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A B S T R A C T

In this paper we propose several approaches for automatic annotation of natural science spreadsheets using a
combination of structural properties of the tables and external vocabularies. During the design process of their
spreadsheets, domain scientists implicitly include their domain model in the content and structure of the
spreadsheet tables. However, this domain model is essential to unambiguously interpret the spreadsheet data.
The overall objective of this research is to make the underlying domain model explicit, to facilitate evaluation
and reuse of these data.

We present our annotation approaches by describing five structural properties of natural science
spreadsheets, that may pose challenges to annotation, and at the same time, provide additional information
on the content. For example, the main property we describe is that, within a spreadsheet table, semantically
related terms are grouped in rectangular blocks. For each of the five structural properties we suggest an
annotation approach, that combines heuristics on the property with knowledge from external vocabularies. We
evaluate our approaches in a case study, with a set of existing natural science spreadsheets, by comparing the
annotation results with a baseline based on purely lexical matching.

Our case study results show that combining information on structural properties of spreadsheet tables with
lexical matching to external vocabularies results in higher precision and recall of annotation of individual terms.
We show that the semantic characterization of blocks of spreadsheet terms is an essential first step in the
identification of relations between cells in a table. As such, the annotation approaches presented in this study
provide the basic information that is needed to construct the domain model of scientific spreadsheets.

1. Introduction

In this article we propose several approaches for automatic
annotation of natural science spreadsheets using a combination of
structural properties of the tables and external vocabularies.

Scientists from domains other than computer science typically use
spreadsheets to store and manipulate data collected during research
(Chen and Cafarella, 2013; Maguire et al., 2013). This is especially true
for scientists from the domain of natural science, e.g. biology, medical
science and physics (Wolstencroft et al., 2011; Rijgersberg et al., 2011;
Rayner et al., 2006; McDonald et al., 2012). While designing their
spreadsheets they inevitably make choices with respect to the entities
and processes to be included, and the way in which these are organized
in tables. The domain model of the scientists is implicitly reflected in
the content and structure of the spreadsheet tables. Domain scientists

may give a textual explanation about their ideas and choices in their
publications, but the actual domain model remains hidden. As this
domain model is essential to understand the meaning and context of
the spreadsheet data, it is currently hard to unambiguously interpret
these data for people other than the original developers. The overall
objective of our research is to explore new ways to make the underlying
domain model of scientific spreadsheet data explicit.

An important cause of the limited semantic specification of
scientific spreadsheet data is the free format of spreadsheets, which
gives researchers a great deal of freedom in how they enter and
manipulate their data. Moreover, domain scientists create their
spreadsheets for their own use to analyze new problems and improve
domain understanding (Segal and Morris, 2008). They may therefore
be less interested in how the data is understood by peers who want to
reuse or review such data. Semantic markup tools like RightField
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(Wolstencroft et al., 2011), OntoMaton (Maguire et al., 2013), and
spreadsheet based formats like MAGE-Tab (Rayner et al., 2006) and
ISA-Tab (Sansone et al., 2012) may be used to develop templates for
domain scientists to enter their data. These templates encourage
standardization of spreadsheet data and as such facilitate interpreta-
tion and reuse. But setting up these templates requires time and
technical knowledge, and the freedom for domain scientists to enter
their data is constrained. We argue that automatic annotation of
scientific spreadsheet data with concepts from the underlying domain
model could facilitate the interpretation, evaluation and reuse of
scientific spreadsheets.

This paper extends previous work (De Vos et al., 2012) by
proposing a set of approaches for automatic annotation of spreadsheet
tables. Basic assumption in these approaches is that the underlying
domain knowledge can be represented as the collection of concepts in a
set of spreadsheet tables, and how these are related to each other. We
propose to extract these concepts and interrelations by iteratively
combining information on the structural properties, and information
on the content of scientific spreadsheet tables. The information on the
structure is expressed as heuristics and rules on table layout, and
grammar rules on quantities and units of measure. The content
information consists of two external vocabularies, i.e., one vocabulary
related to the scientific domain of the spreadsheets and one vocabulary
on units of measure, quantities and related concepts.

The focus of this paper is on spreadsheets that are used in natural
science; scientists working in the domain of natural science are
hereafter referred to as domain scientists. Natural science spreadsheets
often represent laboratory or field measurements, and typically consist
of numerical data, quantities and units of measure (Assem et al., 2010),
and information on the associated objects and events. As such, these
spreadsheets typically possess structural properties that pose a chal-
lenge for automatic interpretation and annotation. These properties are
(1) the presence of blocks within a table, (2) the presence of units of
measure, (3) the presence of quantities, (4) the presence of different
type of blocks, in terms of content position, and role in the table, and
(5) the grouping of similar domain concepts. For each of these
properties we suggest an annotation approach, that may help to
overcome the challenges. In a case study with a set of existing natural
science spreadsheets, we evaluate each approach by comparing the
annotation results with a baseline based on purely lexical matching.

In this paper we make the following contributions: (i) we provide
the algorithms, and heuristics that are used in our approaches (Section
Appendix A) for automatic semantic annotation of spreadsheet tables,
(ii) in our case study experiment (Section 4) we prove that including
information on structural properties of spreadsheet tables results in
higher precision and recall of annotation of individual terms (Sections
5.1–5.3) and (iii) we show that the semantic characterization of blocks
(Section 3.5) is an essential first step in the identification of relations
between cells in a table (Section 5.3).

2. Related work

Many studies have focussed on improving the accessibility of
tabular data to facilitate search and integration. We observe two types
of approaches. One approach is to convert tabular data into formats
that are more suitable for automatic processing. There are several
systems that convert tabular data into OWL ontologies, like, Anzo
suite1 and Mapping Master (Connor et al., 2010) or other semantic web
formats, e.g., RDF123 (Han et al., 2008), XLWrap (Langegger and
Wolfram, 2009) and TabLinker (Meroño-Peñuela et al., 2013). Other
studies have developed systems to convert tabular data into XML (Shu
et al., 2015), or relational data (Chen and Cafarella, 2013; Cafarella
et al., 2008). MAGE-Tab (Rayner et al., 2006), ISA-Tab (Sansone et al.,

2012), and BIOM (Rayner et al., 2006; McDonald et al., 2012) are
tabular formats that use an underlying data model with relevant
metadata from scientific experiments. These formats can be used to
either directly enter data, or as a template for mapping other
spreadsheet files onto one structure. The ISA-Tab format can also be
converted to RDF which enables annotation with concepts from
external ontologies (González-Beltrán et al., 2014).

Another approach is to annotate tabular data with concepts from
vocabularies. Some tools (Limaye et al., 2010; Mulwad et al., 2012) use
existing generic ontologies, like Yago, DBPedia, while other tools
(Wolstencroft et al., 2011; Maguire et al., 2013), use existing domain
ontologies for semantic markup. Some approaches develop their own
ontology, either manually (Shu et al., 2015) or by extracting concepts
and relations from the web (Venetis et al., 2011), to annotate tabular
data.

All the abovementioned studies acknowledge that a correct inter-
pretation of tabular data is essential for conversion or annotation. In
order to derive a correct interpretation, the studies use different
strategies to infer the semantics from tabular data and dissolve
ambiguities. Some of these strategies rely on manual mapping speci-
fications constructed by users (Shu et al., 2015) or human analysts with
sufficient knowledge of applying semantic web techniques (Han et al.,
2008; Langegger and Wolfram, 2009; Wolstencroft et al., 2011;
Meroño-Peñuela et al., 2013; Connor et al., 2010). Others compare
their tabular data with large collections of example data, e.g., large
vocabularies like Yago or DBPedia, or generic databases extracted from
the Web, and rely on probabilistic reasoning methods to find the best
suitable annotation or interpretation for table cells and columns
(Cafarella et al., 2008; Venetis et al., 2011; Limaye et al., 2010;
Mulwad et al., 2012). And, many studies use knowledge on the
structural properties of a table to derive a correct interpretation of its
content. Several studies created a library on commonly used layout
patterns in tabular data (Garcia-silva et al., 2008; Hermans et al., 2010;
Rocha Bernardo et al., 2013). Abraham and Erwig (2006) developed a
framework to automatically classify roles of cells in a table based on the
spatial layout of a spreadsheet. Van Assem and colleagues Assem et al.
(2010) introduced disambiguation strategies for units of measure and
quantities (Assem et al., 2010) based on the way these are notated in
table cells. And Chen and Cafarella (2013) use heuristics and rules on
spreadsheet layout and implicit metadata structure to automatically
extract relational data from spreadsheets.

The related work described in this section provides multiple
approaches that can be used to translate natural science spreadsheets
into more appropriate representations. The automatic interpretation
and annotation of the content, however, remains an issue, as many of
the abovementioned approaches are not suitable for natural science
spreadsheets. The use of probabilistic reasoning methods to annotate
tabular data requires a large collection of example data. The content of
natural science spreadsheets is too domain specific to be annotated
with entities from commonly used vocabularies or generic databases
extracted from the Web. Furthermore, probabilistic reasoning methods
are mainly used to annotate textual values in tables. As natural science
tables for a large part consist of numerical values, the success of
probabilistic reasoning methods to annotate these tables is probably
limited. On the other hand, the tables in natural science spreadsheets
may be more structured, and demonstrate less variety in their layout
than arbitrary tables in documents or on the web. Although natural
science spreadsheet tables are designed for human consumption, and
contain implicit information, we argue that the structural properties of
these tables could be very useful to inform automatic interpretation
and annotation. As such the approaches described by Mittermeir and
Clermont (2002), Hipfl (2004), Abraham and Erwig (2006), Assem
et al. (2010), Chen and Cafarella (2013), Garcia-silva et al. (2008),
Hermans et al. (2010), and Rocha Bernardo et al. (2013) offer a useful
basis to build upon.

1 Anzo suite,http://www.cambridgesemantics.com/)
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3. Method

As mentioned in the introduction section, tables in natural science
spreadsheets possess structural properties that may pose challenges to
automatic interpretation and annotation, and at the same time, provide
additional information on the content. In this section we describe five
such structural properties of these tables (Table 1). For each of these
five properties we propose an approach, that may improve the results of
automatic annotation and interpretation. We consider lexical matching
with concepts from a domain vocabulary as a baseline method for
automatic annotation of natural science spreadsheet tables. Our
annotation approaches for the five properties are additions to this
baseline method The general idea is described in the next subsection,
the individual properties and corresponding approaches are described
in more detail in the following subsections.

3.1. Basic principles

In the development of their spreadsheet tables, domain scientists
obviously include domain knowledge in the content of the table cells.
Besides that, they apply implicit rules that shape the design of their
tables, e.g. they group semantically related terms in blocks. In each of
our annotation approaches (Table 1) we combine these two types of
information.

For content identification we use concepts from selected vocabul-
aries. Natural science spreadsheets often represent laboratory or field
measurements, and therefore typically consist of numerical data,
quantities and units of measure (Assem et al., 2010), and information
on the associated objects and events. The vocabularies used for
annotating content therefore consist of at least one vocabulary that
covers the domain of the considered spreadsheets, and a dedicated
vocabulary on quantities and units (see Section 4.2). Both vocabularies
contain labeled concepts that are part of a graph structure.

For structural information we use classification rules and heuristics
on the properties of natural science spreadsheet tables. The structural
properties of natural science spreadsheets, and corresponding rules
and heuristics, are derived from literature (Abraham and Erwig, 2006;
Assem et al., 2010; Chen and Cafarella, 2013), and manual analysis of
spreadsheet tables from the domain of natural science and engineering
(Fisher and Rothermel, 2005; De Vos et al., 2012). The rules and
heuristics, and the way these are implemented in algorithms, are
described in the appendix of this paper (Appendix A section). All
algorithms are developed using SWI prolog2 and are publicly avail-
able.3

Although our annotation approaches are presented separately,
these are not independent from each other. The approaches do not
only build upon each other, but are also combined in an iterative way
(Fig. 1). For example, the annotation of unit and quantity blocks builds
upon the recognition of individual unit and quantity terms, while the
annotation of individual unit and quantity terms can be more precise
by annotating only the terms that are present in unit and quantity
blocks.

3.2. Property 1: blocks within a table

The first property of natural science spreadsheet tables, or spread-
sheet tables in general, is that data are organized in rectangular blocks.
More specifically, string data and float values are grouped in separate
blocks, which are placed together to make up a table. The float block

Table 1
Characteristic properties of quantitative natural science spreadsheet tables and approaches for automatic annotation. Rules, heuristics, and algorithms, are described in the appendix
(Section Appendix A).

property annotation approach

1 Observational data and associated context are located in
rectangular blocks within the table

Identify table body and context blocks by recognizing string and float blocks (Table 11, Algorithm 2)

2 Units of measure are common, and represented as symbols or
short strings

Annotate unit cells by applying unit grammar + exact string matching (Table 12, Algorithm 3)

3 Quantities are common, but only implicitly mentioned through
the associated unit

Annotate quantity cells by applying quantity grammar (Table 13, Algorithm 4)+ lexical matching or
deduction from unit of measure

4a The blocks in a table differ in terms of content, position and
role

Identify Unit, Quantity and Phenomenon blocks by applying unit-quantity grammar and heuristics on
table design (Table 14, Algorithms 5, 6)

b These blocks contain semantically related individual terms Annotate terms by applying vocabulary selection: OM for unit and quantity terms, and domain vocabulary
for phenomenon and quantity terms (Table 15, Algorithm 7)

5a Terms referring to similar domain concepts are grouped Annotate phenomenon blocks with a common denominator, i.e. block term (Table 16, Algorithm 8)
b The context of domain terms is essential for correct

interpretation
Select per domain term the annotations that are related to the corresponding block term (Table 16,
Algorithm 8)

Fig. 1. Dependencies between the annotation approaches presented in this study (NB do
not read this diagram as a workflow).

2 SWI-prolog,http://www.swi-prolog.org/
3 GitHub repository,https://github.com/MartineDeVos/Spreadsheets/tree/work/

annotation
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contains the values of observations or measurements in a table, and the
surrounding string blocks describe the context of these measurements
(Abraham and Erwig, 2006; Chen and Cafarella, 2013).

We have developed an approach to recognize string and float blocks
in a spreadsheet (Table 11, algorithm 2). We annote the float blocks as
table bodies, and the surrounding string blocks as context blocks.

Algorithm 1. Lexical matching.

1. for A string term in a cell do
2. Break term into tokens (i.e., words), ignore stopwords,

numbers and punctuations.
3. for Each token do
4. for Each word in the vocabulary that (partly) matches the

token do
5. if that word is a concept represents a label or a symbol

and isub distance between token and vocabulary word
is ≥0.85 then

6. Corresponding domain vocabulary concept is used for
annotation

7. else
8. pass
9. end if
10. end for
11. end for
12. end for

This first property of natural science spreadsheet tables has a
special status, as we consider it a starting point in our approach, and a
prerequisite for the next steps. We assume that the annotation of body
and context blocks is straightforward and we do not evaluate this step
separately in the case study experiment.

3.3. Property 2: units of measure

Terms representing units of measure in natural science spreadsheet
tables often have a typical structure. They consist of very short strings
containing one or more symbols, optional brackets and slashes, and
optional some free text. For example, the term “J/kg” represents the
unit “joule per kilogram”, and “m” represents the unit “metre”.
Straightforward lexical matching methods (e.g., Algorithm 1) are not
suitable for recognition and annotation of very short strings, as the
number of matches is often large, but the corresponding isub distances
(Stoilos et al., 2005), i.e., measure of the quality of these matches, are
low. For example, the term “ha”, may be matched to the unit “hectare”,
but also to “hectoampere”, and many more concepts, all with the same
low isub distance of 0.1.

Algorithm 2. Annotation of table bodies and context blocks.

1. for Each spreadsheet do
2. Identify blocks (rectangles ≥2 cells) with string terms and

float terms
3. Sort float blocks by size
4. repeat
5. Build table body
6. for the largest float block do
7. repeat
8. build a larger block by merging with a neighbouring

float block
9. empty cells may be included, string cells not
10. until no neighbouring blocks are available
11. annotate resulting block as table body
12. Retract all original blocks that are included in table

body
13. end for

14. until No float blocks are left
15. Sort string blocks by size
16. repeat
17. Build context blocks
18. repeat
19. build a larger block by merging with a neighbouring

string block
20. empty cells may be included, float cells not
21. until no neighbouring blocks are available
22. if resulting block is aligned with a table body then
23. force width (top-aligned) or height (left/right aligned)

to be the same as that table body
24. Annotate resulting block as context block
25. Retract all original blocks that are included in context

block
26. else
27. pass
28. end if
29. until No string blocks are left
30. end for

We have developed a set of grammar rules to recognize terms that
represent units of measure (Table 12, Algorithm 3). These grammar
rules recognize the typical structure of unit terms. And as an additional
check, at least one symbol in the term should exactly match with a unit
symbol from a dedicated vocabulary. In this study we use the OM
Ontology for units of Measure and related concepts (Rijgersberg et al.,
2011).

Algorithm 3. Recognition and annotation of unit terms.

1. for string <11 chars do
2. if string structure complies with

“optional bracket open + unit symbol + optional separator +
optional free text + optional bracket close” then

3. for “unit symbol + optional separator + optional free
text” do

4. repeat
5. match unit symbol with labels, symbols or

descriptions of unit concepts in OM Vocabulary
6. repeat
7. remove one character from end of the string
8. match unit symbol with labels, symbols or

descriptions of unit concepts in OM Vocabulary
9. until end of string
10. remove characters from start of the string until

separator
11. until end of string
12. end for
13. if match of unit symbol with OM Vocabulary is

found then
14. Annotate string as unit term, corresponding unit

concept is used for term annotation (Algorithm 7)
15. else
16. string is not a unit term
17. end if
18. else
19. string is not a unit term
20. end if
21. end for

3.4. Property 3: quantities

Quantities in natural science spreadsheets are often represented as
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a string, that contains an associated unit of measure, that is either
enclosed in brackets within the term or present in a neighbouring cell.
The domain scientists developing these spreadsheets often omit the
quantity concept from the quantity term and only present the related
domain concept. For example, a quantity term representing the mass of
applied nitrate is written as “nitrate (kg)” and a quantity term
representing the mass fraction of clay is written as “clay [%]”.

Our grammar rules on quantities (Table 13, Algorithm 4) recognize
the typical structure of quantity terms. We use lexical matching to find
a match with a quantity concept in the OM vocabulary. If no match is
found, we analyze the associated unit of measure. The OM vocabulary
contains information on which units are commonly used by certain
quantities. We use this information to deduce a suitable quantity
concept for a quantity term.

Algorithm 4. Recognition and annotation of quantity terms.

1. if string structure complies with
freetext + bracketopen + unitterm (Algorithm 3) + bracketclose
then

2. string is a quantity term
3. if freetext matches with label of a quantity concept in OM

Vocabulary then
4. corresponding quantity concept is annotation
5. else if unit concept annotation of unitterm is commonly used

by a quantity concept in OM Vocabulary and this quantity
concept has a common domain of application then

6. corresponding quantity concept is used for annotation
(Algorithm 7)

7. else
8. no annotation can be found for quantity term
9. end if
10. else
11. string is not a quantity term
12. end if

3.5. Property 4: block typology

In the development of their spreadsheet tables, domain scientists
apply implicit rules that shape both the content and the design of their
tables. They typically group cells that are semantically related
(Mittermeir and Clermont, 2002) and use structure and layout features
to distinguish between these groups (Hipfl, 2004; Chen and Cafarella,
2013). We assume that these groups of cells, i.e. blocks, are not only
different in terms of their content and position, but also in terms of
their role in the table. More specifically, we assume that four different
types of blocks can be distinguished in scientific spreadsheet tables: (1)
blocks containing measurements, (2) units of measure, (3) quantities,
and (4) objects and events (De Vos et al., 2012).

We have developed an approach to semantically categorize the
blocks in a natural science spreadsheet (Table 14, Algorithms 5, 6),
which is an extension of the initial block structure developed in Section
3.2. The table body and context blocks are further categorized using
four main concepts from the OM vocabulary: (1) Measure, (2) Unit of
measure, (3) Quantity and (4) Phenomenon. The table bodies are all
annotated as Measure blocks (Fig. 2). Subsequently, the unit blocks
within the context blocks are recognized, annotated and separated. We
define unit blocks as rows or columns within the context blocks that
contain >30% unit cells. In order to avoid non-relevant matches with
very specific, and rare, units from the OM vocabulary, the unit cells
should represent commonly used units of measure, i.e., units that
belong to the “om:commonApplicationArea”. The next step is to
recognize and annotate quantity blocks. These blocks are either aligned
with the table body and unit block, or contain >30% unit cells. The
remaining context blocks are annotated as phenomenon blocks.

Algorithm 5. Annotation of unit blocks.

1. for Each context block do
2. if column/row in context block

and # cells with unit terms (Algorithm 3) ≥30%
and # cells with unit terms (Algorithm 3) ≥ # cells with

domain terms then
3. column or row is unit slice
4. else
5. pass
6. end if
7. find all unit slices
8. for largest unit slice do
9. Annotate slice as unit block
10. Subtract slice from original block
11. end for
12. end for

Algorithm 6. Annotation of quantity and phenomenon blocks.

1. for Each context block do
2. for Each term in context block do
3. if term meets grammar (Algorithm 4) or term can be

matched with OM quantity concept then
4. terms is a quantity term
5. else
6. term is not a quantity term
7. end if
8. end for
9. if # cells with quantity terms ≥30%

or context block is horizontally or vertically aligned with
unit block and table body then

10. Annotate context block as quantity block
11. else
12. Annotate context block as phenomenon block
13. end if
14. end for

When a block is annotated with one of the abovementioned OM
concepts, this annotation also applies to all the individual terms in that
block. Furthermore, the semantic category of a block determines which
vocabulary and concept class are selected for the annotation of the
individual terms (Table 15, Algorithm 7). For some of the individual
unit and quantity terms in a natural science spreadsheet our grammar
rules may not apply. When these terms are located in a unit or quantity
block, these terms will still be recognized and annotated as unit and
quantity terms.

Algorithm 7. Annotation of individual terms.

1. for Each term in a unit block do
2. for Each matching unit concept (Algorithm 3)from OM

vocabulary do
3. Annotate term with unit concept
4. end for
5. end for
6. for Each term in a quantity block do
7. for Each matching quantity concept (Algorithm 4) from OM

vocabulary do
8. Annotate term with quantity concept
9. end for
10. end for
11. for Each term in a phenomenon block do
12. for Each matching domain concept (Algorithm 1) from

domain vocabulary do
13. Annotate term with phenomenon concept
14. end for
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15. end for

3.6. Property 5: grouping of similar domain concepts

Additional to the grouping of semantically related terms in blocks,
we observe another way of grouping terms. The last property we
distinguish in natural science spreadsheet tables is that terms describ-
ing similar domain concepts are typically grouped (Chen and Cafarella,
2013). Furthermore, these terms often contain incomplete or ambig-
uous references to particular domain concepts. It is up to the reader to
deduce the exact definitions of these domain concepts, for example, by
considering the context of the table and the spreadsheet (Cafarella
et al., 2008), or by using background domain knowledge. We assume
that the grouping of terms describing similar domain concepts occurs
especially in phenomenon blocks, as these blocks typically describe the
domain concepts associated with the numbers and quantities in the
table.

In our annotation approach (Table 16, Algorithm 8), we build upon
the semantic characterization of blocks described in the previous

section (Section 3.5). We assume that it is possible to describe a group
of terms in a phenomenon block with a common denominator, i.e., one
single, often higher level, domain concept. Our annotation approach
collects all domain concepts that are hierarchically, i.e., “skos:broader”,
or property-wise, i.e.,“skos:related”, related to the annotations of
individual terms in a phenomenon block. The domain concept that is
related to most terms in the block is selected as common descriptor of
that block, the so called block term (Fig. 3). Such a block term may
provide the context that is needed to select the right annotations for
terms in a phenomenon block. It may also be used to provide
information on terms in phenomenon blocks that did not get an
annotation on an individual level.

Algorithm 8. Annotation of block terms.

1. for Each phenomenon block do
2. for Each individual term in the phenomenon block do
3. Find all skos related: or skos broader: domain concepts that

are associated with the annotations of that term
4. end for

Fig. 2. Schematic overview of the annotation approaches presented in this study.
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5. for For each domain concept related to a term in the
phenomenon block do

6. Determine the total # terms in the phenomenon block to
which it is related

7. end for
8. Collect all domain concepts that are related to ≥30% of the

terms the phenomenon block
9. From this set, select the domain concept, that is related to

the highest # terms, as block term
10. Annotate block with block term
11. end for
12. for Each individual term in a phenomenon block do
13. Annotate term with block term
14. for Each domain annotation of that term do
15. if block term is skos related: or skos broader: to the

annotation then
16. keep annotation
17. else
18. delete annotation
19. end if
20. end for
21. end for

4. Case study

We test our approaches for automatic annotation by applying it to a
set of existing spreadsheets (Tables 2 and 3). We compare the results of
our approaches with the results of a baseline method that consists of
purely lexical matching (see Section 4.4). We determine the quality of
the automatic annotations in terms of precision and recall relative to a
manually constructed ground truth annotation.

4.1. Data set

We select case study spreadsheets that fall within the scope of our
research, i.e., natural science spreadsheets that consist of numerical
data, quantities and units of measure, and information on the
associated objects and events. To this end, we perform a literature
search using the Google Scholar web search engine. We select journal

papers, that use spreadsheets to perform research analyses, and that
have made these spreadsheets publicly available online as supplemen-
tary data. As several authors of this paper are working in the domain of
agriculture and environmental science, we select journal papers, and a
vocabulary (Section 4.2), from these particular domains. The avail-
ability of spreadsheets is checked by including the keywords “supple-
mentary information” or “supplementary data”, and “spreadsheet” or
“.xls”. The subject of the papers is defined by either the keyword
“agriculture” or “environment”.

We inspect the spreadsheets of 15 journal papers and select 5 of
these for our case study. The rejected spreadsheets either do not fall
into the scope of our research, or are discarded because our algorithms
are not yet able to handle their complicated design, e.g., as these
spreadsheets contain nested tables, macros and pivot tables. Our final
case study data set consists of 12 spreadsheets from 5 different journal
papers containing a total of 61 tables. These spreadsheets contain data
and analyses on farm profitability (Delbridge et al., 2013), life cycle
assessment in agriculture (Bellon-Maurel et al., 2014), greenhouse gas
emissions by dairy cropping systems (Malcolm et al., 2015), environ-
mental services in agro-ecosystems (Ibarra et al., 2013), and life cycle
models of biofuel production (Plevin, 2009). To enable a fair compar-
ison between our approaches, and the baseline method, we remove all
titles and comments that are surrounding the tables in the spread-
sheets. The spreadsheets, as used in our case study, are publicly
available.4

Fig. 3. Selection of block terms for phenomenon blocks.

Table 2
Hypotheses to evaluate the suggested annotation approaches.

property hypothesis

2 The unit grammar improves precision and recall of annotation of unit
terms

3 The quantity grammar improves precision and recall of annotation of
quantity terms

4 The majority of blocks can be correctly retrieved and annotated using
the block annotation method
The block annotation improves precision and recall of annotation of
individual table terms

5 The majority of the block terms identified by the block term method is
relevant
Selection of domain annotations using block terms results in higher
precision
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4.2. Vocabularies

All annotation methods, i.e., our approach, the baseline method and
the ground truth, use the Valerie ontology5 to annotate spreadsheet
content with domain knowledge concepts. The Valerie ontology is
developed to annotate and organize knowledge in research documents
from the domains of agronomy and forestry. All annotation methods
use the OM Ontology6 (Rijgersberg et al., 2011) to annotate spread-
sheet content with units of measure concepts, quantity concepts and
related concepts.

4.3. Ground truth annotation

For all tables a ground truth is constructed by manually annotating
both the individual terms and the blocks in the tables with the concepts
from the two selected vocabularies. This process requires both knowl-
edge of the corresponding vocabularies, and knowledge of the tables
and their context. Therefore we perform the manual annotation in
cooperation with domain experts, who are familiar with the selected
publications and spreadsheet files. We first create a draft annotation,
i.e., per block or term in a table we manually select the possible
matching concepts from one or both vocabularies. For individual terms
we first try to find a concept that describes the term as a whole. If such
a concept is not available, we annotate parts of the term separately with
matching concepts. We discuss our draft selection with the domain
experts, and subsequently, choose for each block and term the most
suitable concept(s) for annotation.

Results of the ground truth annotation: A majority of 81% of the
string terms in the sheets can be manually annotated with concepts
from the two selected vocabularies. Terms that can not be manually
annotated were, for example, terms referring to computations, like
“Total”, “Value” and “calculated”, and terms referring to specific
models or scenarios that are used in the corresponding research
project.

Half of the annotated terms are annotated with concepts from both
the OM Vocabulary and the Valerie vocabulary (Table 4). The majority
of these terms is referring to quantities. Domain scientists usually do
not write just the quantity, but also include domain knowledge in these
terms, e.g., “Volume of adjacent channels” or “Energy to press crop
(MJ/yr)”. Frequently, they do not even mention the quantity at all (see
Section 3.4). Besides, domain knowledge may also be included in unit
terms, e.g., “kg CO2 eq” or “lb/bu soybean”.

About 36% of the phenomenon blocks can be manually annotated
with a block term (Table 5). For the remaining 64% of the phenomenon
blocks no block term can be selected, as the corresponding string terms
can not be matched to a domain concept (see above), or because the
string terms cover such a wide variety that it is not possible to find a
common denominator. Several phenomenon blocks, especially those
located in the same spreadsheet, are annotated with the same block
term. This can be explained by the spreadsheet developers using table

templates, i.e., tables with a fixed layout and fixed combinations of
string terms in the table headers.

4.4. Baseline annotation

We compare the results of our approaches with the results of a
baseline method. In this baseline method all string terms in the case
study spreadsheets are automatically annotated with concepts from the
OM and Valerie vocabularies using a lexical matching method
(Algorithm 1). The lexical matching method compares spreadsheet
terms to labels or symbols from the two selected vocabularies, and
expresses the similarity between the two as isub distance (Stoilos et al.,
2005). The maximum isub distance is 1, meaning two strings are
exactly the same. When the isub distance between a spreadsheet term
and a label or symbol in a vocabulary is ≥0.85, the corresponding
concept is selected by the baseline method for annotation.

5. Results

In this section we describe the results of our case study experiment
according to the evaluation methods described in Table 3. It should be
noticed that the annotation results are not yet part of the spreadsheet
files, but rather have the form of raw prolog output (Fig. 4). However,
we also collected these results in csv files, which are publicly available.7

5.1. Annotation of unit terms: approach 2

The unit grammar has a higher recall than the baseline method
(Table 6). More than 80% of the manual annotations of unit terms is
missed by the baseline method, and about 25% by the unit grammar
method. The unit grammar also has a higher precision than the
baseline method, but still generates about 28% incorrect annotations.

The lexical matching method applied in the baseline does not
perform well on the unit terms in the case study spreadsheets (Section
3.3), which causes the recall to be low. The majority of these unit terms

Table 3
Evaluation methods for the suggested annotation approaches.

property test compare with metric

2 Annotate unit terms using unit grammar + exact string matching baseline precisison, recall
3 Annotate quantity terms using quantity grammar + lexical matching or quantity deduction baseline precisison, recall
4a Semantically categorize blocks precisison, recall
b Annotate individual terms in semantically categorized blocks using vocabulary selection baseline precisison, recall
5a Select block terms for phenomenon blocks precisison, recall
b Annotate individual terms in phenomenon blocks, select annotations using block terms baseline precisison, recall

Table 4
Ground truth annotation of string terms: number of annotations.

# Unit annotations 101
# Quantity annotations 326
# Domain annotations 665
# Total annotations 1092

Table 5
Ground truth annotation of blocks.

# Unit blocks 34
# Quantity blocks 60
# Phenomenon blocks 56
# Body blocks 85
# Total blocks 235

4 GitHub repository, https://github.com/MartineDeVos/Spreadsheets/tree/work/
annotation

5 Valerie ontology, http://www.foodvoc.org/page/Valerie
6 OM ontology, http://www.wurvoc.org/vocabularies/om-1.8/

7 GitHub repository, https://github.com/MartineDeVos/Spreadsheets/tree/work/
annotation
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consist of either short strings, e.g., “MJ” and “kg”, which are not
recognized by the lexical matching method, or series of short strings,
e.g., “MJ/ha” and “kg CO2 eq”, which are annotated as separate terms.

Part of the unit terms that are missed by the unit grammar method
contains sloppy notations of unit symbols. Domain scientists may
make, intentionally or not, typing errors, e.g., by writing “BTU” instead
of “Btu” for “om:’BritishThermalUnit’ or “gr” instead of “g” for
“om:gram”. They also may not realize that some of the unit symbols
they use in their spreadsheets require additional specification in order
to be interpreted correctly, e.g., the symbol “gal” may refer to “om:dry-
Gallon-US”, “om:gallon-Imperial” or “om:gallon-US”. And sometimes
these sloppy notations are commonly used notations among domain
scientists, e.g., the unit “om:second-Time” is often represented with the
symbol “sec” instead of the official symbol “s”. As the sloppy notations
do not exactly match the labels or symbols of units concepts in the OM
vocabulary, the corresponding terms are not considered as unit terms,
or not all included symbols are correctly annotated.

The difference in precision between the two methods can be
explained by the fact that the lexical matching method applied in the
baseline is quite tolerant. It does not distinguish between upper and
lower case, and also considers partial matches to a symbol or label from
the OM vocabulary. The unit grammar method is more strict, as it only
considers a term as a unit term, when it complies to the grammar rules,
and when the included symbol exactly matches with a symbol or label
from the OM vocabulary. Terms like “Corn Grain”,“Percent reported”

and “MJ/m3” are incorrectly annotated by the baseline method with,
respectively, “om:grain”,i.e., a unit of mass, “om:percent”, and
“om:megajoulePerSquareMetre”. The unit grammar method, on the
other hand, does not consider the first two terms as unit terms, as
“Grain” is written with a capital “G”, and the string “Percent reported”
is longer than ten characters. The term “MJ/m3” is annotated with
both “om:megajoule” and “om:cubicMetre”.

The false positives generated by the unit grammar method are
mainly caused by the presence of abbreviations. Domain scientists
often use abbreviations of domain terms, e.g., “N” for nitrogen, or code
names for experiments or dates, e.g. “rye_cg” for a crop rotation
method with rye and corn grain. The grammar rules recognize these
abbreviations as unit symbols, e.g., ‘N” is recognized as symbol for
“om:newton”, and the “cg” in “rye_cg” as symbol for “om:centigram”.

5.2. Annotation of quantity terms: approach 3

The baseline method shows a very low recall (Table 7). The recall of
the quantity grammar method is higher, but still low on an absolute
level. The two annotation methods show a similar precision; and both
generate about 60% incorrect annotations.

The sets of individual spreadsheet terms that are annotated with a
quantity concept differ between the two annotation methods. The
baseline annotates a term as a quantity term when the lexical matching
method yields a match with a quantity concept. The majority of the

Fig. 4. Screenshot example of some case study results in the form of raw prolog output.

Table 6
Automatic annotation of unit terms: comparing lexical matching (baseline) with a
method using unit grammar rules.

Annotation Precision recall

Baseline annotation 0.35 0.16
Unit grammar annotation 0.72 0.75

Table 7
Automatic annotation of quantity terms: comparing lexical matching (baseline) with a
method using quantity grammar rules.

annotation Precision Recall

Baseline annotation 0.38 0.05
Quantity grammar annotation 0.39 0.23
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quantity concepts, though, is not explicitly mentioned in the corre-
sponding terms, which explains the very low recall. The quantity
grammar method, on the other hand, recognizes a term as a quantity
term when its structure complies to the quantity grammar, which is the
case for half of the quantity terms in the test spreadsheets. However,
only half of these recognized quantity terms can be correctly annotated
with a quantity concept.

The high percentage of incorrect annotations generated by the
baseline method is mainly caused by the lexical matching yielding
multiple matches, which are not all correct. For example, the quantity
term “Volume” is correctly annotated with “om:’Volume”, but also
wrongly annotated with “om:‘MolarVolume” and
“om:’VolumeFraction”.

More than half of the incorrect annotations generated by the
quantity grammar method can be explained by the fact that the units
of measure associated with some quantity terms do not comply with the
unit grammar. Most of these units have a domain concept included in
the symbol, e.g., “Diesel fuel (kg CO2e/ha)”. These units can not be
correctly annotated by our method, and as a consequence, the correct
quantity concept can not be deduced. For example, the term “Diesel
fuel (kg CO2e/ha)” is manually annotated with the quantity concept
“om:AreaDensity”. The quantity grammar method does not recognize
the unit symbol “kg/ha”, but only the separate symbols “kg” and “ha”
and therefore annotates the term with the corresponding quantities
“om:Mass” and “om:Area”.

5.3. Block typology

5.3.1. Semantic categorization of blocks: approach 4a
The vast majority of the unit, quantity and measure blocks, and

about half of the phenomenon blocks is correctly annotated by the
automatic block annotation method (Table 8). The automatic annota-
tion method is able to retrieve the vast majority of the manually
annotated phenomenon and measure blocks. However, only 56–65% of
the unit, and quantity blocks can be retrieved.

The majority of the unit blocks that are not automatically annotated
consists mainly of unit terms that are not recognized as common units
of measure, i.e., these units do not belong to the
“om:commonApplicationArea”. This includes, for example, unit terms
like “kg/ha” representing the unit “om:kilogramPerHectare and “MJ”
representing “om:megajoule”.

The majority of the quantity blocks that are not automatically
annotated consists mainly of quantity terms that are not recognized as
such. These terms can neither be lexically matched to a quantity
concept, nor can these be associated with a unit of measure. In some of
these cases the quantity is only represented in the title of the table,
while the supposed quantity cells contain associated domain concepts
In some of these cases there is a unit block present, but this unit block
is not recognized by the algorithm (see previous section).

Context blocks that cannot be annotated as unit or quantity block
are annotated as phenomenon blocks. The low precision for phenom-
enon blocks is therefore directly influenced by the low recall of unit and
quantity blocks.

5.3.2. Annotation of individual terms in semantically categorized
blocks: approach 4b

For all concepts the precision of annotation is slightly higher for the
method using semantically categorized blocks than for the baseline
method, but the recall is slightly lower (Table 9).

In the baseline method all string terms can be annotated with
domain concepts and concepts from the OM Vocabulary. In contrast, in
the method using semantically categorized blocks only terms in
Quantity and Phenomenon blocks are annotated with domain concepts,
and only terms in Quantity and Unit blocks are annotated with
concepts from the OM Vocabulary. The baseline method thus creates
additional annotations on top of the set created by the method using
blocks, which results in a higher recall.

The baseline method creates more annotations than the block
method, including more incorrect annotations, some of which are
annotations with concepts from the wrong vocabulary. Examples of
these incorrect annotations are the annotation of the domain term
“Corn Grain” with the unit concept “om:grain”, and the annotation of
the quantity term “Energy” with the domain concepts “energy produc-
tion” and “energy source”. The higher precision of the block annotation
can partly be explained by its use of vocabulary selection, which
reduces this type of incorrect annotations. The vocabulary selection
works best for phenomenon and unit blocks, where the amount of
annotations with concepts from the wrong vocabulary is reduced with
about 10%.

5.4. Grouping of similar domain concepts: approach 5a

For only 27% of the automatically categorized phenomenon blocks,
the block terms can be compared to the manually selected block terms.
For none of these blocks the manual and automatic annotation use the
same block terms (Table 10).

For a majority of 73% of the automatically categorized phenomenon
blocks the block terms can not be compared to the manually selected
block terms. About half of these blocks are in fact quantity or unit
blocks that are falsely recognized as phenomenon blocks. Therefore the
terms in these blocks either contain a limited amount of domain
knowledge, or the blocks contain such a wide variety of terms that it is
not possible to select a common block term. The other half consists of

Table 8
Semantic categorization of blocks.

semantic category Precision Recall

Unit blocks 0.88 0.65
Quantity blocks 0.92 0.56
Phenomenon blocks 0.54 0.80
Measure blocks 0.98 0.98

Table 9
Automatic annotation of individual terms with vocabulary concepts. Comparing lexical
matching of all terms at once (baseline), to lexical matching of terms using vocabulary
selection (blocks).

Vocabulary concept Precision Recall

Unit concept
Baseline 0.35 0.16
Blocks 0.44 0.12

Quantity concept
Baseline 0.38 0.05
Blocks 0.42 0.02

Domain concept
Baseline 0.34 0.17
Blocks 0.37 0.15

Table 10
Comparison of block terms used for the same phenomenon blocks in the manual and
automatic annotation.

manual block term automatic block term

Crop FAO700
Row crop
Management strategy

Wheat Cereal crop
Farm management Management strategy
Agro-ecosystem Beneficial effect
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correctly recognized phenomenon blocks. However, as these blocks
contain multiple terms that can not be matched to a domain concept,
the selection of a common block term is not possible.

Some of the automatic block term are semantically related to the
manual ‘counter part’, e.g., “row crop” is a narrower term of “crop” and
“cereal crop” is a broader term of “wheat”. As such, these block terms
might be considered relevant. However, as the set of relevant block
terms is very small, it can not be used to select relevant domain
annotations for individual terms in phenomenon blocks.

6. Discussion

6.1. Discussion of the annotation approach per property

Annotation of unit terms: approach 2. The case study results show
that the unit grammar rules improve the precision and recall of the
annotation of unit terms. The grammar rules allow very short strings to
be matched to relevant unit concepts in the OM vocabulary, and the
strict matching method applied by the grammar rules avoids many
false positives. A disadvantage of this strict matching method is that
unit terms may be missed, as domain scientists are sometimes sloppy
in their notations of unit symbols. These sloppy notations may be
caused by typing errors, ignorance, or these may be commonly used
notations among domain scientists. A limited set of these commonly
used ‘unofficial symbols’ are already included in the OM vocabulary.

Another disadvantage of the current grammar rules is that domain
specific abbreviations in the spreadsheet tables are mistaken for unit
symbols. These abbreviations often yield unit annotations that are not
relevant to the domain of the spreadsheets. Allowing only unit
annotations from an OM application area that is relevant to the
spreadsheet set (see Section 6.1), like ‘agriculture’ or environmental
science’, would probably yield in a higher precision of unit annotations.

Annotation of quantity terms: approach 3. Results of the case
study show that the quantity grammar rules improve the recall of the
annotation of quantity terms, but not the precision. The grammar rules
assume a specific structure of quantity terms, which helps to recognize
quantity terms, and results in a higher recall than the baseline method.
However, as half of the quantity terms in the spreadsheets do not meet
this structure, the recall in absolute terms is still low. The quantity
grammar and the baseline method each annotate a different set of
individual terms as quantity terms, and can be considered comple-
mentary. Both precision and recall of the annotation of individual
quantity terms may be improved if both methods are merged. This

implies that a term is considered a quantity term, if it can either
directly be matched to an OM quantity concept, or if the term structure
meets a prescribed quantity structure. In fact, this procedure is already
applied in the recognition of quantity terms in order to annotate
quantity blocks (Algorithm 6).

The quantity grammar rules use the associated unit of measure to
deduce a suitable quantity concept for a quantity term. If the structure
of the associated unit of measure does not comply to the grammar
rules, the unit annotation and, consequently, the quantity deduction
are incorrect. The use of terms with ‘custom made’ units, e.g., “Diesel
fuel (kg CO2e/ha)”, may be common among domain scientists. The
unit grammar may be adapted for this, e.g., by filtering out domain
concepts prior to matching the term to symbols and labels from the OM
vocabulary.

Block typology: approaches 4a and 4b. The majority of the blocks
in the case study spreadsheets can be correctly retrieved and annotated

Table 11
Classification rules and heuristics implemented in Algorithm 2 Annotation of table
bodies and context blocks.

Classification rules

1. Cells of the same data type, i.e., string and float, are clustered in rectangular blocks
2. Blocks with string or float cells may also contain empty cells
3. The table body consists of one block of quantitative (float) observations
4. The table body is surrounded by blocks describing the context of the observations
5. The context blocks consist of string terms

Heuristics

1. Tables are designed to be symmetric. Context blocks have the same height or width
as the table body

Table 12
Classification rules implemented in Algorithm 3: Annotation of unit terms.

1. Unit terms are short strings (<11 characters)
2. Unit terms mainly consist of one or more unit symbols
3. A unit symbol is a short string that exactly matches a symbol from a unit concept

in the OM Vocabulary

Table 13
Classification rules and heuristics implemented in Algorithm 4 Annotation of quantity
terms.

Classification rules

1. Quantity terms contain a unit term (Table 12, Algorithm 3) enclosed in brackets

Heuristics

1. Annotation concepts for quantity terms can be deduced from the included unit
term

Table 14
Classification rules and heuristics implemented in Algorithms 5, and 6: Annotating
blocks.

Classification rules

1. The table body is annotated with “om:Measure”
2. The context blocks are annotated with “om:Quantity”, or “om:Phenomenon”, or

“om:Unit of Measure”
3. When a block is annotated with a particular om concept, this annotation applies to

all terms in that block

Heuristics

1. The context blocks in one table consist of at least one Phenomenom, and only one
Quantity block.

2. If units of measure are present they occur either in a separate Unit block, or
included in the Quantity block.

3. A unit block consists of either a single row or a column
4. A unit block contains >30% unit terms (Table 12, Algorithm 3)
5. A unit block contains more unit terms than domain terms
6. The Quantity block is vertically or horizontally aligned with the Unit block and

Measure block
7. A Quantity block contains >30% quantity terms (Table 13, Algorithm 4)

Table 15
Classification rules and heuristics implemented in Algorithm 7: Annotating terms.

Classification rules

1. Terms in Phenomenon blocks are annotated with concepts from a domain
ontology

2. Terms in Unit blocks are annotated with concepts from the OM ontology
3. Terms in Quantity blocks are annotated with concepts from both the OM and a

domain ontology

Heuristics

1. Annotation concepts for terms in Quantity blocks can be deduced from the
associated unit term, which is either located within the quantity term, or in the
neighbouring Unit block
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using the block annotation method. However, the precision for
phenomenon blocks is lower than for the other types of blocks. The
same holds for the recall for unit and quantity blocks.

The algorithm for the annotation of unit blocks only considers units
of measure from the “om:commonApplicationArea”. This restriction
avoids matches with ‘exotic’ units of measure that are only used by
specific application areas in the OM vocabulary, e.g.,
“om:radiometryAndRadiobiology” and “om:astronomyAndAstroph-
ysics”, that do not match the application area of the spreadsheets test
set. However, some units of measure that are relevant to the applica-
tion area of the tested spreadsheets are also avoided, e.g.,
“om:kilogramPerHectare and “om:megajoule”. This can be explained
by the fact that the class “application area” in the OM vocabulary is not
yet sufficiently populated. One third of the units of measure in the OM
vocabulary does not belong to any application area, and the vocabulary
only contains a selection of 17 application areas from the field of pure
and applied physics (Rijgersberg et al., 2011). Selecting units that
belong to an application area that is more relevant to the spreadsheet
set, like ‘agriculture’ or ‘environmental science’, would probably yield
in a higher recall of unit block annotations, and consequently, in a
higher recall of quantity block annotations and a higher precision of
phenomenon block annotations.

The results of the case study show that the block annotation, and
corresponding vocabulary selection, slightly improves the precision of
the annotation of individual terms, but slightly reduces the recall.

Grouping of similar domain concepts: approach 5a. The case study
results show that the majority of the automatically selected block terms
for phenomenon blocks is not relevant, and can not be used to select
domain annotations for the individual terms within these blocks.

Our assumption that individual terms from the same phenomenon
block can be related to a common denominator concept seems not
apply to this case study, as only one third of the phenomenon blocks
can be manually annotated with a block term. However, related studies
were indeed able to find common denominators for groups of string
terms in their spreadsheet tables. Some of these used structural
properties of a table to determine a class hierarchy, and populated it
with the original string terms as found in the table (Abraham and
Erwig, 2006; Hermans et al., 2010; Chen and Cafarella, 2013). These
studies showed that many phenomenon blocks already have a common
denominator that is present within the table, i.e., located above or left
from the phenomenon block. Our approach does not consider these
terms, as these are not included in the identified context blocks. It may
be useful to include the original string terms in our approach and
consider these as block term candidates. We submit, however, that the
use of vocabulary concepts is more appropriate, as the original string
terms may be ambiguous, or hard to interpret.

Other studies inferred annotations for the header labels by con-
sidering the string values in the corresponding row or column (Venetis
et al., 2011; Limaye et al., 2010), i.e., an approach that is similar to our
method of finding block terms for phenomenon blocks. These studies

used probabilistic reasoning, instead of the majority method, to find
suitable annotations for the header labels. The use of probabilistic
reasoning is related to the use of large, common vocabularies, since
these will yield header labels that are too generic to be relevant, when
the majority method is used. This issue does probably not apply to the
use of more specific domain vocabularies, like the one used in our
study.

6.2. General discussion

The annotation approaches presented in this study do not only
build upon each other, but are also combined in an iterative way. The
case study results show that these dependencies yield advantages, as
the approaches inform each other, but this construction is also fragile,
as mistakes made in one approach, negatively influence the annotation
results of the depending approach(es). The correct annotation of unit
terms forms a critical first step, and improving this step would probably
result in better results for all of the following steps.

The availability of suitable vocabularies is essential in most of our
approaches. The Valerie vocabulary covers the domain of the spread-
sheets, and its graph structure allows automatic selection of related,
higher-level domain concepts as common denominator for the terms in
phenomenon blocks. The graph structure in the OM vocabulary allows
us to check whether a term is correctly recognized as a unit or a
quantity term. We used four main concepts from the OM vocabulary to
semantically categorize the blocks. And, in our method we use several
other types of information provided by the OM vocabulary, i.e., (1)
which units are commonly used by certain quantities, (2) which units
and quantities are commonly used by certain application areas, and (3)
which unofficial notations for units and quantities are commonly used
by domain scientists. There are alternative vocabularies available to
annotate unit or a quantity terms, e.g., QUDT (Hodgson et al., 2014).
However, these vocabularies do not include the phenomenon concept,
which we argue is essential to formally distinguish domain knowledge,
nor do they offer the additional types of information that are
mentioned above.

The vocabularies that are used in the study are selected manually.
As our annotation approaches are fully automated, automatic vocabu-
lary selection would be a logical step in the annotation process. The OM
vocabulary can be used as a standard, generic vocabulary to annotate
quantities and units of measure in all sorts of natural science
spreadsheets. The automatic selection of a domain vocabulary could
be done by collecting a larger set of suitable (see previous paragraph)
vocabularies within the natural science domain. For a given spread-
sheet, a pilot annotation based on lexical matching could indicate
which vocabulary from this set is most suitable to annotate the domain
terms in the spreadsheet. Another option would be to develop a more
interactive tool, that allows domain scientists to supply or choose a
relevant vocabulary. Newly proposed vocabularies could then be used
to enrich our ‘vocabulary database’.

We tested our automatic annotation approaches on natural science
spreadsheets that (1) consist of numerical data, quantities and units of
measure, and information on the associated objects and events, and (2)
have a simple design. Although this type of spreadsheets is typical for
the domain, we are aware that a considerable part of the natural
science spreadsheets may not have such a simple, homogeneous
structure. It is quite common for domain scientists to create tables
that contain no or very limited information on the quantities, units or
the associated objects and events, or to create tables with a complicated
design. Our annotation approaches may also be applied to more
complicated or heterogeneous tables, but we expect that the recall
and precision for the annotation of these types of tables will be lower,
compared to the results of present case study. On the other hand, the
spreadsheets used in our case study are officially published as
supplementary research data. We believe that this type of spreadsheets
is a small set compared to the number of natural science spreadsheets

Table 16
Classification rules and heuristics implemented in Algorithm 8 Annotating block terms.

Classification rules

1. A block term is either hierarchically or property-wise related to ≥30% of the terms
in a phenomenon block
2. When a phenomenon block is annotated with a particular block term, this

annotation applies to all terms in that block

Heuristics

1. All terms in a Phenomenon block can be semantically related to one block term,
i.e., one single domain concept that serves as a common denominator

2. Terms in a phenomenon block should only be annotated with concepts that are
related to the corresponding block term
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used in the informal area. The reuse of spreadsheet data would be
valuable in this area in particular, which would make it an interesting
area for application of our method.

7. Conclusions and future work

The ultimate goal of this paper is to make the underlying domain
model of natural science spreadsheet data explicit. Ideally, the pre-
sentation of this domain model is independent of the spreadsheet
syntax, i.e. a collection of concepts and the way these are related to
each other, so that it can actually be consumed computationally. Our
annotation approach for individual terms provides information on the
concepts that are present in the tables. The annotation of blocks with
the four OM concepts Measure, Unit, Quantity, and Phenomenon is an
essential first step in the identification of relations between cells in a
table. As such, the annotation approaches presented in this study
provide the basic information that is needed to construct the domain
model of natural science spreadsheets.

As mentioned above, we expect that our annotation approach may
also be applied to tables that do not meet the requirements of complete
information, or simple design. In future work we plan to investigate to
what extent and in what ways existing natural science tables deviate
from our ’ideal situation’. We also plan to investigate how these
deviations may be addressed by heuristics, and to what extent
automatic annotation of these tables is still possible.

Furthermore, we see several promising directions to extend and
improve our approach. The annotation results presented in this study
could be visualized within the spreadsheet tables, together with
additional explanation from the vocabularies, e.g., the concept defini-
tion, alternative labels and related concepts. This would help users to
understand and correctly interpret natural science spreadsheet data.
Furthermore, we would like to explore ways to actually reconstruct the
domain model. Our present approach for the annotation of individual
terms may yield multiple concepts per term. A logical next step would
be to develop a method to select the best, single concepts to be included
in the domain model. And also, to identify and annotate the relations
that exist between concepts. We may further analyze the relations that
exist between concepts that are present in the semantically categorized
blocks, e.g., relations between different phenomenon concepts, and
between phenomenon and quantity concepts. In such an analysis, the
formulas in spreadsheet tables could form and additional and useful
source of information (de Vos et al., 2015).
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Appendix A

This section provides a more detailed description of the heuristics
and classification rules used in our approaches, and how these are
implemented in our algorithms.
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