the knowledge base (obs-subset).

task apple-query-answering;
input:
obs-subset, context, query;

output:
query-value, candidate-set;

specification:
‘‘Find the subset of apple classes that share a unique value for the query
attribute’’;

end task apple-query-answering;

The task method uses an iteration similar to the one used in Section 3 with a different
stop condition: the while loop finishes when the value for the query attribute is the same
for all candidate classes (inferred by the compare inference). Another difference with the
strategies in Section 3 is the differentiation between test-examples and test-consistent on
the basis of the type of observation.

A COMPETENCE THEORY APPROACH TO PSMs 335
task-method pure-maximal-set;
realizes: apple-query-answering;
decomposition:

inferences: generate, compare, select, test-explains, test-consistent,

specify;

control-structure:
while more-solutions (generate) do
generate (Pcandidate);
candidate-set :"candidate union candidate-set;

while compare (candidate-set#queryPfalse) do
select(observation-setPobservation);
foreach candidate in candidate-set;

if observation in obs-subset
then test-explains (candidate#context#observation

Ptruth-value);
else test-consistent (candidate#context#observation

Ptruth-value);
if truth-value"false

then candidate-set :"candidate-set/candidate;

specify (candidate-set#queryPquery-value);
end task-method pure-maximal-set;

The corresponding inference structure is shown in Figure 5.
FIGURE 5. Inference structure for the chosen operationalization of the apple classification sub-task.

336 B. J. WIELINGA E¹ A¸.
5. Conclusions

In this paper, we have described a method for the systematic construction of PSMs based on
a successive refinement of a formal theory of the competence required from a PSM, resulting
in an operational knowledge model of the PSM. We explicated the various conceptualiz-
ation and operationalization steps that have to be taken in order to arrive from an informal
problem statement to a full knowledge model of a PSM. The power of the approach sketched
in this paper is that it explicates the ontological commitments and assumptions behind the
problem-solving methods that are employed in systems that solve a particular class of tasks.

In earlier work, we have used the competence theory approach to analyse well known
PSMs such as Cover-and Differentiate (Akkermans et al., 1993a, 1994) and propose-and-
revise (Wielinga et al., 1995). The first exercise showed that various inferences and
problem solving strategies in existing systems such as MOLE (Eshelman et al., 1988) can
be formally specified as refinements of a general competence theory of diagnosis. The
latter work showed that the various solutions to the VT problem (Marcus et al., 1988;
Yost, 1992; Schreiber & Birmingham, 1996) can be viewed as different refinements and
operationalizations of an initial competence theory for parametric design. In this paper,
we have used various variants of a classification task to illustrate the competence theory
refinement approach. Again, the approach highlights and explicates assumptions under-
lying the various PSMs for classification.

The explication of the commitments and assumptions made during the competence
refinement process places strong constraints on the form and content of the knowledge
represented in the domain theory. As such, the formalization process outlined in this
paper also poses strong constraints on the knowledge acquisition process. For example,
the assumptions explicited in this paper can be viewed as a formal basis for techniques
that construct models of reasoning processes through a refinement process such as the
GDM approach (van Heijst et al., 1992).

The formalization process as used in this paper is not without problems. In earlier
work, we have concluded that the non-monotonic nature of the propose and revise
method is difficult to capture in intuitively understandable theories. In the work de-
scribed in this paper, we have found that the mapping from the formal theories to the
control specifications in the operational knowledge model, can involve quite complex
transformations, which appear difficult to formalize. We are convinced however, that
further work in formalization of PSMs will ultimately lead to a better understanding of
what the competence of knowledge-based systems really is. Developing problem-solving
methods and systems that empirically show their heuristic value is one thing, but
ultimately the scientific goal of the field of knowledge engineering should be to under-
stand what problems these systems can solve and what problems they cannot solve.

References

ABEN, M. (1995). Formal methods in knowledge engineering. Ph.D. Thesis, University of Amster-
dam, Faculty of Psychology. ISBN 90-5470-028-9.

AKKERMANS, J. M., VAN HARMELEN, F., SCHREIBER, A. T. & WIELINGA, B. J. (1993a). A formalisa-
tion of knowledge-level models for knowledge acquisition. International Journal of Intelligent
Systems, 8, 169—208. Reprinted in: K. M. FORD, & J. M. BRADSHAW, Eds. (1993). Knowledge
Acquisition as Modelling. New York: Wiley.

A COMPETENCE THEORY APPROACH TO PSMs 337
AKKERMANS, J. M., WIELINGA, B. J. & SCHREIBER, A. T. (1993b). Steps in constructing problem-
solving methods. In N. AUSSENAC, G. BOY, B. GAINES, M. LINSTER, J.-G. GANASCIA & Y.
KODRATOFF, Eds. Knowledge Acquisition for Knowledge-Based Systems. Proceedings of the
7th European ¼orkshop EKA¼’93. Toulouse and Caylus, France, in Lecture Notes in
Computer Science, Vol. 723, pp. 45—65. Germany: Springer-Verlag.

AKKERMANS, J. M., WIELINGA, B. J. & SCHREIBER, A. T. (1994). Steps in constructing problem-
solving methods. In B. R. GAINES & M. A. MUSEN, Eds. Proceedings of the 8th Banff
Knowledge Acquisition for Knowledge-Based Systems ¼orkshop. »ol. 2: Shareable and Reus-
able Problem-Solving Methods, pp. 29.1—29.21. Alberta, Canada: University of Calgary: SRDG
Publications.

BENJAMINS, V. R. (1993). Problem solving methods for diagnosis. Ph.D. Thesis, University of
Amsterdam, Amsterdam, The Netherlands.

BREUKER, J. A. & VAN DE VELDE, W., Eds. (1994). ¹he CommonKADS ¸ibrary for Expertise
Modelling. Amsterdam, The Netherlands: IOS Press.

CHANDRASEKARAN, B. (1988). Generic tasks as building blocks for knowledge-based systems: the
diagnosis and routine design examples. ¹he Knowledge Engineering Review, 3, 183—210.

CHANDRASEKARAN, B., JOHNSON, T. R. & SMITH, J. W. (1992). Task-structure analysis for
knowledge modeling. Communications of the ACM, 35, 124—137.

CLANCEY, W. J. (1992). Model construction operators. Artificial Intelligence, 53, 1—115.
CONSOLE, L. & TORASSO, P. (1990). Integrating models of the correct behaviour into abductive

diagnosis. In L. C. AIELLO, Ed. Proceedings ECAI-90, pp. 160—166. London: ECCAI, Pitman.
ESHELMAN, L., EHRET, D., MCDERMOTT, J. & TAN, M. (1988). MOLE: a tenacious knowledge

acquisition tool. In J. H. BOOSE & B. R. GAINES, Eds. Knowledge Based Systems, »ol. 2:
Knowledge Acquisition ¹ools for Expert Systems, pp. 95—108. London: Academic Press.

FENSEL, D. (1995a). Assumptions and limitations of a problem-solving method: A case study.
Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based System ¼orkshop
(KAW+95). Banff, Canada.

FENSEL, D. (1995b). ¹he Knowledge Acquisition And Representation ¸anguage KAR¸. Boston:
Kluwer Academic Publisher.

FENSEL, D. & GROENBOOM, R. (1996). Mlpm: defing a semantics and axiomatization for specifying
the reasoning process of knowledge-based systems. Proceedings of the 12th European Confer-
ence on Artificial Intelligence (ECAI-96). Budapest.

FENSEL, D., SCHOENEGGE, A., GROENBOOM, R. & WIELINGA, B. (1996). Specification and verifica-
tion of knowledge-based systems. Proceedings of the ¼orkshop on »alidation, »erification and
Refinement of Knowledge-Based Systems, 12th European Conference on Artificial Intelligence
(ECAI-96). Budapest.

KLINKER, G., BHOLA, C., DALLEMAGNE, G., MARQUES, D. & MCDERMOTT, J. (1991). Usable and
reusable programming constructs. Knowledge Acquisition, 3, 117—136.

MCDERMOTT, J. (1988). Preliminary steps towards a taxonomy of problem-solving methods. In S.
MARCUS, Ed. Automating Knowledge Acquisition for Expert Systems, pp. 225—255. Boston:
Kluwer.

MARCUS, S., STOUT, J. & MCDERMOTT, J. (1988). VT: an expert elevator designer that uses
knowledge-based backtracking. AI Magazine, 95—111.

MUSEN, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition ¹ools, Re-
search Notes in Artificial Intelligence. London: Pitman.

NEWELL, A. (1982). The knowledge level. Artificial Intelligence, 18, 87—127.
POOLE, D. L. (1988). Representing knowledge for logic-based diagnosis. Proceedings of the 5th

International Conference on Generation Computing Systems, pp. 1982—1290. Tokyo.
REITER, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32, 57—96.
SCHREIBER, A. T. & BIRMINGHAM, W. P. (1996). The Sisyphus-VT initiative. International Journal

of Human—Computer Studies, 43, 275—280 (Editorial special issue).
SCHREIBER, A. T., WIELINGA, B. J., DE HOOG, R., AKKERMANS, J. M. & VAN DE VELDE, W. (1994).

CommonKADS: a comprehensive methodology for KBS development. IEEE Expert, 9,
28—37.

STEELS, L. (1990). Components of expertise. AI Magazine.

338 B. J. WIELINGA E¹ A¸.
STEFIK, M. (1995). Introduction to Knowledge Systems. Los Altos, CA: Morgan Kaufmann.
TEN TEIJE, A. (1997). Automated configuration of problem solving methods in diagnosis. Ph.D. ¹hesis,

SWI, University of Amsterdam.
TEN TEIJE, A., VAN HARMELEN, F., SCHREIBER, A. T. & WIELINGA, B. J. (1996). Construction of

problem-solving methods as parametric design. In B. R. GAINES, & M. A. MUSEN Ed.
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems ¼orkshop
Alberta, Canada, 9—14 November, Vol. 1, pp. 12.1—12.21. University of Calgary: SRDG
Publications.

VAN DE VELDE, W. (1988). Inference structure as a basis for problem solving. In Y. KODRATOFF,
Ed. Proceedings of the 8th European Conference on Artificial Inteligence, pp. 202—207. London:
Pitman.

VAN HARMELEN, F. & BALDER, J. R. (1992). (ML)2: a formal language for KADS models of
expertise. Knowledge Acquisition, 4 (Special issue: ‘The KADS approach to knowledge
engineering’, required in A. TH. SCHREIBER, et al., Eds. (1993). KADS: A Principled Approach
to Knowledge-Based System Development.

VAN HEIJST, G., TERPSTRA, P., WIELINGA, B. & SHADBOLT, N. (1992). Generalised directive
models. Proceedings of KA¼-92. Banff.

WIELINGA, B. J., AKKERMANS, J. M. & SCHREIBER, A. T. (1995). A formal analysis of parametric
design problem solving. In B. R. GAINES, & M. A. MUSEN Ed. Proceedings of the 8th Banff
Knowledge Acquisition for Knowledge-Based Systems ¼orkshop, Vol. II, pp. 37.1—37.15.
Alberta, Canada. University of Calgary: SRDG Publications.

WIELINGA, B. J., SCHREIBER, A. T. & BREUKER, J. A. (1992). KADS: a modelling approach to
knowledge engineering. Knowledge Acquisition, 4, 5—53 (Special issue ‘The KADS approach to
knowledge engineering’. Reprinted in: BUCHANAN, B. and WILKINS, D. Eds. (1992), Readings
in Knowledge Acquisition and ¸earning, pp. 92—116. San Meteo, CA: Morgan Kaufmann).

YOST, G. (1992). Configuring elevator systems. Technical Report, Digital Equipment Corporation,
111 Locke Drive (LMO2/K11), Marlboro, MA 02172, USA.

	TABLE
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8
	TABLE 9
	TABLE 10
	TABLE 11
	TABLE 12
	TABLE 13

	FIGURES
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5

	1. Introduction
	2. Approaches to the study of PSMs
	3. PSM analysis: the competence theory approach
	3.1. OVERVIEW OF THE STEPS IN PSM CONSTRUCTION
	3.2. FORMALIZATION OF THE COMPETENCE THEORY T0 .
	3.3. CONCEPTUAL REFINEMENT: T1
	3.4. OPERATIONALIZATION T2

	4. A model elaborate example
	4.1. APPLE CLASSIFICATION-DOMAIN
	4.2. APPLE APPLICATION TASK
	4.3. STEP 1: COMPETENCE THEORY SPECIFICATION
	4.4. STEP 2: COMPETENCE THEORY REFINEMENT
	4.5. STEP 3: OPERATIONALIZATION

	5. Conclusions
	References

