
Int. J. Human—Computer Studies (1998) 49, 363—389
Article No. hc980211
Construction of problem-solving methods as parametric
design

A. TEN TEIJE

SWI, University of Amsterdam, The Netherlands. email: annette@cs.vu.nl

F. VAN HARMELEN

Department of Mathematics and Computer Science, »rije ºniversiteit Amsterdam,
De Boelelaan 1081a, 1081 H» Amsterdam, ¹he Netherlands. email: frankh@cs.vu.nl

A. TH. SCHREIBER AND B.J. WIELINGA

S¼I, ºniversity of Amsterdam, ¹he Netherlands.
email: schreiber@swi.psy.uva.nl, wielinga@swi.psy.uva.nl

The knowledge-engineering literature contains a number of approaches for constructing
or selecting problem solvers. Some of these approaches are based on indexing and
selecting a problem solver from a library, others are based on a knowledge acquisition
process, or are based on search-strategies. None of these approaches sees constructing
a problem solver as a configuration task that could be solved with an appropriate
configuration method. We introduce a representation of the functionality of problem-
solving methods that allows us to view the construction of problem solvers as a config-
uration problem, and specifically as a parametric design problem. From the available
methods for parametric design, we use propose-critique-modify for the automated
configuration of problem-solving methods. We illustrate this approach by a scenario in
a small car domain example. (1998 Academic Press
1. Introduction

The literature on knowledge engineering has identified a number of different problem
types (e.g. diagnosis, design, monitoring) (Hayes-Roth, Waterman & Lenat 1983; Clan-
cey, 1985) and identified for each problem type a number of problem-solving methods
(PSMs), which are methods that can be employed to solve a problem of that particular
type. For example, diagnosis problems can be solved by such diverse methods as
consistency-based diagnosis, hierarchical diagnosis or abduction (see Console, de Kleer
& Hamscher, 1992 for a survey).

A central question is then ‘‘which problem-solving method (PSM) is optimal for a given
problem type?’’ In general, the choice of an appropriate PSM will depend on the goal of
problem solving and on characteristics of the specific input (knowledge and data).
Consequently, PSMs must be selected from a library or constructed. In the former case,
methods are selected from a predefined set, while in the latter case, parts of existing
methods or newly defined parts are combined to construct a new method. Such a selected
or constructed method does not guarantee the satisfaction of all the intended goals, for
example due to lack of sufficient knowledge about when to apply a PSM, or due to
1071-5819/98/100363#27$30.00 (1998 Academic Press

364 A. TEN TEIJE E¹ A¸.
incompleteness of data or knowledge inherent to AI-problems. Because the intended goals
are not guaranteed, we have to validate the constructed method. If this validation fails, we
have to iterate the selection and construction process, using the results of the validation.

This paper proposes a novel solution for the automated construction of methods. The
approach is based on the correspondence between the construction of methods and
parametric design. A restriction of our proposal is that we consider a PSM as a logic
program and study only the declarative properties of PSMs, and no efficiency or other
algorithmic properties. In other words, we study only the configuration of the required
functionality of a PSM, and are not concerned with the realization of this functionality
by an efficient algorithm. As a result, whenever we say ‘‘problem-solving method’’ in this
paper, the reader should interpret this as ‘‘the declarative functionality of a problem-
solving method’’.

Furthermore, our study of automated construction of PSMs is based on studying dia-
gnostic methods, although we believe that it will apply in general to other classes of PSMs.

The structure of this paper is as follows. First we give a definition of the problem of
automated construction of PSMs. Then we briefly present a representation of PSMs
which allows us to view their construction as parametric design. Subsequently, we
interpret automated construction of PSMs as a configuration task and we motivate our
choice for the propose-critique-modify method for configuring PSMs. Finally, the body
of this paper applies this method to the automated configuration of PSMs. We illustrate
this method through a detailed scenario in which we configure a diagnostic PSM.

2. Analysis of the construction problem

The goal of automated construction of methods is to construct a method that produces
acceptable solutions for a given problem under particular assumptions and desired goals.
Our approach is to first configure and then validate a method, and, if this validation fails,
to iterate the configuration step. We call the construction before validation static
configuration and the configuration using the validation results dynamic configuration.
The question in static configuration is ‘‘Which PSM is expected to be optimal?’’, and in
dynamic configuration ‘‘What should be done if the PSM does not give the desired
solution?’’. In line with the distinction of static and dynamic configuration we distinguish
static and dynamic goals. Static goals are requirements (of the solution or of the method)
that can be guaranteed solely on the basis of the description of the method. For example,
the goal that a method always produces singleton diagnoses. Dynamic goals are require-
ments of the solution that can only be validated after executing the method. For example,
the goal of a maximal number of diagnoses. This distinction between static and dynamic
goals is not fixed. With more knowledge a dynamic goal might be established statically.
Whether goals are static or dynamic depends on the knowledge that is available about
methods.

The method description that we have to construct has to satisfy both types of goals.
The construction process proceeds in two steps. The first step of the construction process
concerns the configuration of a method that satisfies the static goals. If there is no such
method, the second step occurs: we adapt the problem, assumptions or goals slightly
such that a method can be constructed that satisfies the static goals (possibly slightly
adjusted). If this method also satisfies the dynamic goals, a suitable method has been

CONSTRUCTION OF PROBLEM-SOLVING METHODS 365
constructed. If the method does not satisfy the dynamic goals, we try to adapt the method
in such a way that is does. However, when this is impossible we again adapt the problem,
assumptions or goals slightly and configure a method for these new inputs. The basic
idea is that we construct the method that computes the ‘‘best’’ possible solutions for the
given problem and assumptions and desired goals. For computing these solutions, the
constructed method possibly has to apply to a problem which is a slight modification of
the original problem, and under possibly slightly modified assumptions and for possibly
slightly modified goals.

In all this, the object of the construction is the method description. The possibly
slightly adjusted assumptions, goals and problem are side effects of configuring an
appropriate method for a given problem under particular circumstances.

In general, the inputs of automated construction of a method are the following.

1. The input problem for which we need to construct a method (given as data and
knowledge), e.g. the diagnostic problem containing the observed behaviour and the
behaviour model.

2. The assumptions under which the method will have to operate, e.g. the single fault
assumption.

3. The goals that the resulting method will have satisfy, such as a maximal size of the
diagnosis.

The outputs are the following.

1. The description of the contructed method.
2. The solutions computed by the method.
3. The possibly slightly adjusted versions of the input problem, the goals and the

assumptions.

The input/output relation of the construction process is as follows.

f The output has to be a representation of a method.
f It must not conflict with the (possibly adapted) assumptions.
f It must satisfy the (possible adapted) goals.
f The slightly adapted inputs (assumptions, goals, problem) have to be closely related

to the original ones.

3. The representation of methods

Our approach to automated configuration of problem solvers relies on exploiting the
theory about problem-solving methods from ten Teije and van Harmelen (1994) and ten
Teije and van Harmelen (1996b). In that work, we have proposed a uniform representa-
tion of (the functionality of) problem-solving method. The central idea of this representa-
tion is that of functionality of a class of problem-solving methods is captured in a single
schematic formula. Some of the predicates and terms from that formula are regarded as
parameters that must be further instantiated to capture different members of the class of
problem-solving methods. Thus, given a schematic formula that defines the functionality
of a whole class of problem-solving methods, different members of that class correspond
to different definitions for the parameters occurring in the schematic formula.

366 A. TEN TEIJE E¹ A¸.
It is exactly this uniform representation of an entire class of problem-solving methods
that will allow us in this paper to view the construction process of problem-solving
methods as a parametric design task. Since we will illustrate our theory about the
configuration of problem-solving methods with examples from diagnostic problem-
solving methods, we will now give our schematic definition of these diagnostic methods.

In general, a diagnostic problem arises if there is a discrepancy between the observed
behaviour of a system (e.g. an artifact) and how the system should behave; in other words,
the expected behaviour does not correspond with reality. The diagnostic task is to find
out the cause of this discrepancy. A diagnostic method computes the solution for
a diagnostic problem by using a model of the expected behaviour (the behaviour model,
BM), the actually observed behaviour OBS and contextual information CX¹. The
computed solutions of a diagnostic problem represent an explanation for the observed
behaviour.

Our uniform representation of diagnostic problem solvers is based on the following
general account of their functionality. An explanation distinguishes two types of observa-
tions: it covers some observations, and it does not contradict other observations. The
explanation is restricted to a vocabulary of special candidates that could be causes of
behaviour discrepancy (e.g. components). Usually, we are not interested in all possible
explanations, but only the most reasonable explanations. We also want to represent an
explanation as a solution that a user can interpret. (For example, in medical domains,
users are usually interested in the disease, and not in all the current states of the parts of
the patient’s body).

Together, these six aspects written in italics make up the particular notion of diagnosis
that is realised in a given method. We can capture these general characteristics of
a diagnostic method in the following formal definition:

When given as input the behaviour model BM, a context CX¹ and a set of observa-
tions OBS, a diagnostic method computes a set of solutions Sol such that

Obs-mapping(OBS)"SObs
#07

, Obs
#0/

T and

Es"MEl DBMXEXCX¹7
#07

Obs
#07

and

BMXEXCX¹7/
#07M

and

BMXEXCX¹7/
#0/2 Obs

#0/
and (1)

E-»ocabularyN and

Selection(Es, E@) and

Solution-form(E@, Sol)

Each of the six underlined terms is one of the parameters in our representation of
diagnostic methods. Varying one or more parameters amounts to describing different
diagnostic methods. The Obs-mapping determines which observations must be explained
(or covered) Obs

#07
, and which need not be contradicted (Obs

#0/
). E is an explanation for

the observed behaviour by covering some observations (7
#07

), and not contradicting
others (7/

#0/
). We write 7

#07
and 7/

#0/
as different symbols to emphasize that one is not

necessarily the negation of the other, and that neither is necessarily the same as the classical
entailment 7, E is expressed in a particular »ocabulary. We are interested in the most

FIGURE 1. Components of diagnostic methods and their relations. This figure is the graphic notion of Formula
1. Ovals are components, boxes are their inputs/outputs, thick boxes are inputs/outputs of the entire method.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 367
reasonable explanations, determined by a Selection criterion. The Solution-form deter-
mines the representation of the final result of the method. The dependencies between all
these components of a diagnostic method is shown in Figure 1.

In ten Teije and van Harmelen (1994), we show that we can formulate properties of this
general schematic formula, as well as properties of instances of the schema. Such
properties will be exploited in the configuration of methods. In ten Teije and van
Harmelen (1996b), we have argued that this representation can in principle be applied to
families of methods other than diagnostic methods, such as methods for monitoring,
design, classification, etc. As a result, we will claim that also our approach to the
configuration of methods is general, and could be applied to such other families of
problem-solving methods.

The connection of the above representation to the general notion of PSMs can best be
explained by relating it to the view on PSMs given in Benjamins, Fensel and Straatman
(1996), which is summarized in Figure 2. Given a goal to solve, a PSM contains
a functional specification of what it can achieve and an operational specification which
implements the functional specification. In order to achieve the intended goal, a PSM
must make assumptions about the domain knowledge that is available to it.

In this context, Formula 1 is a functional specification of a PSM. More precisely, any
instantiation of Formula 1 corresponds to the functional specification of a different
PSM. This functional specification can be turned into a trivial operational specification
by interpreting Formula 1 as a logic program, and adding the corresponding control-
structure. The assumptions from Figure 2 correspond exactly to the assumption about
the domain knowledge mentioned in Section 2.

The configuration process that we discuss in this paper can be clearly characterized in
terms of Figure 2: given a goal and assumptions that we know to hold on the domain
knowledge, find a problem-solving method whose functional specification fulfils the
required goal under the given assumptions. Benjamins et al. (1996) already point out that
in cases where such a PSM cannot be obtained, it is possible to either weaken the goal or
strengthen the assumptions. As we discussed in Section 2, our configuration method
allows for such changes to its own input in order to satisfy the goal as best as it can.

FIGURE 2. The architecture of a PSM. This figure is adapted from Benjamins et al. (1996).

368 A. TEN TEIJE E¹ A¸.
4. Configuration task

In the literature on configuration there is a consensus about the nature of configuration
tasks. Most definitions of a configuration task found in the literature are a slight variant
of Mittal and Frayman (1989):

‘‘Given: (A) a fixed, pre-defined set of components, where a component is described by a set
of properties, ports for connecting it to other components, constraints at each port that
describe the components that can be connected at that port, and other structural constraints;
(B) some description of the desired configuration; and (C) possibly some criteria for making
optimal selections.

Build: One or more configurations that satisfy all the requirements, where a configuration
is a set of components and a description of the connection between the components in the
set, or detect inconsistencies in the requirements.’’

The configuration task can be considered as a search problem using the above types of
inputs and output (Löckenhoff & Messer, 1994). The configuration process restricts this
search space in four steps using the various types of inputs (see Figure 3). The set of
possible components and the possible connections between these components are fixed
and given beforehand. This restricts the search space to the possible configuration space.
The constraints restrict this possible configuration space to the valid configuration space.
The user-requirements restrict this valid configuration space to the suitable configuration
space. The optimality criteria can possibly restrict or divide this space further.

FIGURE 3. Configuration task as search problem.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 369
Parametric design is a simplification of the configuration task. Besides a fixed set of
possible components and fixed possible connections, in parametric design the actual
connections between the possible components are already fixed in a given structure.
Furthermore, each component is specified as a parameter, which has a particular range
that is given before hand. This reduces the configuration problem, because we only have
to assign values to each parameter in its own range and we no longer have to configure
the connections between the components. See Wielinga, Akkermans and Schreiber
(1995), and Motta and Zdrahal (1996) for a detailed analysis of parametric design.

4.1. AUTOMATED CONFIGURATION OF PROBLEM SOLVERS AS PARAMETRIC DESIGN

In this section, we map the automated configuration of PSMs on the configuration task.
In order to make this mapping, we consider the general characteristics of the configura-
tion task given above in the context of the construction of problem solvers and we
consider the configuration of PSMs as a search problem.

We first consider the input types of the configuration task in the context of configuring
PSMs. The inputs are the following.

f Components: the set of possible components are the possible definitions of the compo-
nents in the schematic formula from Section 3 (Formula 1) (e.g. subset minimality for
the Selection component). These possible definitions are the building blocks of the
configuration and are fixed and given beforehand.

f Compositional structures (the connections): the representation of a method is the
schema from Formula 1. This schema is the only allowed structure, and is indeed fixed
and given beforehand. The mapping to a configuration problem is possible, exactly
because we have a schema for representing diagnostic methods in a uniform way (ten
Teije & van Harmelen, 1994).

f Constraints: the constraints between the diagnostic components and constraints be-
tween underlying assumptions of the components.

f ºser-requirements: the goals (static or dynamic) that have to be fulfilled.
f Optional: optimality criteria, transformation knowledge and heuristic knowledge for

search. Although, we appreciate the need for these types of knowledge, they are outside
the scope of out current work.

370 A. TEN TEIJE E¹ A¸.
This list of inputs to the configuration task corresponds to the components of a PSM
from Figure 2: the user-requirements of the configuration task correspond to the goal of
a PSM, and the assumptions about the configuration components correspond to the
assumptions a PSM makes on its domain knowledge.

The output of the configuration of methods consists of the six components of
particular types, which are structured in such a way that together they represent
a diagnostic method.

The three types of configurations (possible, valid and suitable; Figure 3) can be given
a meaning in configuring methods. A possible configuration is a method that contains
a definition for each component of the general method schema. A valid configuration is
a method that expresses a diagnostic method and has no conflicts with the assumptions
under which the method must operate. A suitable configuration is a method that satisfies
the desired goals.

The mapping from the elements of a general construction problem onto our problem
of method construction shows that we can indeed interpret automated configuration of
diagnostic problem solvers as a configuration problem. In fact, it can even be interpreted
as parametric design, because we use a fixed structure and the possible definitions of each
component can be considered as the range of the parameter in Formula 1. However, in
our view of configuring PSMs we do not only modify the method, but possibly also the
assumptions, goals and the input problem, as already stated in Section 2.

4.2. METHODS FOR THE CONFIGURATION TASK

A range of methods for parametric design is available from the literature. Of these
methods, we have chosen propose-critique-modify as the most suitable for our proposes.
We first briefly describe this method and then state why some other methods are less
suitable.

Propose-critique-modify family. Characteristic of a propose-critique-modify (PCM)
method is that when a configuration is not a suitable configuration, the configuration
process uses the test results for determining a new configuration instead of generating
a new one from scratch. The propose-critique-modify (PCM) family (Brown & Chan-
drasekaran 1989; Chandrasekaran, 1990) consists of four steps; propose, verify, critique
and modify. We discuss each step in turn.

Propose: the propose step gives a partial or a complete configuration. Methods for the
propose step are: solution decomposition, design proposal by case retrieval and con-
straint satisfaction (Chandrasekaran, 1990). For our specific case of configuring diagnos-
tic methods, yet another method (similar to the one used in the VT-task (Schreiber
& Birmingham, 1996) seems more appropriate. In this propose-method, parts of the
design (in our case some of the parameters in the diagnostic schema) are proposed on the
basis of requirements. These partial proposals are then completed into full proposals by
proposing values for the remaining parameters.

»erify: the verify step involves checking that the proposed configuration satisfies the
constraints and the user-requirements. Chandrasekaran (1990) distinguishes two verifi-
cation steps. (1) ‘‘Attributes of interest’’ that can be directly calculated or estimated by
means of domain specific formulae. In our case (configuring diagnostic problem solvers)
these are the constraints on the diagnostic components and on the assumptions. (2)

CONSTRUCTION OF PROBLEM-SOLVING METHODS 371
‘‘Behaviour interest’’ that can be derived by simulation. In our case the simulation amounts
to performing diagnosis. Based on these results the dynamic goals have to be verified.

Critique: the critique step is a diagnostic problem of mapping from undesired behav-
iour to the parts of the configuration which are possibly responsible for this undesired
behaviour.- This step analyses the failure of the configuration. Therefore, it needs
information about how the structure of the device contributes to the desired behaviour.
In our case, this is knowledge of how properties of the components of the diagnostic
schema relate to properties of the complete schema. In this phase, one can use (meta-)
diagnostic knowledge about goal violations and repairs.

Modify: the modify step uses the repair information from the critique step and
executes the repair action. It changes the configuration to get closer to the specifications.
In our case this is the actual adaptation of the diagnostic method.

The motivation for not choosing any of the methods that are available for parametric
design is as follows. The simplest of these methods is generate-&-test. There is a wide range
of generation and test steps, from a simple generation step with a knowledge-intensive test
step to a knowledge-intensive generation step with a simple test step. Characteristic of
a generate-&-test method is that when a configuration does not pass the test, the
configuration process continues with a completely new configuration, without taking into
account the reason why the previous configuration failed the test. In our case, it is difficult
to generate good candidates from scratch. Instead, the system would generate many
almost-good candidates, without exploiting them for constructing a good candidate.

The propose-&-revise family is a sub-family of PCM methods. These methods are used
in the VT-domain (Schreiber & Birmingham, 1996). This family of methods is a simplifi-
cation of the PCM method, because the critique step is replaced by compiled knowledge.
The idea behind this family of methods is that it is possible to give an initial proposal for
a configuration. This configuration is constructed by selecting values for the set of
components based on the user-requirements. This configuration can be ‘‘fixed’’ (repaired)
if constraints are violated. These fixes are the compiled critique knowledge. Fixes are
direct associations of a constraint violation and a repair action by changing one or more
parameter values (Runkel, Brimingham & Balkany, 1995; Marcus, Stout & McDermott,
1988; Fensel, 1995). Propose-&-revise methods require these fixes as search control
knowledge.

A propose-&-revise method is not appropriate for automated configuring of PSMs for
two reasons. First in our problem we need a full critique step. The critique step is quite
complex and it is not possible to code it in simple direct associations between a con-
straint violation and a repair action. Secondly, propose-&-revise methods are used
because of the large search spaces, but our most important motivation is to prevent the
expensive tests of dynamic goals (performing diagnoses). Our efficiency problem is not in
the constraints but in verifying the dynamic goals.

5. A propose-critique-modify method for configuring PSMs

In this section, we describe a method of the PCM family for automated configuration of
problem solvers. We configure complete models and verify, criticize and modify them.
-Notice that this is a meta-diagnostic problem, since we are diagnosing failures in diagnostic methods.

FIGURE 4. Propose step: the possible method is a complete definition of a method, where the goals are fulfilled as
much as possible. The dynamic goals are those goals which are part of the goals, but which are not guaranteed

by the proposed method.

372 A. TEN TEIJE E¹ A¸.
We discuss the four steps of a PCM method (propose, verify, critique and modify), and
visualize them in diagrams: the ovals are inferences (step and sub-steps in the method),
the solid-line boxes are input/output data of the inferences, and the dotted boxes
represent knowledge that is specific for a particular type of PSMs. In our case the dotted
boxes contain knowledge about diagnostic methods.

5.1. PROPOSE

The propose step proposes a configuration. It has to propose an instance of the general
schema that we use for representing PSMs. In our study, such a proposed configuration
is an instantiation of the six components of the diagnostic schema. We describe a method
by a term-

ds(Obs-mapping, »ocabulary, Cover, NotContra, Selection, Solform),

where each argument of ds (for diagnostic system) represents a definition of the particular
component (e.g. Obs-mapping, i.e. one of the underlined terms from Formula 1). Such
a definition is a definition taken from the possible set of instance of a component. The
proposed components definitions are not structured, but are only a definition from
a fixed set that is given beforehand. The Selection component is the sole component that
can be structured. However, in the propose step, only ‘‘basic’’ selection criteria are
proposed, which can be adapted to more complex ones later in the modify step the
Selection component. We will illustrate this in the scenario in Section 6.

The propose step (see Figure 4) results in a configuration (i.e. a method description)
from the possible configuration space, by selecting a definition for each of the six
components. This selection is controlled by the required static goals. An example of
a static goal would be that the configured method has to result in a small set of the
solutions, which would result in proposing a strong Selection component.

If the static goals do not determine a definition for each component (or when there are
no static goals), the proposed method is completed with an arbitrarily chosen definition
from the set of possible definitions for these components. When different static goals
require different definitions of the same component, one of these definitions is chosen
-Terms beginning with a capital letter will denote variables.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 373
arbitrarily and the goals that are not guaranteed by the method become dynamic goals.
Satisfying static goals might depend on the diagnostic problem or on the given assump-
tions. For this reason, the given input assumptions and problem are input for the
propose step.

Characteristic of this propose step is that it always gives a proposal, and that the static
goals controls the search space in this phase of the configuration process. The specific
(diagnostic) knowledge that is used in the propose step is (1) the knowledge for fulfilling
a statical goal, (2) the number of components (the arity of the schema of ds(2)) and (3)
a set of definitions for each component. The propose step enables us to generate possible
methods using the definitions for the diagnostic components in the system. However, at
this moment, we do not say anything about the sequence of choices of diagnostic
component and about the sequence of the proposed configurations.

5.2. VERIFY

The verify step checks whether the proposed method satisfies the constraints and the
user-requirements (goals). The verify step is divided into two (sub-) steps: knowledge-
verification and simulation-verification (these names are taken from Chandrasekaran
(1990)). In the context of problem-solving methods, we might better call them the
static-verification (verifying before execution of the method) and the dynamic-verifica-
tion (verifying after execution of the method), respectively. We discuss both verification
steps in turn.

Knowledge-verification. In flexible problem solving, the knowledge-verification con-
sists of two types of problem-type specific knowledge (e.g. diagnosis specific): (1) con-
straints between components and (2) constraints following from assumptions. The
knowledge-verification step (see Figure 5) uses the component-constraints and the
assumption-constraints for testing whether a method is valid. Both types of constraints
might depend on the given assumptions and the input problem. For example, the
compatibility of some diagnostic components depends on the kind of behaviour model
(which is part of the diagnostic input problem).
FIGURE 5. Knowledge-verify step: a valid method is a possible method which causes no assumption conflicts and
no component-constraint conflicts. If verification failed a new propose step will be performed.

374 A. TEN TEIJE E¹ A¸.
An example of an assumption-conflict is the following: suppose that the assumption is
given that the causes in our behaviour model are not necessarily independent, but are
possibly correlated. This would cause an assumption-conflict if we would ever use
number-minimality as a Selection component. Number-minimality selects the explana-
tion with the lowest number of causes (since a small number of faults is more likely than
a high number of faults). This minimality-criterion only makes sense if the causes are
assumed to be uncorrelated. After all, if the causes are correlated, a single unmodelled
cause might underly a large number of correlated causes in our explanation, and we
would incorrectly rule out such an explanation with our selection criterion.

In the configuration literature the term valid configuration is used. A method is valid if
it is both component-valid and assumption-valid. A method is component-valid if and
only if all the component constraints hold and a method is assumption-valid if no
assumption conflict occurs.

If verification fails, a new propose step will be performed. However, the distinction
between the propose step and the verify step is relative. We can make the propose step
gradually more knowledge intensive by including more knowledge of the knowledge-
verification step in the propose step. We can only propose component-valid methods, or
only assumption-valid methods, or even only valid methods. We can make the propose
step less knowledge intensive by generating arbitrary methods, without using the static
goals for guiding the proposal of a method. The knowledge about the particular problem
type (in our case diagnosis) determines which type of knowledge (static goals, assumption
conflicts or component constraints) must be part of the propose of knowledge-verifica-
tion steps. In our case the knowledge about diagnostic methods enables us to guide the
propose step using the static goals. This makes the propose step a kind of nested
generate-&-test, which generates proposals which are tested using the static goals. This
saves us from generating proposals which can be easily determined as inappropriate.

Simulation-verification. Simulation-verification consists of performing diagnosis fol-
lowed by tests whether the dynamic goals are met. Diagnosis is performed using the valid
method of the knowledge verification step. The computed diagnoses are used for testing
the dynamic goals (see Figure 6).
FIGURE 6. Simulation-verify step: if the verification-results contains ‘‘success’’ then the method is a suitable
method. The verification-results is ‘‘success’’ if the valid method meets all the dynamic goals, otherwise the result

consist of the violated goals, as well as the used method.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 375
The verification of the dynamic goals requires the computed diagnoses. Computing
these diagnoses is expensive, and therefore the simulation-verification is expensive. An
examples of a dynamic goals is a requirement on the size of the diagnoses. Sometimes
these dynamic goals can be guaranteed by a particular choice of a component (i.e.
statically determined), but if this component is not appropriate for other reasons (e.g. an
assumption conflict) then we might chose another component. In such a case, we have to
verify this goal dynamically. In the case where not all goals are met, the results of
verification contain the failing goals, as well as the method that failed to meet these goals.

5.3. CRITIQUE

The critique step is an analysis of why the verification failed; in other words why the
method is not an appropriate method. In our propose-critique-modify method, we verify
and criticize complete methods. The results of the step is the identification of one of the
six components that is held responsible for the failure of the verification step. Note that
we do not yet identify a possible repair action that must be taken to fix this component.
That is the purpose of the modify step. The blame-assignment is done based on
domain-specific knowledge (i.e. diagnosis knowledge). Unfortunately, we do have only
limited concrete examples of such knowledge. Another open issue is what to do if there
are multiple possible components that can be responsible for the verification failure.

An example would be a violation of the goal ‘‘maximum number of diagnoses is one’’.
The system might contain the knowledge that the existence of too many solutions can be
blamed on the selection criterion. A possible subsequent repair action in the modify
step would then be to use a definition for the Selection component that filters more
explanations.

We need a critique step, because the verification (especially the simulation-verification)
is very expensive (because of performing diagnosis). Such a critique step enables us to
control the search instead of generating arbitrary methods and testing these methods
until we find a correct one. This is our main motivation for using a propose-critique-
modify method. Normally, the large search space is the main motivation to use PCM
methods. In our case this holds too, but even more important is the motivation of the
expensive simulation-verification step. Therefore, controlling (reducing) the search space
is necessary.

5.4. MODIFY

The modify step uses the result of the critique step to find an appropriate modification.
Given a component that must be modified, finding the appropriate repair action is not
immediately obvious. Like every step of our PCM-method the modification uses prob-
lem-type specific knowledge, such as the properties of components. For example, the
repair-action of strengthening the Selection component results in checking for which
possible Selection components this holds (for example: ‘‘number-minimal’’ is stronger
then ‘‘subset-minimal’’).

Another example of knowledge that is useful for modifications of methods is whether
configurations (methods) give the same solutions. This enables us to exclude modifica-
tion before verifying, and therefore to avoid the expensive simulation verify.

FIGURE 7. Control structure for the PCM method.

376 A. TEN TEIJE E¹ A¸.
For example, in diagnosis we have the knowledge that when the computed sets of
explanations are equal, we know that using the same values for the Selection and Solform
components will result in the same solutions for these two methods. We can use this in
avoiding a useless repair-action.

A modification action can consist of modifying an individual component so that it has
a desired property, modifying an entire method so that it has a desired property or tuning
components so that they become more compatible. We have mainly studied modification
of methods, although it is also possible to modify some of the given inputs (i.e. goals or
assumptions). Finding the appropriate modification step can be a complex process that
might consist of generating possible repairs, and preferring those that are ‘‘closest’’ to the
original component. In Section 6.2, we illustrate such a complex repair-action.

5.5 CONTROL OF THE PCM-METHOD

The control of the propose-critique-modify method is given in Figure 7. We propose
a possible method until the knowledge-verification succeeds. Having found a method
that passes the knowledge-verification step, we continue with the simulation-verification
step. If the simulation-verification succeeds the automated configuration is finished,
otherwise the critique phase analyses the failure of the configuration, and based on the
analysis results the repair action is performed in the modify step. The modified method
or inputs are again tested in the knowledge-verification step. If this step fails, we resort to
a newly proposed candidate, otherwise we continue with the simulation-verification.

6. A scenario of the proposed PCM-method

In this section, we illustrate our PSM-method for the configuration of methods. We start
with an initial configuration problem: a diagnostic case to be solved, plus assumptions
and goals to be satisfied by the diagnostic method that we will configure. We then pass
through the various steps of our method, each indicated with a ¤.

Before giving the detailed description of each of the steps from our scenario, we give an
outline of the overall scenario. The entire succession of steps is graphically depicted in
Figure 8.

After receiving a problem description as input (Formula 2, as indicated in the figure),
the first step of the configuration process is to propose potential candidate methods for
solving the given problem. This first candidate (Formula 3) is immediately eliminated in
the knowledge-verification step, based on the analysis of the static goals. On backtrack-
ing from this failed candidate, a second candidate method is generated (Formula 4),

FIGURE 8. The search space of the scenario. Numbers in parantheses refer to the equations in Section 6, the ¤
i

symbols refer to the steps of the scenario described in that section.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 377
which does survive the knowledge-verification step. This method is then simulated,
which unfortunately results in no diagnoses being computed. The critique-&-modify step
proposes a number of potential modifications (Formulae 7 and 11) to this second
candidate, aimed at repairing the ‘‘no diagnoses’’ problem. We will only explore the
scenario concerning the first of these two modified candidate methods (formula 7). This
modification is again subjected to the knowledge-verification step (which succeeds),
followed by a simulation of the adjusted method. This time, the simulation results in the
opposite problem, namely ‘‘too many diagnoses’’ (Formula 8). A second critique-&-
modify step yields two further modifications (Formulae 9 and 13) of the current
candidate method. Both of these pass the knowledge-verification step, and yield satisfac-
tory results in the simulation step, giving the diagnoses from Formulae 10 and 14.

378 A. TEN TEIJE E¹ A¸.
The amount of detail in which we have described the scenario might seem somewhat
excessive. The reason for this amount of detail is that we can now ensure that each of the
steps in our scenario is implementable. In fact, in ten Teije and van Harmelen (1996b) we
have described an architecture which we have implemented using logic-programming
and meta-reasoning techniques, and which is powerful enough to directly implement
each of the steps that occur in the scenario of this section.

6.1. THE INPUT-PROBLEM

The input of automated flexible diagnostic problem solving is the diagnostic problem,
the assumptions that must be respected, and the desired goals. The diagnostic problem
contains domain knowledge of the system under diagnosis (the behaviour model, BM),
the observed behaviour and the context. Our diagnosis problem is in a car domain and
we use the domain model of Figure 9. The case contains two observations: lights(yes) and
engine-starting(no) and there is no context information. The desired goals are: ‘‘use
a standard notion of explanation’’ (explanation-notion(standard)) and ‘‘at most two
alternative diagnoses are allowed’’ (max-number-diagnoses(2)). The given assumption is
that ‘‘the causes are different in likelihood’’:

BM"Figure 9,

OBS"Mlights(yes), engine-starting(no)N,

Goals"Mexplanation-notion(standard), max-number-diagnoses(2)N, (2)

Assumptions"the causes are different in likelihood.

The scenario described in the next section will show the steps for computing the
outputs of this flexible diagnostic solving problem.

6.2. THE STEPS IN THE PCM METHOD

¤
1

Propose. We have to propose a method with definitions for each of the six compo-
nents. The goal that guides the choice for the Cover and NotContra components is
explanation-notion(standard), since the system contains knowledge that standard entail-
ment is most frequently used in diagnostic methods (as opposed to the use of non-
standard variations of entailment proposed in ten Teije & van Harmelen (1996a)). As
a result, we choose for both explanation relations (Cover and NotContra) the classical
entailment relations (7 and 7/ respectively). The other four components are chosen
blindly.

The proposed method is-

ds (abd-mapping, initial-fault-nodes, 7, 7/, d-min, "). (3)

In Figure 10 the definitions of the components are briefly described. In ten Teije (1997)
the definitions of some of these components are given more formally.

The dynamic goals now become all the goals that have not already been statically
determined. In this case the only dynamic goal is max-number-diagnoses(2).
-We write d-min for number-minimality, and "for the identity mapping.

FIGURE 9. Behaviour model (BM) of a car from Dupré (1994). We have taken this example for illustrating our
PCM method for constructing PSMs with permission of the authors. The bold lines boxes are initial causes,

conditions and observables.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 379

Type component Name Description

Obs-mapping abd-obs All observations have to be coverd: Obs
#07

contains all observations,
and Obs

#0/
is empty

»ocabulary initial-fault-nodes The vocabulary contains all initial fault nodes and
in-completenness assumptions (a’s)

Cover 7 Use of standard entailment
NotContra 7/ Use of standard entailment
Selection d-min An explanation is selected if it contains the smallest number

of causes
Solform " No effective solform (thus a minimal set of explanations is also

the diagnosis set)

FIGURE 10. The components of the proposed method.

380 A. TEN TEIJE E¹ A¸.
¤
1

Knowledge-verification. One of the usual constraints on diagnostic methods is to
demand that the Cover component is at least as strong as the NotContra component.
After all, if an observable is entailed by a consistent theory, then that observable is also
consistent with this theory.

The method described by Term 3 does not violate this constraint. However, there is
another assumption conflict, because d-min assumes that every cause has equal likeli-
hood. This means that the knowledge-verification step has failed, and therefore a new
propose step is started.

¤
2

Propose. We now propose a new method which is not obtained as a modification of
an earlier candidate. Because this step is still guided by the same static goal as before
(explanation-notion(standard)), the method still contains 7 as Cover definition and 7/ as
NotContra definition. The other components are again chosen blindly. The propose
method is now-

ds(abd-mapping, initial-fault-nodes, 7, 7/, L-min, ") (4)

¤
2

Knowledge-verification. As in ‘‘¤
1

knowledge-verification’’ there is no violation of
the constraint concerning the Cover and NotContra components. Furthermore, the
assumption-conflict also disappear because L-min does not assume equal likelihood of
causes.

¤
2

Simulation-verification. In this step the system performs diagnosis using the valid
method of term 4. Based on the computed diagnoses it tests the dynamic goals.

Using the method of Term 4 results in the following: Obs
#07

"Mengine-starting(no),
lights(yes)N and Obs

#0/
"0. The vocabulary defined by initial-fault-nodes contains all the

initial nodes of Figure 9 that correspond to fault-modes, plus all the assumption-symbols
a
i
. Performing diagnosis results in ‘‘no diagnosis’’, which becomes the verification result.

¤
2

Critique. The reason for not finding any diagnoses is that there is no explanation for
lights(yes): only incompleteness assumptions (a’s) and faults are part of the vocabulary
(initial-fault-nodes), and a fault cannot explain the correct behaviour of lights(yes) when
we use 7 and 7/ for Cover and NotContra respectively. This step determines that
-We writeL-min for subset-minimality.

Name Obs
#07

,Obs
#0/

Intuition

Complete-mapping: Obs
#07

"OBS
Obs

#0/
"M2O

i
:O

i
3OCOBSN

All observations must be covered the
absence of all other observables must
be consistent

Abd-mappin: Obs
#07

"OBS
Obs

#0/
"0

All observations must be covered
with no further consistency check
(abductive diagnosis)

Cbd-mapping: Obs
#07

"0
Obs

#0/
"OBS

We demand no cover and only that
all observations are consistent with
BM (consistency-based diagnosis)

Abnormality-mapping: Obs
#07

"Mo3OBS/abnormal(o)N
Obs

#0/
"Mo3OBS/normal(o)N

All abnormal o must be covered and
all normal o need only be consistent

Polarity-mapping: Obs
#07

"Mo
i
3OBSN

Obs
#0/

"M2o
i
3OBSN

All positive o must be covered and all
negative o must be consistent

FIGURE 11. O denotes the possible observable values, and OBS denotes the currently given observations.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 381
a possible suitable repair action is to adapt the Obs-mapping. For instance, a different
Obs-mapping might require only incorrect behaviour to be explained, as opposed to all
behaviour, including correct behaviour, as in the current definition, namely Obs-map-
ping"abd mapping.

¤
2

Modify. The modify step must now repair the component specified by the critique
step. The repair action is determined by first generating a set of variants of the Obs-
mapping, and then applying two filters on this generated set of Obs-mapping definitions.

f generate: generate variants of the Obs-mapping component.

We require that any solution of the method using the original Obs-mapping is also
a solution for the adapted method with the new Obs-mapping (after all, we want to
increase the set of solutions). For this, we require additional knowledge which states that
the explanations generated by a method with one Obs-mapping-component are also
generated by a method with another Obs-mapping-component, provided all the other
components remain the same. If we consider the Obs-mapping’s from Figure 11, we can
add the additional knowledge that any method using complete-mapping produces a sub-
set of the solutions of any method using abd-mapping, and in turn using abd-mapping
produces a subset of the solutions of a method using any of the other Obs-mapping’s
(cbd-mapping, abnormality-mapping and polarity-mapping).

The complete definitions of all these Obs-mapping components are in then Teije and
van Harmelen (1997), but in sloppy notation these definitions are given in Figure 11.

The generated set of Obs-mapping definitions is now

Mcbd-mapping, abnormality-mapping, polarity-mapping). (5)

f filter
1
: of all the possible candidate repairs, we prefer the variants that are the ‘‘closest’’

to be the original Obs-mapping component. We define ‘‘closest’’ as those Obs-mapping
definitions whose Obs set is (1) in any case no superset of the original Obs set (since
#07 #07

382 A. TEN TEIJE E¹ A¸.
we do not want to explain more observable values strongly) and (2) is not a subset of
another possible Obs

#07
set (since we want to delete as few observable values as

possible).

For both of these points, we need additional knowledge about the inclusion relations of
the Obs

#07
set produced by the various Obs-mapping’s. The additional knowledge re-

quired for this scenario is as follows, where the inclusion relation is from left-to-right in
the figure:

cbd-mapping
¦
W

abnormality-mapping

polarity-mapping

W

¦
abd-mapping"complete-mapping

This factual knowledge is stored as given facts in our system. However, given sufficiently
powerful theorem-proving techniques, it would be possible for the system to automati-
cally derive these facts from the definitions in Figure 11. From these definitions, it follows
that closest Obs-mapping to the abd-mapping are the polarity-mapping and the abnormal-
ity-mapping. The generated Set 5 is therefore reduced by this filter to

Mabnormality-mapping, polarity-mappingN. (6)

f filter
2
: We now filter those variants which result in the same solutions as the original

method in the current case. In this filter the system executes a part of the diagnosis,
namely the Obs-mapping definition. The results of the possible Obs-mapping definitions
have to be computed and compared with the outputs of the original Obs-mapping.
Those which give the same Obs

#07
and Obs

#0/
will be detected from the set. In contrast

with filter
1
, this filter is specific for the current problem on hand, whereas the filter

1
was

independent of the problem.

Applying the Obs-mapping definitions from Set 6 to OBS"Mlight(yes), engine-start-
ing(no)N gives the following values for Obs

#07
and Obs

#0/
:

Obs-mapping Obs
#07

Obs
#0/

abd-mapping Mlight(yes), engine-stating(no)N 0
abnormality-mapping Mengine-starting(no)N Mlight(yes)N
polarity-mapping Mlight(yes), engine-starting(no)N 0

We see that the Obs-mapping with value polarity-mapping gives the same sets as the
original Obs-mapping (which had value abd-mapping). The Obs-mapping with value
abnormality-mapping gives other sets. The results in a set where the only Obs-mapping is
abnormality-mapping.

The modify step therefore results in the method:

ds (abnormality-mapping, initial-fault-nodes, 7, 7/, L-min, "). (7)

The originally proposed method of Term 4 could not handle the observed behaviour that
was the correct behaviour. The above critique-&-modify step tried to recover from this
shortcoming by adapting the Obs-mapping component, resulting in the method from
Term 7. The next step is to verify the adapted method.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 383
¤
3

Knowledge-verification. The knowledge-verification step still succeeds, since the
Cover-, NotContra-, and Selection-components, and the assumptions have not changed.
(see ‘‘¤

1
Knowledge-verification’’)

¤
3

Simulation-verification. Again we perform diagnosis, but now using the modified
method of Term 7. Performing diagnosis results in the following diagnoses:

Mshort-cricuit(present)N

Mbattery-age(more-than-5-years), a
7
N,

Mbattery-water-lack(very-severe), a
8
N, (8)

Malternator-belt(cut), a
9
N.

Unfortunately, the test whether the dynamic goal max-number-diagnoses(2) is satisfied
fails. This means we have to perform another critique step.

¤
3

Critique. In the verification step, the problem of too many solutions was recognized.
A repair action for this problem is a modification of the Selection component. If the new
Selection component is a stronger filter, then less diagnoses will be left. The system uses
the knowledge that constructing the conjuction of the current Selection-component with
an additional selection criterion will have this effect.

¤
3

Modify. The repair action of configuring the new Selection criterion is executed in
this step. In our case the »ocabulary (initial-fault-nodes) contains faults and incomplete-
ness-assumptions. We can therefore apply a selection-criterion that prefers explanations
which are subset-minimal in the incompleteness assumptions (L-min-in-a). The pro-
posed Selection criterion then becomes ‘‘L-min and L-min-in-a’’.

The adapted method is

ds(abnormality-mapping, initial-fault-nodes, 7, 7/, L-min and L-min-in-a, "). (9)

The proposed method from Term 7 resulted in too many diagnoses. The above critique
and modify steps tried to recover from ‘‘too many diagnoses’’ and have modified the
method. This modified method now has to be verified.

¤
4

Knowledge-verification. The knowledge-verification still satisfies, as before (L-min-
in-a, also does not violate the unequal-likelihood assumption).

¤
4

Simulation-verification. Again we perform diagnosis using the modified method of
Term 9. Performing diagnosis results in the following diagnosis:

Mshort-circuit(present)N. (10)

Checking this against the dynamic goal shows that we have now also satisfied the
requirement max-number-diagnoses(2).

We have now (finally!) solved the original diagnostic problem specified in Equation 2.
The method of Term 9 has explained the observations Mengine-starting(no), lights(yes)N
under the assumption ‘‘the causes are different in likelihood’’ for the desired goals ‘‘use
a standard notion of explanation’’ and ‘‘at most two alternative diagnoses are allowed’’.
The sole compute diagnosis is Term 10.

384 A. TEN TEIJE E¹ A¸.
During this diagnostic problem-solving process, the configuration system had to
recover from the initial inability to deal with correact behaviour (by modifying the
Obs-mapping component) and it had to recover from ‘‘too many solutions’’ caused by too
weak a selection filter (by modifying the Selection component).

6.3. ALTERNATIVES FOR CRITIQUE & MODIFY STEPS

In this section, we give alternatives of the critique and modify steps of the above scenario.
How to choose between these alternative actions is still subject of study. The search
space which is generated by the trace described above and the alternatives describe
below is depicted in Figure 8. We propose two alternatives for recovering from the
impossibility to handle correct behaviour (i.e. two alternatives to ¤

2
), and one alterna-

tive for the critique and modify steps that tries to recover from ‘‘too many diagnoses’’
(¤

3
).

6.3.1. First alternative for **¤
2

Critique & Modify++
¤

2{
Critique. An alternative for the critique step is to better tune the Obs-mapping

component to the »ocabulary component initial-fault-nodes. In general, the combination
of abd-mapping and initial-fault-nodes is not an obvious choice, because using the
initial-fault-nodes assumes that only abnormal behaviour is observed. However, the given
problem also contains normal behviour light(yes).

¤
2{

Modify. A more obvious choice of Obs-mapping component can be determined by
checking whether we have observed both normal and abnormal behaviour. This is a case
specific repair action, because we use the current observed behaviour in the choice of
Obs-mapping. The abnormality or normality of the observed behaviour is checked using
the abnormality-mapping Obs-mapping component. If execution of abnormality-mapping
results in a non-empty set of Obs

#07
, then we use the knowledge that the combination of

initial-fault-nodes and abd-mapping is a bad combination, and abnormality-mapping is
probably a better one.

The previous modify step results in the same method as the ‘‘¤
2

Modify’’ step namely
Term 7.

6.3.2. Second alternative for **¤
2

Critique & Modify++
¤

2A Critique. The other alternative for @‘‘¤
2

Critique & Modify’’ is to adapt the
»ocabulary component.

¤
2A Modify. If the Obs-mapping component abnormality-mapping does not result in an

empty Obs
#07

set, then a better choice of »ocabulary is possibly all-initial-nodes. This
vocabulary contains all initial causes (including correct states) and the incompleteness
assumptions, and is therefore better turned to Obs-mapping"abd-mapping.

We would now arrive at another method than before, namely:

ds(abd-mapping, all-initial-nodes, 7, 7/, L-min, "). (11)

¤
3A Knowledge-verification. The knowledge verification still satisfies, as before.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 385
¤
3A Simulation-verification. Performing diagnosis results in the following diagnosis part:

for light(yes): Mbattery-age(new), a
7
N,

Mbattery-water-lack(no), a
8
N,

Malternator-belt(normal), a
9
N.

for engine-starting(no): Mshort-circuit(present)N, (12)

Mrain(very-heavy), a
6
N,

Mbattery-age(more-than-5-years), a
7
N,

Mbattery-water-lack(very-severe), a
8
N,

Malternator-belt(cut), a
9
N.

This yields 3]5"15 diagnoses, so we have too many possible diagnoses. We end up
with these other diagnoses because the critique and modify steps are based on the
observation that the vocabulary was too small, whereas before (in ¤

2
) the devision of the

observations was considered as wrong. After verification we establish that ‘‘too many
solutions’’ are computed. A repair action for solving ‘‘too many diagnoses’’ is needed. We
do not describe this trace further.

6.3.3. Alternative for **¤
3

Critique & Modify++
Finally, we give an alternative for the critique and modify steps that tries to recover from
‘‘too many diagnoses’’.

¤
3{

Critique. In analysing the failure of the verification step, the system uses the
knowledge that if the number of observations four or less and there are too many
diagnoses, then the repair action becomes ‘‘ask the user the relevant observables for the
computed diagnosis’’. This repair action changes the input problem (since additional
observations are requested). In contrast, the previous repair actions only changed the
method.

¤
3{

Modify. New observables need to be asked from the user. The relevant observables
are those which are connected to a cause of the computed set of diagnoses, but that are
not already part of the observed behaviour. Our set of observables for asking the user is
therefore based on the causes: short-circuit, battery-age, batter-water-lack and alternator-
belt.

In our problem the following observables are asked:

fuses, distributor-status, accelerator-response, fuel, battery-power.

The user gives only a value for distributor-status, namely wet. The new observation
theory contains therefore

engine-starting(no)?light(yes)?distributor-status(wet). (13)

386 A. TEN TEIJE E¹ A¸.
The diagnostic problem has now been adapted by adding new information.

¤
4{

Knowledge-verification. The knowledge-verification still satisfies as before.

¤
4{

Simulation-verfication. We perform diagnosis using the adapted problem and the
method of Term 7. This results in just one diagnosis

Mrain(very-heavy), a
6
N. (14)

We continue with the test of the dynamic goals, namely max-number-diagnose(2), which
succeeds. The diagnosis problem is now solved. Notice that we end up with another
diagnosis then in the previous scenario, where it was short-circuit(present). This is
because we recover from ‘‘too many solutions’’ by asking new observables, whereas in the
first scenario we made the Selection component stronger.

7. Conclusion & related work

In this paper, we have given a proposal for the automated configuartion of problem
solvers for an arbitrary problem type. We use a parameterized schema for describing
a problem solver. Therefore, we are able to regard configuration of problem solvers as
a parameteric design problem. Our approach can be regarded as ‘‘knowledge intensive’’:
in solving the parametric design probelem, we exploit much knowledge of the problem
type for which we are configuring a method.

Fundamental to our approach is the representation of a family of problem-solving
methods by a single parameterized inference structure. We have shown how this can be
done for the family of diagnostic methods. Although we have not demonstrated this, we
believe that a similar approach is possible for other families of problem-solving methods,
such as planning, design, classification, monitoring, etc. For example, a large number of
classification methods can be modelled as instantiations of a generic Heuristic-Classifica-
tion framework, or Propose-&-Revise as the basis for a sub-family of configuration
methods. Similar examples exist for other families of problem-solving methods.

This is a non-standard way of using inference structures, which are normally used to
represent individual problem-solving methods, This parameterized inference structure
provides the fixed structure of the parametric design problem, and the individual
inference steps are the parameters that have to be configured. A fixed set of definitions is
available for each of these inference steps.

Besides allowing us to apply parametric design to the configuration of problem-
solving methods, this view of a family of methods as a single parameterized inference
structure also has consequences for the organization of a library of problem-solving
methods. Instead of the hierarchical organization of a library as typically proposed (e.g.
Benjamins, 1993), our view instead suggests a multidimensional organization of the
library, where each dimension corresponds to the choices that can be made for a single
component. Every ‘‘point’’ in this multidimensional ‘‘space’’ (i.e. every combination of
parameter values for the different components) then corresponds to a specific member of
the family of problem-solving methods. The selection and configuration process in such
a library will be based on notions of proximity in the ‘‘space’’ of methods (as was done in
our ‘‘¤

2
modify’’ step in Section 6 by ‘‘closest’’ Obs-mapping), instead of hierarchically

CONSTRUCTION OF PROBLEM-SOLVING METHODS 387
refining sub-components as in Benjamins (1993). Sub-families will be identified
as‘‘clusters’’ in the ‘‘space’’ of methods, instead of sub-trees in the tranditional hierarchi-
cal library.

7.1. RELATED WORK

In the knowledge-engineering literature, we find approaches for selecting and configur-
ing problem-solving methos. (e.g. Benjamins, 1993; Istenes, Tchounikine & Trichet, 1996;
Stroulia & Goel, 1997). All these systems use a method-decomposition tree for describing
a method. In Istenes et al. (1996) the kind of operations on methods are: select a method,
identify a possible method, choose the most favourable method. The approach is Stroulia
and Goel (1997) is very close to our own. It also aims at dynamic method selection to
improve the quality of the computed solutions. Stroulia et al. argue that changes in the
control-structure over a fixed set of operators are in general insufficient, and that
a different choice of operators must often be made. The ‘‘operators’’ (Stroulia & Goel,
1997) play a role similar to the parameters in our framework. The role of the para-
meterized inference structure in our work is played in Stroulia and Goel (1997) by the
Structure-Behaviour-Function (SBF) framework, which is again based on a hierarchical
decomposition, whereas our framework is not based on decomposition. The system is
Stroulia and Goel (1997) performs a computation similar to ours: monitoring the
problem-solving process leads to feedback on the results, which may trigger critique and
modify steps, an analysis of the reason for failure, followed by blame assignment and
a possible repair step. In Benjamins (1993) the configuration of methods is based on
a decomposition tree of tasks and methods. The decisions for the choice of a method are
taken locally at each node, without referring to descendants, ancestors and siblings. The
necessary and suitability application criteria determine the choice of the method. The
primitive methods of such a tree are labels, which refer to a semi-formal description of the
method. The contents of these ‘‘labels’’ do not influence the choices during method
configuration. Selecting a method means selecting an informal or semi-formal descrip-
tion of the method. This is a description that is oriented on algorithmic aspects of the
method. However, one would expect that the functionality of the method also plays
a role in method selection, as is the case in our work. The work presented in Talon and
Pierret-Golbreich (1997) is in line with the work of Benjamins. However Talon and
Pierret-Goldreich (1997) is more formal: they use preferential logic for the choices of
methods. Furthermore, they can execute their configured method.

Remarkable is that all these theories of selecting and configuring problem-solving
methods are in very high-level terms. This is a consequence of the desire the generalize
the description of methods across very different families of methods, and therefore to
avoid the use of specific knowledge, for instance knowledge of diagnostic methods. In our
view, we have to exploit domain-specific knowledge for strengthening the theories of
problem-solving methods. The work in Perkuhn (1997) uses this same approach of
specifying a family of PSMs of a particular problem type by specifying prototypical
members of a problem type. Perkuhn illustrates his approach with the problem type
parametric design. This strengthens our belief that our representation can in principle be
applied to other families of methods than diagnostic methods as we have already argued
in ten Teije and van Harmelen (1996b).

388 A. TEN TEIJE E¹ A¸.
7.2. LIMITATIONS

The first limitation of our work is the restriction to the functionality of problem-solving
methods. A significant further step would be required to also configure efficient realiz-
ations of the methods (the operational specification of Figure 2). Popular though it has in
the KADS school of thought, straight-forward structure-preserving design will certainly
not produce efficient implementations of the declarative specifications of methods that
we configure. Furthermore, we expect much interaction between the configuration of the
declarative functionality on the one hand, and the construction of an efficient realization
on the other. No sufficiently strong theory on this question is available at the current
time.

A further potential problem with our approach is the difficulty of obtaining the
knowledge that is required for the propose-critique-modify method. In particular, the
knowledge for choosing between alternative options in the critique and modify steps has
turned out to be very hard, even for such a well understood family of methods as
diagnosis. In Figure 8, this concerns the choice of the alternatives ¤

2
, ¤

2{
and

¤
2A ‘‘critique & modify’’ steps, and the choice of the alternatives ¤

3
and ¤

3{
‘‘critique

& modify’’ steps.
Finally, it is an open question whether families of methods other than diagnosis can be

equally well captured by a single parameterized inference structure. We are optimistic on
this question, given recent advances in this direction for other families of methods such as
planning and design.

This work was benefited from many discussions with Dieter Fensel. We also thank Richard
Benjamins and Remco Straatman for their comments on an earlier version. The first author
is currently supported by a training project (TMR) financed by the European Commission
(Project: ERBFMBICT961130), which she is carrying out at the Imperial Cancer Research Fund
(London).

References

BENJAMINS, V. R. (1993). Problem solving methods for diagnosis. Ph.D. Thesis, University of
Amsterdam, Amsterdam, The Netherlands.

BENJAMINS, V., FENSEL, D. & STRAATMAN, R. (1996). Assumption of problem-solving methods
and their role in knowledge engineering. Proceedings of the European Conference on Artificial
Intelligence (ECAI-96), pp. 408—412. Amsterdam.

BROWN, D. C. & CHANDRASEKARAN, B. (1989). Design Problem Solving: Knowledge Structures and
Control Strategies, Research Notes in Artificial Intelligence. London: Pitman.

CHANDRASEKARAN, B. (1990). Design problem solving: a task analysis. AI Magazine, 11,
59—71.

CLANCEY, W. J. (1985). Heuristic classification. Artificial Intelligence, 27, 289—350.
CONSOLE, L., DE KLEER, J. & HAMSCHER, W. (1992). Readings in Model-based Diagnosis. Los

Altos, CA: Morgan Kaufmann.
DUPRË, D. (1994) Characterizing and mechanizing abductive reasoning. Ph.D. Thesis, Universita di

Torino.
FENSEL, D. (1995). A case study on assumptions and limitations of a problem solving method.

Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based System ¼orkshop
(KA¼’95). Banff, Canada.

HAYES-ROTH, F., WATERMAN, D. A. & LENAT, D. B. (1983). Building Expert Systems. New York:
Addison-Wesley.

CONSTRUCTION OF PROBLEM-SOLVING METHODS 389
ISTENES, Z., TCHOUNIKINE, P. & TRICHET, F. (1996). Using zola to model dynamic selection of
tasks and methods as a knowledge level reflective activity. In N. SHADBOLT, K. O’HARA & G’
SCHREIBER, Eds. 9th European Knowledge Acquisition ¼orkshop, EKA¼-96 (Position Pa-
pers), ¸ecture Notes in Artificial Intelligence, »ol. 1076; pp. 42—53. Nottingham: Springer-
Verlag.

LO® CKENHOFF, C. & MESSER, T. (1994). Configuration. In J. A. BREUKER & W. VAN DE VELDE,
Eds. ¹he CommonKADS ¸ibrary for Expertise Modelling, Chapter 9, pp. 197—212. Amster-
dam, The Netherlands: IOS Press.

MARCUS, S., STOUT, J. & MCDERMOTT, J. (1988). VT: an expert elevator designer that uses
knowledge-based backtracking. AI Magazine, 95—111.

MITTAL, S. & FRAYMAN, F. (1989). Towards a generic model of configuration tasks. Proceedings of
IJCAI’89, pp. 1395—1401.

MOTTA, E. & ZDRHAL, Z. (1996). Parametric design problem solving. Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-Based Systems ¼orkshop (KA¼-96). Banff, Calgery.

PERKUHN, R. (1997). Reuse of problem-solving methods and family resemblances. In E. PLAZA

& R. BENJAMINS, Eds. 10th European Knowledge Acquisition ¼orkshop, EKA¼-97, 1319 in
Lecture Notes in Artificial Intelligence, Vol. 1319, pp. 174—190. Berlin, Germany: Springer-
Verlag.

RUNKEL, J., BIRMINGHAM, W. & BALKANY, A. (1995). Solving VT by reuse. International Journal of
Human-Computer Studies.

SCHREIBER, A. T. & BIRMINGHAM, W. P. (1996). The Sisyphus-VT initiative. International Journal
of Human-Computer Studies, 43, 275—280 (Editorial special issue).

STROULIA, E. & GOEL, A. (1997). Redesigning a problem-solver’s operators to improve solution
quality. In M. POLLACK, Eds. Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI’97), Vol. 1, pp. 562—567. Nagoya, Japan: Morgan Kaufmann.

TALON, X. & PIERRET-GOLBREICH, C. (1997). A language specify strategies for flexible problem-
solving. Proceedings of 7th workshop on Knowledge Engineering: Methods & ¸anguages.
Milton Keynes, UK: The Open University.

TEN TEIJE, A. (1997) Automated configuration of problem solving methods in diagnosis. Ph.D. Thesis,
University of Amsterdam. ISBN 90-5470-063-7.

TEN TEIJE, A. & VAN HARMELEN, F. (1996a). Computing approximate diagnoses by using
approximate entailment. In G. AIELLO, & J. DOYLE, Eds. Proceedings of the 5th International
Conference on Principles of Knowledge Representation and Reasoning (KR’96), Boston, MAS:
Morgan Kaufman.

TEN TEIJE, A. & VAN HARMELEN, F. (1996b). Using reflection techniques for flexible problem
solving. Future Generation Computer Systems. 12, 217—234 (special issue Reflection and
Metalevel AI Architectures, short version in Reflection Workshop at IJCAI95).

WIELINGA, B. J. AKKERMANS, J. M. & SCHREIBER, A. T. (1995). A formal analysis of parametric
design problem solving. In B. R. GAINES & M. A. MUSEN, Eds. Proceedings of the 8th Banff
Knowledge Acquisition for Knowledge-Based Systems ¼orkshop, Vol. II, pp. 37.1—37.15.
Alberta, Canada. University of Calgary: SRDG Publications.

	FIGURES
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	FIGURE 11

	1. Introduction
	2. Analysis of the construction problem
	3. The representation of methods
	4. Configuration task
	4.1. AUTOMATED CONFIGURATION OF PROBLEM SOLVERS AS PARAMETRIC DESIGN
	4.2. METHODS FOR THE CONFIGURATION TASK

	5. A propose-critique-modify method for configuring PSMs
	5.1. PROPOSE
	5.2. VERIFY
	5.3. CRITIQUE
	5.4. MODIFY
	5.5 CONTROL OF THE PCM-METHOD

	6. A scenario of the proposed PCM-method
	6.1. THE INPUT-PROBLEM
	6.2. THE STEPS IN THE PCM METHOD
	6.3. ALTERNATIVES FOR CRITIQUE & MODIFY STEPS
	6.3.1. First alternative for ''2 Critique & Modify''
	6.3.2. Second alternative for ''2 Critique & Modify''
	6.3.3. Alternative for ''3 Critique & Modify''

	7. Conclusion & related work
	7.1. RELATED WORK
	7.2. LIMITATIONS

	References

