Int. J. Human—Computer Studies (1996) 44, 373-402 @

Sisyphus-VT: A CommonKADS solution

A. TH. SCHREIBER AND P. TERPSTRA

University of Amsterdam, Social Science Informatics, Roetersstraat 15, NL-1018
WNB Amsterdam, The Netherlands. email: schreiber@swi.psy.uva.nl

This article represents a CommonKADS contribution to the Sisyphus-VT experi-
ment. This experiment is concerned with a comparison of knowledge modelling
approaches. The data set for this experiment describes the knowledge for designing
an elevator system. The ultimate goal is to arrive at standards for sharing and
reusing problem-solving methods and related ontologies.

© 1996 Academic Press Limited

1. Knowledge modelling approach

This article contains a CommonKADS description of the Sisyphus ’93 problem: the
VT elevator design. The term “CommonKADS” is used to refer to KADS as it has
been developed within ESPRIT project P5248 KADS-II. The goal of this project
was to arrive at a de facto European standard for KBS development. As the term
“KADS” has become strongly associated with the University of Amsterdam, it is
worthwhile to point out that CommonKADS is the result of a cooperative effort of a
number of partners, in particular also (in the context of this paper) the Free
University of Brussels and the Netherlands Energy Research Centre ECN.

A central theme of CommonKADS is the idea that various perspectives or models
are important in the KBS development process: models of the organization, of the
overall task, of the agents involved, of the required communication, of the expertise,
and of the design of the final artifact. In this article the focus is on expertise
modelling and its relation to design and implementation. An overview of
CommonKADS can be found in Schreiber, Wielinga, de Hoog, Akkermans and Van
de Velde (1994b); the textual and graphical notations used are described in
Schreiber, Wielinga, Akkermans, Van de Velde and Anjewierden (1994a).}

In Section 2 a brief characterization is given of the VT data set and of the
application task. Section 3 describes the structure of the VT domain knowledge in
the form of two ontologies. In Section 4 a top-down description is given of tasks and
inferences involved. The methods underlying this decomposition are characterized.
System design and implementation are addressed in Section 5. The process of using
the VT domain theory within our application is discussed also in this context.
Section 6 discusses the possible contributions of this paper, as well as its limitations.
This article assumes that the reader is familiar with the VT data set and the
associated ONTOLINGUA ontologies.

t See also the WWW pages at http://www.swi.psy.uva.nl/projects/ CommonKADS/home.html.
373
1071-5819/96/3/40373 + 30$18.00/0 © 1996 Academic Press Limited

374 A. TH. SCHREIBER AND P. TERPSTRA
2. Initial problem analysis

2.1. NATURE OF THE VT DATA SET

The emphasis in the VT application description lies on the domain knowledge. This
domain description is biased in the sense that it contains precisely the knowledge
necessary for the propose-and-revise (P&R) method (Marcus, Stout & McDermott,
1988). At numerous places in the text indications are given of how the knowledge
should be applied in a particular step of P&R. Therefore, we decided to model and
implement the VT task using the P&R method. Given the goals of Sisyphus
(comparison of knowledge modelling approaches) this is a logical choice. We do not
claim that P&R is necessarily the best method to solve the VT problem.

2.2. CHARACTERIZATION OF P&R AS A METHOD FOR SOLVING DESIGN PROBLEMS

Informally, a (routine) design task can be characterized as follows (Chandrasekaran,
1988).

* There exists a fixed set of potential components of the artifact to be designed. No
creative design of components is performed.

* The goal of design is twofold, namely
(1) to select and arrange a set of components, and
(2) to specify values for component characteristics (i.e. parameters) in such a way
that the result meets the requirements and satisfies internal constraints.

Tank (1992) defines two specializations of this routine design task, each focusing on
one of the two goals.

e Arrangement (or layout) is a specialization of design in which the components
have fixed parameter values, and the design problem is restricted to the selection
and arrangement of components. An example of this type of configuration is the
configuration of plastic parts on a mould (Barthelemy, Frot & Simonin 1988).

* Parametric design is a specialization of design in which the arrangement of
components is fixed. The design problem is in this case limited to finding values
for component parameters.

Within this typology P&R can be classified as a method that supports a restricted
form of design, namely parametric design problems. The method does not require
an explicit structural model of the artifact: the artifact is represented as a flat set of
parameters. All arrangement problems have to be reformulated as parametric design
problems in order to be solvable by P&R. One consequence is that the method itself
is unable to explain the result of its reasoning in terms of a structural device model.

3. Domain-knowledge description
A CommonKADS domain-knowledge description consists of three parts.

Ontologies: sets of type definitions of domain constructs, such as concepts and
relations.

Ontology mappings: a description of how types defined in one ontology can be
mapped onto types in another ontology.

A COMMONKADS SOLUTION 375

Domain models: potential knowledge base partitions containing domain expressions
that use a set of ontology definitions.

The rationale for having multiple ontologies, and explicit mappings between those
ontologies, lies in the CommonKADS “relative interaction” hypothesis (Schreiber et
al., 1994b): different types of knowledge differ in the degree in which they are
dependent on the nature of the task. This hypothesis is put into use as a principle for
organizing the domain knowledge. Ontologies are a means to group specifications of
conceptualizations that share the same level of domain, task or method dependency.

Based on this principle, we distinguished two ontologies in the VT case.

(1) Parametric design ontology. This ontology is a task-type oriented ontology
describing general ontological commitments in the context of the parametric design
task. It is assumed not to be biased towards a particular method for solving a
parametric design problem.

(2) Propose-and-Revise ontology. The P&R ontology is a method-oriented
ontology describing ontological commitments specific for the method selected to
solve a parametric design task.

The P&R ontology is thus more specific (application-dependent) than the
parametric-design ontology. Each of the two ontologies has one or more corres-
ponding domain models. Also, a (partial) mapping is specified between the two
ontologies. Figure 1 gives an overview of the ontologies, ontology mappings and
domain models used in VT. We discuss the ontologies and the mapping in more
detail in the rest of this section.

We used the CommonKADS CML (Conceptual Modelling Language) (Schreiber
et al., 1994a) to describe the VT domain knowledge. Compared to ONTOLINGUA,
the CML notation provides a more expressive but less formal vocabulary for

Propose-and-Revise
ontology

P&R domain
models

parameter fix
calculation initial value :
constraint parameter order:

parametric :
design:
! component ontology : parametric design;
: : domain model
. parameter slot :

. constraint expression

FIGURE 1. Ontologies, ontology mapping and domain models in VT.

376 A. TH. SCHREIBER AND P. TERPSTRA

specifying ontologies. CML is probably best viewed as a tool for generating an initial
semi-formal description of an ontology, which could be refined at a later stage to an
ONTOLINGUA-like formal specification. Within the framework of CommonKADS
a formal language (ML)?) was developed for knowledge-level specifications together
with a number of tools for transforming CML descriptions into skeletal formal
specifications (van Harmelen & Balder, 1992; Aben, 1995).

3.1. TASK-TYPE ORIENTED ONTOLOGY: PARAMETRIC DESIGN

We interpreted the ONTOLINGUA specification of the ontology underlying the VT
domain as a proposal for a task-type oriented ontology. In the original “description”
slot of the configuration-design ontology it was indicated that the purpose of the
ontology was to provide the minimal ontological commitments for solving this task.
The authors expected that applications would define their own specific interpreta-
tions of this basic knowledge. Also, knowledge about fixes was considered to be
P&R-specific and not always required in the general case, and was therefore not
included in the ONTOLINGUA definitions.}

Figure 2 shows how the parametric-design ontology is graphically represented in
the CommonKADS CML. Boxes represent concepts (classes); diamonds represent
relations. Binary relations may have a directional arrow, when the relation is
asymmetric. A constraint is modelled as a concept representing a reification (a
name) of a formula. The box labelled parameter-slot is a special type of concept
called an attribute, which denotes a concept pointing to a value. The oval represents
an expression, a modelling primitive in the CML. This construct is used to model
simple expressions about values such as p =10.5. It is used here to model
expressions about the value of a parametric-slot. The two binary relations
fixed-model-value and fixed-component-value link component models (or

constraint con§train constraint used it
i Qssi constrain|
expression expression name

has ™
constrain

has
component component
has
models

parameter
slot

-> number OR string

parameter
expression

component
model

FIGURE 2. Parametric-design ontology. Boxes represent concepts (classes); diamonds represent relations.
The oval represents a reified function (a modelling primitive in the CML). The dashed arrow extending
from the has-sub-component relation represents a property (i.e. function) defined on the relation.

+ During the Sisyphus discussions it has been argued that fix knowledge is an integral part of all design
problem solving, but that is another issue.

A COMMONKADS SOLUTION 377

components) to expressions about fixed values of their parameters, e.g. fixed-model-
value(safety-B4, safety-beam-height = 10).

Although there is a large overlap between the ONTOLINGUA ontology and this
one, there are a few differences. These are of three types.

(1) Terminology. We use the phrase “constraint name” instead of ‘“‘constraint” to
avoid confusion between the label given to a constraint expression (which is what
“constraint” is used for in the ONTOLINGUA specification) and the actual
expression.

(2) Representation. Due to the different representational primitives underlying
ONTOLINGUA and CML, some constructs are represented differently. For
example, in the ONTOLINGUA VT domain theory the fixed values are represented
using the GF (generic frame) formalism, whereas in CML these have to be
represented explicitly using a relation construct.

(3) Extensions. The CommonKADS parametric-design ontology contains one major
extension, namely the distinction between component and component-model .

In the ONTOLINGUA definition no explicit distinction is made between a
component such as platform and a particular type of platform, e.g. platform-4B.
Both are represented as components. However, in design domains it is useful to
make a distinction between a “component” and a ‘“‘component model”’. Component
is used to refer to the general category, i.e. platform, safety, etc. A component-
model refers to the actual type of component that is selected during design:
platform-2B, safety-B4. Component models are typically associated with par-
ticular fixed parameter values, e.g. safety-B4 always has a height of 10 inches. The
has-models relation defines how components and component models are related.
Component models inherit the parameter slots defined on components, but may
introduce additional slots specific for a component model (cf. the parameter slot x
and s of a platform).

In an implicit manner, the ONTOLINGUA definition actually makes a distinction
between components and their models (see the VT domain theory).

* Direct sub-classes of vt-component are components.
* Direct sub-classes of components are component models.
* The model-if slot fulfills a special role by linking components and their models.

We have made this distinction explicit through these two different concept classes.
This is warranted by the fact that these two concepts refer to different entities with
different characteristics. Representing these through class/sub-class or class/instance
distinctions does not capture these differences adequately. Runkel, Birmingham and
Balkany (this issue) make a similar distinction between function (i.e. component)
and part (i.e. component model).

3.2. METHOD-ORIENTED ONTOLOGY: P&R

The P&R ontology describes the specific conceptualizations that are required for the
P&R problem solving method. We distinguished two parts of this method-oriented
ontology based on their different “‘reusability status”.

378 A. TH. SCHREIBER AND P. TERPSTRA

(1) One part of the P&R ontology can be defined as a method-specific viewpoint on
the parametric-design ontology. This concerns, for example, distinctions that can be
made within the set of constraint expressions.

(2) Another part of the P&R ontology contains additional conceptualizations that
fall outside the scope of the parametric-design ontology. An example in VT is the fix
knowledge.

We discuss these two parts separately.

(1) Viewpoints on the parametric-design ontology. The parametric-design ontology
defines the minimal conceptualizations required for this task. The assumption is that
for a particular method-specific viewpoints can be defined on elements of this
ontology which reflect their use in reasoning. The main constructs in this part of the
P&R ontology are:

(i) Parameters. P&R assumes that a design is represented as a flat set of parameters.
This means that components for which during design a component model has to be
chosen need to be represented as parameters. Parameter slots are also represented
as parameters.

(i) Calculations and constraints. The P&R method also partitions the set of
constraint expressions into two sub-sets that each play a different role in the
reasoning process: calculations and constraints. Calculations contain a
mathematical-expression: a formula that produces a value for a parameter.
Constraints contain a logical-expression that evaluates to either true or false.

Figure 3(a) shows the graphical CML representation of this part of the P&R
ontology. Both calculations and constraints are represented as ternary relations. The
italic annotations denote argument roles. Figure 3(b) shows a number of example
tuples of the two relations. The formula typically corresponds to a constraint
expression or some fixed value in the parametric-design ontology. The examples also
show that the P&R representation is redundant: the information about input/output
variables could have been derived from the formula. This is typical for a
method-specific representation, as the redundant information is useful for efficient
reasoning.

The ontology mapping defines how the viewpoint can be realized. An informal
description of the mapping between the parametric-design ontology and the P&R
ontology is shown in Figure 4. The mapping is a partial one: not all constructs in the
parametric design ontology are mapped onto constructs in the P&R ontology. For a
formal description a rewrite formalism such as used in (ML)? (van Harmelen &
Balder, 1992) can be used.

The mappings were used in the VT implementation to reuse the VT domain
theory within our application. Figure 5 shows the actual results of the transformation
of expressions in the parametric-design ontology to expressions in the P&R
ontology. The details of this transformation process are described in Section 5.

The P&R-specific distinction between calculation and constraint implies that
only a sub-set of the constraint-expressions in the parametric-design ontology plays
the role of ‘“‘constraint” during problem solving, meaning that violation of the
constraint expression gives rise to some repair action. Thus, for the P&R method

A COMMONKADS SOLUTION 379

(@
input — > parameter
. variables
raeaieel — formua
P output
variable
~~ parameter
logical f affected
) ormula c -
expression variables > parameter
label
constraint
name
(b)

cal cul ati on(fornul a(machi ne-total -wei gh = machi ne-wei ght + not or-wei ght)
i nput - vari abl es({machi ne-wei ght, notor-weight})
out put - vari abl es(machi ne-t ot al -wei ght))

cal cul ation(fornul a(car-speed = 200 => hoi st-cabl e-safety-factor-nin = 8.75)
i nput -vari abl es({car speed})
out put -vari abl es (hoi st-cabl e-safety-factor-mn))

cal cul ati on(formul a(saf ety- beam nodel =saf et y-b4 => saf et y- beam hei ght = 10)
i nput -vari abl es({saf et y- beam nodel })
out put - vari abl es(saf et y- beam nodel))

constraint(fornmula(2 < platformweight-factor-ap < 11)
af fected-vari abl es({pl atf orm wei ght -factor-ap})
| abel (pl at f or m wei ght - f act or - ap- c01))

FIGURE 3. (a) CML representation of the two relations calculation and constraint in the P&R
ontology that can be expressed as a viewpoint on the parametric-design ontology, (b) some sample tuples
of the two relations.

only a sub-set of the domain constraints are “‘real’” constraints; the others are only
used to compute values. In this way, a method introduces its own vocabulary,
independent of the underlying task-type oriented ontology.

(2) Additional method-specific ontological commitments. The method-oriented
ontology contains usually also additional conceptualizations introduced by a
particular method. The prominent example in the VT domain is the knowledge
concerning fixes. Another example of method-specific knowledge is contained in the
statement at the beginning of Section 5 of the VT description, namely that the
ordering of components in this section can be used as a rough guide for the order in
which values should be proposed by the propose step. Table 1 lists the additional
P&R-specific conceptualizations.

380 A. TH. SCHREIBER AND P. TERPSTRA

ONTOLOGY-MAPPING
FROM: parametric-design-ontology;
TO: P-and-R-ontology;

MAPPINGS:
" parametric-design P-and-R-ontology
parameter-slot | -> parameter
component | -> parameter
IF the component has associated component
models
component-model | ->

parameter-value
constraint-expression |->calculation
IF the expression can be classified as a
mathematical-expression.
Typical format of a mathematical-expression:
<par> = <expression>
OR <expression> -> <par> = <expressions
constraint-expression |->constraint
IF the expression can be classified as a
logical-expression
fixed-model-value | ->calculation
fixed-component-value |->calculation ;
END ONTOLOGY-MAPPING

FIGURE 4. Informal specification of mappings from types in the parametric design ontology onto types in
the P&R ontology.

4. Problem-solving model

The aim of this section is to construct a CommonKADS description of the P&R
method. Tasks and inferences are described in a top-down fashion.

4.1. PARAMETRIC DESIGN

The top-level task that we used as the starting point for expertise modelling is
parametric design. In CommonKADS the identification of this task would be the
result of building a task model. In this model tasks are identified in the current
and/or future organization. Expertise modelling is done for those tasks in the task
model that have been assigned to a reasoning agent.

A CommonKADS description of a “‘task’ consists of two parts.

(1) The task definition is a declarative specification of the goal of the task. It
describes what needs to be achieved. A CommonKADS task definition is equal to
the notion of “task’ in the Sisyphus glossary.

(2) The task body specifies a procedure, prescribing activities to accomplish the task.
The task body describes how the goal can be achieved.

Roughly speaking, the task body can be seen as a method (PSM) for realizing
the task (definition). However, in the CommonKADS vocabulary the term “PSM”
is reserved for the generic (application-task independent) description of the method.
In this view, the task body is strictly speaking the instantiation of a method for a

A COMMONKADS SOLUTION 381

Parametric design

No. of ontology P&R ontology

expressions No. of
28 component— 27 expressions
253 parameter-slopzs:; ~ parameter-slot 280
365| constraint-expressiof 88 constraint 88

27T

242 fixed-model-value—242/>> calculation 529
o— 10

10 | fixed-component-valu

FIGURE 5. Overview of the transformation of expressions in the parametric-design ontology to the P&R

ontology. The figures indicate the number of expressions involved. It can be seen that constraint

expressions are split into two sub-sets. Only 88 constraint expressions are used as real “constraints”’.

Components are transformed into parameters, if they have associated component models (this is true for
all components but one). See Section 5 for more details about the transformation process.

particular task. Task body descriptions are usually annotated with the (generic) PSM
that underlies it (see, for example, the CML description in Figure 7).

The task definition of the parametric-design task (shown in Figure 6) describes the
overall goal of the task and its I/O. This task definition requires that the domain
knowledge can be viewed in terms of a set of parameters representing the “‘skeletal
design”, and a set of constraints that involve these parameters.

The name “propose-and-revise” suggests that the first PSM that should be applied
to this task is a decomposition of the top-level task into two sub-tasks: propose and
revise. However, when examining the textual description of the method there
appear to be at least three distinct sub-tasks at the first level of decomposition,
namely:

TaBLE 1
Three knowledge types representing additional ontological commitments required by
the P&R method

Knowledge Domain
type model Description

fix fixes Fix knowledge represented as a ternary relation
between a constraint, an operation, and a
preference rating. An operation is also a
relation which has two possible sub-types: (i) a
unary relation such as upgrade defined on a
“component-model” parameter, or (ii) a binary
relation such as assign, decrease and
increase which holds between a parameter
and a mathematical expression.

order parameter-order Representation of the heuristic that parameters
should be assigned roughly in the order in which
associated components are described in the VT
data description.

par-expression initial-values Initial assignments to parameters, based on
domain heuristics.

382 A. TH. SCHREIBER AND P. TERPSTRA

TASK parametric-design;
TASK-DEFINITION

GOAL:
“find a design that meets the requirements and
satisfies a set of constraints”;

INPUT:
skeletal-design: “the set of system parameters” ;
requirements: “requirements in the form of a set of parameter/value

pairs”;

OUTPUT:

design: “set of assigned parameters” ;

FIGURE 6. Task definition of the top-level task.

(1) propose a design extension;
(2) verify the current design;
(3) revise the design, if necessary.

This is in line with the decomposition provided by the “PCM”-class of methods
for routine design as described by Chandrasekaran (1990). In PCM-type methods
the top-level design task is decomposed into four possible sub-tasks: propose, verity,
critique and modify. The goal of the verification task is to check a proposed (partial)
design. Critiquing is concerned with blame assignment in cases were verification
indicates that there is a problem. As the verification of P&R produces a constraint
violation which directly serves as input for the revise (i.e. modify) task, there is no
explicit separation between verification and critiquing in this method. The direct link
between verification and revision is possible, because P&R assumes that there is
knowledge linking constraints directly to possible modifications (“‘fixes”, see
Table 1).1

The task body in Figure 7 is the result of applying this method to the top-level
task. A task body usually introduces new vocabulary to describe the relations
between the sub-tasks. In the decomposition of the parametric-design task the
following terms, or “‘task roles”, are introduced.

(1) Extended design: this term is used to denote the set of parameters to which
values have been assigned.

(2) Design extension: a new parameter assignment.

(3) Violation: a constraint (in the P&R sense) that was violated.

The control structure of the task body is stated in a form of pseudo-code. Arrows
are used to distinguish input and output. The parametric-design task starts off with
proposing a design extension (i.e. a new parameter value). The value is checked to
see whether it introduces a constraint violation. If this is the case, the revise task is
invoked with the violated constraint as input. This process is repeated until the
propose task is not able to produce new design extensions. Parameters in the
skeletal design have been assigned a value. If, for some reason, the revise task

+ This statement is not true for SALT, the knowledge acquisition system supporting P&R. In SALT the
acquisition of fix knowledge is guided by explaining to the user what are the possible contributors of a
constraint violation. This is in fact a form of critiquing.

A COMMONKADS SOLUTION 383

TASK-BODY

TYPE: COMPOSITE;

SUB-TASKS: init, propose, verify, revise;

PSM: “PCM-type decomposition’;

ADDITIONAL-ROLES:
extended-design: “current set of assigned parameters

represented as a set of tuples <parameter, value=>";

design-extension: “proposed new element of the extended design” ;
violation: “violated constraint”;

CONTROL-STRUCTURE :
“parametric-design(skeletal-design + requirements -> design)=

init (requirements -> extended-design)

REPEAT
propose (skeletal-design + extended-design -> design-extension)
extended-design := design-extension JOIN extended-design

verify (design-extension + extended-design -> violation)
IF <some violation>
THEN revise (extended-design + violation -> extended-design)
UNTIL <the propose task fails to produce a design extension>
design := extended-design’;
END TASK parametric-design;

FIGURE 7. Task body of the parametric-design defining the first level of decomposition, as well as the
control imposed on the decomposition.

fails, the overall design task fails. Note that there is no check in P&R whether all
relevant parameters have been assigned a value. The assumption is that the
knowledge underlying the propose step is capable of generating values for all
relevant parameters. The main reason such an explicit completeness check is missing
in P&R is probably the fact that there is no explicit component structure, that would
allow the identification of relevant parameters.

The task body contains one additional task not mentioned in the PCM method.
This init task can be viewed as an ‘“‘administrative” task which ensures that the
original input of the task is transformed into the form necessary for the sub-tasks.
Here, the initialization task records the requirements as parameter values, thus
providing the first version of the extended design.

The data flow between the sub-tasks is represented graphically in Figure 8. This

skeletal extended
design propose design
; d i extended ;
reqU|remenL4>-—> design 4ﬂ verify
revise extended
design

FIGURE 8. Top-level data flow in the parametric design task.

384 A. TH. SCHREIBER AND P. TERPSTRA

INFERENCE select-parameter;
OPERATION-TYPE: “select”;
INPUT-ROLES:

parameter-set -> SET (parameter) ;

current-assignments -> “set of tuples <parameter, value>";
OUTPUT-ROLES:

selected-parameter -> parameter;
STATIC-ROLES:
order IN parameter-order;
par-expression IN initial-values;
calculation IN calculations:
SPEC:
“Select a parameter from the input set that has not been assigned a
value and for which the preconditions that the domain knowledge poses
for computing the value are fulfilled.

The expressions in the domain model initial-values are evaluated as
soon as possible.
A heuristic ordering of components is used to rank the set of para-
meters. (see VT description, start of Sec. 5)”;

END INFERENCE select-parameter;

INFERENCE specify-value;
OPERATION-TYPE: “compute” ;
INPUT-ROLES:

selected-parameter -> parameter;

current-assignments -> “set of tuples <parameter, value>";
OUTPUT-ROLES :

parameter-assignment -> “single tuple <parameter, value>";
STATIC-ROLES:

par-expression IN initial-values;

calculation IN calculations;
SPEC:
“Specify the value of a parameter by interpreting the formulae
provided by the domain models, using the set of current assignments to
retrieve already computed values. " ;

END INFERENCE specify-value;

FIGURE 9. Inferences involved in the propose task.

figure should be interpreted as a provisional inference structure. It fulfills the role of
a working hypothesis in the knowledge engineering process. It can (and will) be
refined in the process of model construction, e.g. through task decomposition. For
clarity, rounded boxes are used in the diagrams to refer to functions that can be
decomposed further, in contrast to ovals which denote leaf functions (inferences in
the CommonKADS vocabulary, see further).

4.2. PROPOSE

The method underlying the propose task is a strong form of decomposition.
Invocation of this task does not produce a full design, but the smallest possible
extension of an existing design, namely one new parameter assignment.

The input and output roles refer to the objects that are manipulated by the
inference. The role label is supposed to be indicative of the way in which the object

A COMMONKADS SOLUTION 385

is used within an inference, e.g. selected parameter. The specification of I/O
roles also provides a pointer to the types of domain objects that can play this role,
e.g. parameter. The static roles point to the domain knowledge that is used but not
changed within the inference. A static role specification is of the form
(type) IN (domain model), meaning that the inference uses expressions of the
specified type from the domain model indicated. In the two sample inferences
expressions from several domain models are used. The order in which parameters
are selected is guided by heuristic knowledge as provided by the remark at the start
of Section 5 of the VT data description:

“The subsections are ordered roughly in the order that values can be computed for
design parameters.”

This is heuristic control knowledge (see parameter-order in Table 1). An
alternative method would have been to analyse the constraint dependencies and
derive from these an optimal ordering.

A precise description of the internal details of inferences is not assumed to be part
of a CommonKADS expertise model; it is part of the system design activity, in
which a suitable computational method is selected for the inference. Nevertheless,
the knowledge engineer can informally describe the typical reasoning process in the
“spec” slot. Also, an optimal “operation-type” can be specified. This operation type
should be selected from the library of formally defined inference schema’s
developed by Aben (1995). Operation types can be used in several ways, e.g. as
input for verification through formal specification, or as an index for computational
method selection.

Inferences introduce their own role vocabulary, such as current-assignments.
The invocation of an inference from a task indicates how task roles map onto
inference roles. This distinction between task roles and inference roles allows the
knowledge engineer to distinguish between, on the one hand, names that refer to the
overall role of objects in problem solving (e.g. skeletal-design) and, on the other
hand, names that refer to the role of an object within one inference step (e.g.
parameter-set). Figure 10 shows the data dependencies between the inferences in
the propose task. Such a figure is called in CommonKADS an “inference
structure”. The names in the boxes denote inference roles. The annotations
represent the corresponding task role. In Figure 11 the full CML specification of the
propose task is given. This task is defined as a primitive task, as it requires no
further task decomposition: all sub-tasks are inferences.

4.3. VERIFY

The verification task in P&R applies a simple form of constraint evaluation. The
method used here is to perform domain-specific calculations linked to the con-
straints. Two inferences are defined for this task (Figure 12). The specify inference
produces the constraints that are associated with a parameter. As pointed out in
Section 3, the term ‘‘constraint” as used in the method-oriented ontology of P&R
refers to a sub-set of the constraint expressions in the domain. The evaluate
inference uses a simple form of deduction to find out whether a constraint is
consistent with the parameter assignments. The verify task invokes the two
inferences defined above and returns the name of a constraint, if a violation is

386 A. TH. SCHREIBER AND P. TERPSTRA

extendible
parameter

selected

arameter set
parameter p

skeletal
design

specify current
p assignments

extended
design

parameter
assignment

design
extension

FIGURE 10. Inference structure of the propose task. Boxes denote inference roles; ovals denote
inferences.

TASK propose;
TASK-DEFINITION
GOAL: “propose a design extension” ;

INPUT:
skeletal-design: “set of parameters to which values needs to be
assigned”;
extended-design: “set of tuples <parameter, value>";
OUTPUT:
design-extension: “new tuple <parameter, value>";
TASK-BODY

TYPE: PRIMITIVE;

SUB-TASKS: select-parameter, specify-value;

PSM: ‘““single element decomposition”;

ADDITIONAL-ROLES:
extendible-parameter: “parameter forwhichavaluewill beproposed” ;

CONTROL-STRUCTURE :

“propose (skeletal-design + extended-design -> design-extension) =
select-parameter (skeletal-design + extended-design -> extendible-
parameter)
specify-value (extendible-parameter + extended-design -> design-
extension) ”;

END TASK propose;

FIGURE 11. Specification of the propose task.

A COMMONKADS SOLUTION 387

parameter associated
assignment constraint

current evaluate
assignments

truth value

FIGURE 12. Inference structure of the verify task. The X symbol indicates a set. In this case it
indicates that the output of specify is a set of constraints. Input to evaluate is one element
of this set.

found. Verification is also a primitive task, as it invokes only inferences. In Figure 12
the data dependencies between the two inferences are shown in the corresponding
inference structure.

4.4 REVISE

The revise task in P&R implements a quite specific strategy for modifying the
current design, whenever some constraint violation occurs. To this end, the task
requires a knowledge about fixes (see Table 1). Input to the task is a constraint
violation. The goal of the revise task is to change the extended design in such a
way that it is consistent with the violated constraint. This goal is realized by applying
combinations of fix operations which change the value of parameters, and
subsequently propagating these changes through the network formed by the
computational dependencies between parameters. This leads to the following task
decomposition of revise.

Find Fixes. Generate an ordered list of fix combinations that can be applied to the
extended design to repair the violation.

Apply fix combinaiton. Create a temporary version of the extended design to which
a fix is applied.

Update. Recompute the parameters which are computationally dependent on the
parameters changed by the application of a fix.

Verify. Verify whether the new values of parameters changed by fixes or fix
propagations are consistent with their constraints. This task is the same one as the
verify task described previously.

The application of a fix may introduce new violations. Fixing these new violations
would involve a recursive invocation of revise. P&R tries to reduce the complexity
of parametric design by disallowing recursive fixes. Instead, if the application of a
fix introduces a new constraint violation, the fix is discarded and a new combination
of fixes is tried.

388 A. TH. SCHREIBER AND P. TERPSTRA

The method underlying the revise task avoids unnecessary fix propagation, by
verifying the effects of afix application as soon as possible. We identified three
situations in which verification should be carried out.

* After the application of a single fix in a fix combination, the constraints on the
parameter which is changed by the fix should be verified. If such a constraint is
violated, application of the rest of the fix combination should be aborted. During
this step only those parameters should be updated that are computationally
dependent on fixed parameters and also influence constraints on this parameter.

» After the application of a fix combination as a whole one should verify whether
the constraint violation which triggered revise has been resolved. Up to this
point only those parameters should be updated which influence the verification of
the constraint.

* Only when the original constraint violation has been resolved, the other
consequences of the application of the fix combination should be propogated.
Finally all remaining parameters that were updated should be verified.

This leads to one additional sub-task for revise:

Find constraint influences. Find those parameters that directly or indirectly influence
the verification of some constraint.

We have included the CML specification of the revise task in Figure 13. Six new
inferences were specified for revise (see Table 2). The task also invokes inferences
specified for propose and verify. We have omitted the specification of the control
in sub-tasks involved in revise. This description is a very detailed specification of
the algorithms employed by P&R, and it is debatable whether these detailed
descriptions should be part of a knowledge-level model (see also the discussion
section).

We limit the description here to some remarks about two issues that came up

during the specification of revise.
Antagonistic constraints. The P&R problem-solving method limits the search space
for parametric design by disallowing “‘recursive fixing”. Whenever the application of
a fix gives rise to a new constraint violation, the fix is rejected and no attempts are
made to fix the new violation. A disadvantage of this search strategy is that it
corrupts the declarative nature of the domain knowledge involved. The meaning of
certain constraints is dependent on the order in which they are applied by the PSM.
Such dependencies between constraints through fix ordering (termed ‘‘antagonistic
constraints” by Marcus & McDermott, 1989) can be defined as follows.

Let changed-by(constraint) be the set parameters that might be changed by
applying a fix for a violation of the constraint. The parameter might either be
changed by a fix operation itself or by propagation of the fix.

Let influences(constraint) be the set of parameters that, directly or indirectly,
influences the verification of a constraint.

Constraint A and B are antagonistic iff

changed-by(A) N influences(B) # &

Antagonistic constraints may prevent the system from finding a solution. For
example when a violation of the constraint hoist-cable-traction-ratio is

A COMMONKADS SOLUTION 389

TASK revise;
TASK-DEFINITION
GOAL:
“modify the current design in such a way
that no constraints are violated”;
INPUT:

extended-design: “set of tuples <parameter, value>";
violation: “constraint violated by the last extension”;

OUTPUT:
revised-design: “revised extended design”;
TASK-BODY
TYPE: COMPOSITE;
SUB-TASKS: find-constraint-influences, find-fixes,
apply-fix-combination, update-fix, eval-constraint, verify;
PSM: “domain-specific revision strategies + dependency-directed
backtracking’ ;
ADDITIONAL-ROLES:
fix-combinations: “1list of fix combinations’” ;
fix-combination: “sequence of actions whichmight resolveaviolation”;
constraint-influences: “those parameters which are directly or
indirectly influence the verification of the violated
constraint’;
affected-parameters: “parameters affected by a fix combination” ;
CONTROL-STRUCTURE :
“revise (extended-design + violation -> revised-design)=

find-fixes (violation -> fix-combinations)
REPEAT

1. Select a fix combination
2. Apply the fix combination to the affected-parameters
3. If step (2) did not introduce any violations then:
(3a) find the constraint-influences
(3b) update the parameters belonging to the intersection
of constraint-influences and affected-parameters
(3c) evaluate the original constraint
(3d) if the violation has been resolved then
update the rest of the parameters in affected-
parameters
(3e) verify each update resulting from step (3d)
UNTIL revised-design is consistent”;
END TASK revise;

FIGURE 13. Specification of the revise task.

TABLE 2
Overview of inferences involved in the revise task

Inference Description
specify-fixes Find all fixes for a violation
order-fixes Construct and sort all possible combinations of fixes
apply-fix Recompute the value of a parameter
parameter-children Find all parameters that are dependent on a parameter
parameter-parents Find all parameters that directly or indirectly determine

the value of the input parameter
constraint-parameters Find parameters used in a constraint

390 A. TH. SCHREIBER AND P. TERPSTRA

repaired before a violation of the constraint machine-beam-section-modulus
P&R fails to find a solution. However, when the repair order is reversed a solution is
found. The KA front end to VT (SALT, Mardus & McDermott, 1989), tries to deal
with these antagonistic constraints by eliciting heuristic orderings of constraint fixes.
An alternative is to derive these constraint dependencies at compile time, and to use
the direction of the antagonistic relation to establish the order in which parameters
should be derived.

Internal dependencies in a fix combination. The current conceptualization of P&R
does not take into consideration that fixes in a fix combination may be dependent of
each other. These dependencies can be of two types.

(1) Fixes may use parameters in their computation, which are changed by another
fix in the combination.

(2) Fixed parameters may have constraints which are (in)directly related to
parameters which are changed by another fix.

These observations have two consequences. Firstly, fixes in a fix combination
should be ordered in such a way that dependent fixes are applied after fixes that
depend on it. Secondly, these dependencies should be propagated before the
application of a dependent fix.

4.5. SUMMARY OF PROBLEM-SOLVING METHODS IN P&R

P&R is in fact a conglomerate of related methods. We have tried to indicate what
the types of methods are that appear in the decomposition of the parametric-design
task as dictated by P&R. For this purpose we used the task analysis framework
defined by Chandrasekaran (1990). Summarizing, the task decomposition as
described in this section encompassed the following method.

* The decomposition of the top-level task design into three sub-tasks, propose,
verify and revise is an instance of the class of PCM-class of design methods.

* The propose task is realized through a particular type of decomposition
method, namely a design plan consisting of subsequent steps of single
parameter assignments.

* The method used by verify method employs domain-specific calculations
provided by the expressions attached to the constraints (e.g. the calculation of
the traction ratio).

* The revise task uses domain-specific revision strategies provided by the fix
knowledge. The control is governed by the dependency-directed backtracking
method.

Figure 14 shows the relation between tasks and methods graphically.

5. Design and implementation
In CommonKADS expertise modelling is followed by an explicit design step
resulting in a design model.t A CommonKADS design model (Van de Velde,

1 Other inputs for the design model may come from the task, agent and communication models, but
those models are not covered in this article.

A COMMONKADS SOLUTION 391

parametric design

PCM-type method

propose verify revise
decomposition domain-specific domain-specific
in design plan calculations revision strategies

+
dependency-directed
backtracking

FIGURE 14. Task decomposition generated by P&R. The italic annotations characterize the methods on
which the decomposition is based.

Duursma, Schreiber, Terpstra, Schrooten, Golfinopoulos, Olsson, Sundin & Gus-
tavsson, 1994) consists of an architecture design, an application design, and a
platform design. The architecture design defines an abstract computational engine
that contains the computational primitives for realizing the application (e.g.
representation languages, implemented algorithms). Application design describes
how the ingredients of the expertise model (and/or task, communication and agent
models) are mapped onto the architecture. The platform design describes the
hardware and software platforms on which the application is implemented.

One important principle that we apply during design is the notion of structure-
preserving design: both the content and the structure of the information in the
expertise model should be preserved as much as possible in the final system. This
ensures the explainability (in knowledge-level terms) and maintainability of the
system (Schreiber, Wielinga & Breuker, 1993: chapter 6). Structure-preserving-
design has a parallel in other approaches, e.g. the program writer in EES (Neches,
Swartout & Moore, 1985). The first step in structure-preserving design is to define
CommonKADS specific constructs on top of the architecture as defined in the
architecture design. This CommonKADS specific viewpoint on the architecture then
provides a framework for enumerating and documenting application-specific design
decisions (Terpstra & Schrooten, 1993).

5.1. ARCHITECTURE AND PLATFORM DESIGN

For realizing the VT application we used the SIADL{ implementation of a
CommonKADS-specific architecture (Terpstra, 1994). This architecture implemen-
tation was based on the previous architecture used in Sisyphus-I (Schreiber, 1994)
with additional facilities for handling multi-level ontologies and ontology transfor-
mations. Using such an environment the knowledge engineer can concentrate on the
application design activity. The environment also enables the transformation of

+ Simulated Application Design Language.

392 A. TH. SCHREIBER AND P. TERPSTRA

CML descriptions as (skeletal/partial) application design specifications. The STADL
system was developed in SWI-PROLOG, a public-domain Prolog that is available
on both Unix and Windows platforms.

5.2. APPLICATION-DESIGN: DOMAIN KNOWLEDGE

To support structure-preserving design, the SIADL environment provides a default
domain-knowledge representation. This representation is a simple tuple-oriented
representation, and acts as an intermediate between the CML and representations
defined for other specification languages (e.g. KIF) or representations which are
optimized towards a computational technique (‘‘symbol level representations’). As
the language has a formal syntax for domain axioms, it can be used for the
realization of mappings through transformation of domain expressions.

The SIADL environment provides facilities for defining mappings. Two types of
domain-model mappings are being distinguished.

Ontology mapping. An ontology mapping maps a set of expressions onto a set of
expressions that has a different ontology. This means that semantics of the
expressions is changed. The mapping between the parametric-design domain model
and the P&R domain models is example of an ontology mapping. A P&R specific
meaning is attached to the transformed expressions. For example, the *“ ="’ symbol
is interpreted in calculation formulae as an assignment operator. The semantics of
the expressions used by P&R is thus closely connected to their role in problem
solving (in this case, computing the value of the variable at the left-hand side of the
equation).

Representation mapping. A representation mapping maps expressions in one
representation onto expressions in another representation under the assumption that
the semantics of the expressions is preserved. This implies that the representations
share an ontology. This type of mapping is similar to the translations provided by
the ONTOLINGUA software.

The mapping from the VT domain theory onto expressions in the parametric-
design domain model is largely a representation mapping: the CML ontology only
differs marginally from the Ontolingua one. Only with respect to the additional
distinction made between component and component-model the, transformation is
of the ontology-mapping type.

The VT implementation that we constructed is an example of how multi-level
ontologies and the different types of mappings enable knowledge reuse. Figure 15
shows how the ONTOLINGUA knowledge base for VT was made available in our
SIADL environment. This process consisted of the following steps.

Step 1: Representation mapping Ontolingua— KIF. The starting point is the VT
domain theory in the ONTOLINGUAform (the file vt-domain.lisp). This theory is
translated into the KIF form by the Ontolingua-to-KIFtranslator. KIF was chosen as
an intermediate representation, because the KIF format is closest to Prolog.

Step 2: Representation mapping KIF — Prolog. The file vt-domain.kif is parsed into
a Prolog-readable file wvt-domain.pl. The transformations are mainly
lexical/syntactical, e.g. handling the different lexical conventions for symbols/atoms.
The parser is not a full KIF-to-Prolog parser: it handles only the sub-set of KIF used
in the VT application.

A COMMONKADS SOLUTION 393

VT problem solver

used by
|

Propose-Revise
operational KBs

representation

mapping
Ontqlingua Propose-Revise
domain theory domain models

vt-domain.lisp
fixes
parameter order
initial values

calculations
constraints

Ontolingua-to-KIF
translator

ontology
mapping
mixed
KIF-to-Prolog ontology/representation |

) }) mappnig - H
vt-domain.kif —— =, vt-domain.p————— Parametric design
domain model

FIGURE 15. Mapping process from the VT domain theory in Ontolingua/KIF to the CommonKADS
domain models based on the parametric design and P&R ontologies.

Step 3: Mixed mapping vt-domain — parametric-design. The file vt-domain.pl is
subsequently interpreted by a set of mapping rules that rewrite the domain
expressions into statements of the types defined in the parametric-design ontology.
These mapping rules handle the differences between the ONTOLINGUA and the
CML ontology definitions (cf. the discussion in Section 3.1). The result is the
parametric-design domain model, represented in the default representation of
our environment.

Step 4: Ontology mapping parametric-design— P&R. The task-type oriented on-
tology in turn is mapped through a second set of rewrite rules onto those constructs
in the (method-oriented) P&R ontology that specify viewpoints on the parametric-
design task ontology (see the mapping rules in Figure 4). This mapping creates a set
of domain models in the P&R format (see also Figure 5).

In addition, this method-oriented ontology defines a number of conceptualizations

that are specific for this method, and thus have no counterpart in the task-type
oriented ontology. An example in the VT domain is the fix knowledge. These were
added manually to the appropriate method-oriented domain models fixes,
initial-values and parameter-order.
Step 5: Representation mapping P&R — computational technique. The VT ap-
plication uses computational techniques that may require a specific representation
optimized towards efficient computation (see the next sub-section). Therefore, an
additional mapping may be needed that transforms certain domain models into the
symbol-level representation imposed by a computational technique. An example is
the representation required by the formula evaluator employed in our application.

Figure 16 shows three examples of mapping rules used for the transformation of
the parametric-design domain model into the P&R representation (Step 4). The first
two rules specify the mapping from both parameter-slot and component to

394 A. TH. SCHREIBER AND P. TERPSTRA

o©°

name of construct in destination
ontology

parameter (P), % representation in destination
ontology

matching representation in the
source ontology
conditions/actions on source
ontology construct

mapping (parameter,

o°

component (P) ,

o©°

model_ref (has_model (P, _))).

mapping (parameter,
parameter (P),
parameter_slot (P)).

mapping (calculation,
calculation (Expr, Output, Inputs),
constraint_expression (Expr) ,
(ontology_ref (mathematical_expression, Expr)
, rewrite (Expr, Output, Inputs))).

FIGURE 16. Three examples of mapping rules for the transformation of the parametric-design domain

model into the P&R representation. The first rules specify the mapping from parameter-slot and

component to parameter. The third rule is one of the mapping rules that generates tuples of the
calculation relation. See the text for explanation of the structure of the mapping rules.

parameter. The third rule is one of the mapping rules that generates tuples of the
calculation relation. Each mapping rule has four arguments. The first argument
indicates the construct in the destination ontology that the mapping rule generates.
The second argument specifies the representation of this construct in the destination
domain model. The third argument specifies the representation of expressions in the
source domain ontology to which the mapping rule applies. The last argument is
optional, and specifies conditions and/or actions on the source expressions. The
conditions can be type checks (ontology-ref) or references to the existence of
other source expressions (model-ref). The actions are typically rewrite operations,
such as the retrieval of the variables involved in calculations (see the third mapping
rule). The underlying transformation techniques make use of Prolog unification.

Table 3 lists the number of mapping rules used in steps 3-5, plus the number of
ontology constructs involved in these rules.

5.3. APPLICATION-DESIGN: INFERENCE KNOWLEDGE

In application design inference procedures need to be specified that define the
computational realization of inferences specified in the expertise model. An
inference procedure consist of a set of domain-knowledge retrieval operations and
calls to computational methods. The relation between inferences and inference
procedures is not necessarily one-to-one. The knowledge engineer may decide to
organize the reasoning process differently for efficiency reasons. Typically, there is a
trade-off between complete structure-preserving design and designing a very efficient
system. One of the purposes of the CommonKADS application design activity is to
document such trade-off decisions explicitly.

In the VT case three design decisions were taken to improve the efficiency of the
propose task.

(1) In the specification of the inference select-parameter it was indicated that a

A COMMONKADS SOLUTION 395

TABLE 3
Overview of transformation steps 3-5

No. of No. of

Source Destination Type constructs rules
vt-domain (Prolog) +>parametric-design Mixed 15 15
parametric-design > P&R Ontology 3 7
P&R — formula-evaluator Representation 6 6

heuristic ordering was to be imposed on the parameter set (the skeletal design).
Computing this ordering each time the inference is invoked would, however, be very
inefficient. For this reason, a design decision was made to represent the skeletal
design as an ordered list of parameters, so that a simple select-first method could
be used by the inference procedure implementing select-parameter. To achieve
this, an inference procedure order-parameter-set was added to the initialization
task. This procedure accesses the domain knowledge provided by the static role
parameter-order.

(2) The specification of select-parameter mentions that formula’s specifying
initial values should be evaluated first. Also, both the select-parameter and the
specify-value inference are reused in the revise task, but using only the domain
model calculations. For these reasons, both the select and the specify step were
specialized into two sub-types, each accessing a separate domain model (see
inference procedures 3-6 in Table 4).

(3) In the expertise-model specification both select-parameter and specify-
value retrieve the formula for assigning a value. This is inefficient, as only the first
retrieval is necessary. This formula can be passed on to the procedure implementing
specify-value as an additional input argument.

This type of small modification is typical for the design process in
CommonKADS. The additional input is not necessary from an knowledge-level
point of view: the system would produce exactly the same result without it. It would
only take more time.

Table 4 lists the set of inference procedures used in the VT implementation. For
each inference procedure, the associated computational methods are shown. Most
procedures invoke one or two simple general-purpose methods (e.g. predicate-
sort, transitive-closure) or just retrieve domain knowledge through role
instantiation. The only exception is the inference procedure order-fixes, which
uses a method specific for P&R.

5.4. APPLICATION-DESIGN: TASK KNOWLEDGE

The design decisions with respect to task knowledge are usually not very
complicated. The pseudo-code used in the task descriptions has to be transformed
into task procedures. In cases where the set of inference procedures is different from
the inferences, the corresponding task procedure has to be updated accordingly. For
example, the task procedure for the propose task has to take into account that the
two inference procedures involving initial values are applied before the other two.
Other detailed specifications that may have to be added mainly concern

396 A. TH. SCHREIBER AND P. TERPSTRA

TABLE 4
Computational methods used to realize inference procedures (i.e., the design
equivalent of an inference). Almost all computational methods are simple standard

algorithm. One inference procedure uses a P&R specific algorithm (order-fixes)

Inference procedures

Procedural description

Methods

order-parameter-set
init-assignments

select-initial-
parameter
specify-initial-value
select-calculation-
parameter

specify-calculation-
value

specify-constraints
evaluate-constraint

specify-fixes
order-fixes

apply-fix

parameter-children

parameter-parents

constraint-parameters

Sort parameter set based on heuristics
Record the requirements as initial
parameter assignments

Select the first parameter for which
an initial value exists

Assign value to parameter

Select the first parameter for which a
calculation exists in which all input
variables have a value

Evaluate a formula given the values
of parameters in the current set of
assignments

Find all constraints on a parameter
Evaluate a constraint, given the cur-
rent set of assignments

Find all fixes for a violation
Construct all possible combinations
of fixes

Sort the fix combinations

Compute update dependencies
between fixes

Recompute the value of a parameter
Find all parameters that are com-
putationally dependent on input
parameter

Find all parameters that directly or
indirectly determine the value of the
input parameter

Retrieve all parameters used in a
constraint

predicate-sort
retrieval

select-first
retrieval
unification
select-first
retrieval
set-completeness
formula-evaluator

retrieval
formula-evaluator

retrieval
power-set

predicate-sort
P&R-specific

formula-evaluator
transitive-closure

transitive-closure

retrieval

bookkeeping activities (storing immediate results). Task procedures are also the
place where actions specified in the communication model are integrated: 1/O
activities such as reading the requirements, printing trace information, etc. As VT is
modelled here largely as a “batch” system, this was not an important issue in this
case.

5.5. SAMPLE TRACE

This section lists some fragments of the trace that was generated for the sample
problem in the VT documentation. The trace information displayed by the system is
just meant to show the essentials of the reasoning process in terms of the expertise
model. No effort was made to build any sort of nice interface or complete trace
facility.

A COMMONKADS SOLUTION 397

Starting VT
User datum: car_cab_height = 96
User datum: car_capacity_range = 3000

User datum: platform_width = 70

Extension sling_model = sling_model_m01

Extension motor_generator_model = motor_generator_model_m03
Extension machine_model = machine_model_m01

Extension machine_groove_model = machine_groove_model_m02

Extension safety_beam_model = safety_beam_model_m01
Extension safety_beam_load_maximum = 8000

Extension safety_beam_height = 9

Extension safety_beam_constant = 2.250000

FIGURE 17. Trace of some user specifications and design extensions.

The first fragment (see Figure 17) shows parts of the trace of the init task and the
propose task. No violations were found for the design extensions generated in this
fragment.

Figure 18 shows a fragment in which a constraint is violated and needs to be fixed.
The constraint involved is hoist-cable-traction-ratio. Fifteen fix combina-
tions were found (for reasons of space only a few are shown in Figure 18). The
eighth combination was successful. As most fix operations (e.g. upgrade, increase,
decrease) within a fix combination can be repeated several times, one fix
combination actually defines a space of possible fixes. Propagating the fixes resulted
in updating 64 parameters of the extended design.

The system, running on a Sun-Sparc 10, solved the problem in 271 seconds
(average speed 27K Lips).

6. Discussion

The goal of this paper was to provide a good data point for comparison of
knowledge modelling approaches, with respect to the description of the ontology
and the problem-solving model. We discuss each of these separately, and also briefly
address the issues with respect to the system design process and the relation with
Sisyphus-I.

(1) Multi-level ontologies as landmarks for reuse.

We have found that the use of different ontologies at different levels of generality is
a powerful and indispensable tool for knowledge sharing and reuse. The description
in Section 3 and Section 5 give evidence of this. The Ontolingua knowledge base,
built at another site, on a different platform, using a different representation, could
be used in our environment to access knowledge types needed by the application.
This would not have been possible if the ontology of our application had just been
phrased in pure method-specific terms. In the VT case approximately ninety
percent of the total amount of knowledge required for the application could be

398 A. TH. SCHREIBER AND P. TERPSTRA

Extension hoist_cable_traction_ratio = 1.853457 is violated by c_48_2:

machine_groove_model = machine_groove_model_m02 =>
hoist_cable_traction_ratio =<0.006555 * machine_angle_of_contact +
0.755000

Found 15 fix combinations.

Trying fix combination:
fix: counterweight_to_platform_rear is counterweight_to_platform_rear —
0.5 Cost :d3

Trying fix combination:

fix: compensation_cable_model is upgrade (compensation_cable_model)
Cost : d6

fix: car_supplement_weight is car_supplement_weight + 100 Cost :d4

Trying fix combination:

fix: compensation_cable_model is upgrade (compensation_cable_model)
Cost : d6

fix: car_supplement_weight is car_supplement_weight + 100 Cost :d4

fix: counterweight_to_platform_rear is counterweight_to_platform_rear —
0.5Cost :d3

Applied successful fix
Fix results
compensation_cable_model: compensation_cable_model_m07 -->
compensation_cable_model_m03
car_supplement_weight: 0 --> 500
counterweight_to_platform_rear: 5.250000 --> 1.750000
Propagated:
counterweight_to_hoistway_rear: 6 --> 9.500000
machine_angle_of_contact: 152.405213 --> 155.761553
machine_sheave_to_deflector_sheave_diagonal: 54.886958 --> 53.071444
machine_sheave_to_deflector_sheave_horizontal: 29.750000 -->
26.250000
car_cable_hitch_to_counterweight_cable_hitch: 54.750000 -->
51.250000

cable_load_unbalanced: 78.914250 --> 6.014250
compensation_cable_length: 0 --> 993

FIGURE 18. A trace fragment of fixing the violation of constraint c_48_2.

reused through the structured mapping process. It actually meant a reduction of a
number of weeks with respect to the effort of building the application.¥

In this article a distinction was made between a general ontology for a task such as
parametric design on the one hand and a more application-specific method-oriented
ontology on the other hand. Although this distinction proved to be useful for this
application, the borderline is not as firm as it looks, and it is also not the only
possible borderline. For example, one could argue that a fix is a general notion that

1 Even taken into account that various bugs were found and repaired in the VT domain theory.

A COMMONKADS SOLUTION 399

can be found in any design task. One could also argue that the part-of structures of
components are not task-type oriented, but represent in fact a more general,
task-independent, notion. With respect to method-oriented ontologies it is likely
that classes of methods share a number of ontological commitments. It is thus
probably best to view the distinction between task-oriented and method-oriented
ontologies as a hypothesis about one useful landmark in a spectrum of types of
ontological commitments (Wielinga et al., 1993). Such landmarks can guide the
reusability and/or shareability of parts of a knowledge base.

The ontologies described in Section 3 should be seen as a first start. We make no
claim, for example, that the parametric-design is valid to its full extent. We view the
process of building reusable ontologies basically as an empirical process. Ontologies
such as the ones proposed for VT have to be used in practice, and should then be
refined modified, split into sub-theories, etc. according to the experiences gained. In
our view, such an empirical process is the only way we can arrive at a useful set of
reusable ontologies. The VT exercise is just a first step in this direction. To support
this ontology-building process techniques for describing semantical mappings
between ontologies and storing ontologies in a library with some ‘‘reusability index”
will need to be developed. One approach to ontology indexing is proposed by van
Heijst, Falasconi, Abu-Hanna, Schreiber and Stefanelli (1995).

(2) PSM descriptions.

The description of the problem-solving model is a fair example of how
CommonKADS task and inference descriptions are constructed. In CommonKADS
a PSM is a meta-level notion describing the rationale underlying a task/inference
decomposition. The method itself is mentioned, but not explicitly represented in the
description. The methods are considered to be part of the background knowledge of
the knowledge engineer. We started looking for a KADS/CommonKADS descrip-
tion of the method, but none were available at that time. As we decided to model
propose-and-revise as closely as possible, we could not reuse directly the method
used for the office assignment problem. Therefore, we ended up constructing the
CommonKADS description of P&R more or less from scratch, using
Chandrasekaran’s (1990) task analysis framework for design as a guideline. We did
not keep records of this development process, but the effort spent was in the order
of a few weeks. Some details of the revise task only became clear after the
operationalization of the model in a running system.

In the mean time, the CommonKADS library book (Breuker & Van de Velde,
1994) has become available, so it is worthwhile to look a posteriori whether this
would have been of help. The description of propose-and-revise in chapter 11 of this
book would have provided the following structure.

¢ A decomposition of propose into three sub-tasks each of which can be found in
our VT model: sequence (ordering of the parameter set), select-unit (select
parameter), and propose-assignment (specify value).

¢ The revise task is decomposed into an evaluate task (corresponds to the VT
verify task), and a modify task. For this last task five methods are mentioned,
including generic-fixes. No further decompositions are provided.

It seems fair to conclude that the library would have given a first top-level
description of P&R, but more or less on the same level as Chandrasekaran’s

400 A. TH. SCHREIBER AND P. TERPSTRA

framework. It would not have provided the detailed descriptions presented in
Section 4. For detailed PSMs such as the method used in the revise task, it would
be worthwhile to consider how we can generate useful knowledge-level descriptions
of the algorithms involved. A description of this part cannot be derived from the
textual descriptions of this method. Providing support for this step through reusable
models of optimization algorithms would have been extremely useful here.
Researchers involved in Sisyphus are in fact already proposing such models (see for
example the contributions to KAW’95 on this topic).

(3) Rationale of a separate system-design activity.

KADS has been critized for the fact that the knowledge-level analysis does not
directly produce an operational system. We strongly believe, however, that a
separate design activity is necessary for any realistic application. Operational
knowledge-level models require that the operational interpretation of a knowledge-
level description is fixed in advance. This is in general too strong a constraint, either
leading to unacceptably inefficient systems, or to severely limited expressiveness of
the modelling language. The small adaptations made during operationalization of
the inferences involved in the propose task are typical design activities that increase
the efficiency of the resulting system drastically. The first CommonKADS system,
built by Magni (1993), was not optimized during design and solved the problem in
approximately two hours. The few optimizations that were added for the application
described in this article reduced the time required to solve the problem to about 4%
of the original figure.

It would definitely be very undesirable to change the knowledge-level model each
time such an efficiency decision is made. That would be cumbersome from a
management point of view, but would also lead to a level of detail in the description
that destroys its knowledge-level character.

(4) Relation to Sisyphus-I: office assignment.

A comparison between the model presented in this paper and the office-assignment
model is difficult. Although we could have decided to solve the office-assignment
problem with a method similar to P&R, we decided at the start of Sisyphus-I to
model the protocol (featuring Sigi D.) as closely as possible (Schreiber, 1994). The
result was a model for the propose task of an allocation problem. An allocation
problem has characteristics that make it different from the type of design described
in this paper. One prime difference is the fact that in allocation the domain consist
of two groups of objects (consumers and providers). Mapping this on a P&R type
problem would mean reformulating consumers and providers as parameters and
values. This is in principle, possible, but it corrupts the neat distinction between the
two groups. There are a number of commonalities between the two models with
respect to the propose task. These commonalities are described in the
CommonKADS library (Breuker & Van de Velde, 1994; Ch. 11), where the
Sisyohus-I descriptions were used to describe possible decompositions of the
propose task of P&R.

Paolo Magni and Marc van Velzen contributed to early versions of the VT model and
systems. Anjo Anjewierden and Manfred Aben built parsers for CML, thus helping us to
correct many small errors. We have profited from discussions with Gertjan van Heijst, Bob
Wielinga, and other colleagues at SWI. We also wish to thank the participants of the Sisyphus
meetings during KAW’94 and EKAW’94. We are grateful for the many things we learned
from this collaborative effort of the knowledge engineering community.

A COMMONKADS SOLUTION 401

The research reported here was carried out in the course of the KADS-II and the
KACTUS projects. The KADS-II project was partially funded by the ESPRIT Programme of
the Commission of the European Communities as project number 5248. The partners in this
project were: Cap Gemini Innovation (France), Cap Programator (Sweden), Netherlands
Energy Research Foundation ECN (The Netherlands), Eritel SA (Spain), IBM France,
Lloyd’s Register (United Kingdom), Swedish Institute of Computer Science (Sweden),
Siemens AG (Germany), Touche Rosse MC (United Kingdom), University of Amsterdam
(The Netherlands) and Free University of Brussels (Belgium). The KACTUS project is
partially funded by the ESPRIT Programme of the Commission of the European
Communities as project number 8145. The partners in this project are: Cap Gemini
Innovation (France), LABEIN (Spain), Lloyd’s Register (United Kingdom), Statoil (Nor-
way), CAP Programator (Sweden), University of Amsterdam (The Netherlands), University
of Karlsrule (Germany), IBERDROLA (Spain), DELOS (Italy), FINCANTIERI (Italy) and
SINTEF (Norway). This article expresses the opinions of the authors and not necessarily
those of the consortium.

References

ABEN, M. (1995). Formal methods in knowledge engineering. Ph.D. thesis, University of
Amsterdam, Faculty of Psychology. ISBN 90-5470-028-9.

BARTHELEMY, S., FrOT, P. & SimonNiN, N. (1988). Analysis document experiment F4. ESPRIT
Project P1098, Deliverable E4.1, Cap Sogeti Innovation.

BREUKER, J. A. & VaN DE VELDE, W., Eds (1994). The CommonKADS Library for Expertise
Modelling. Amsterdam: IOS Press.

CHANDRASEKARAN, B. (1988). Generic tasks as building blocks for knowledge-based systems:
the diagnosis and routine design examples. The Knowledge Engineering Review, 3,
183-210.

CHANDRASEKARAN, B. (1990). Design problem solving: a task analysis. Al Magazine, 11,
59-71.

Maagnt, P. (1993). Un ambiente per [Pacquisizione della conoscenza. Master’s thesis,
Universita degli Studi di Pavia, Italy. (In Italian).

Marcus, S. & McDermorT, J. (1989). SALT: A knowledge acquisition language for
propose-and-revise systems. Artificial Intelligence, 39, 1-38.

Marcus, S., Stour, J. & McDERMOTT, J. (1988). VT: an expert elevator designer that uses
knowledge-based backtracking. Al Magazine, Spring, 95-111.

NechHes, R., Swartour, W. R. & Moorg, J. D. (1985). Enhanced maintenance and
explanation of expert systems through explicit models of their development. /EEE
Transactions in Software Engineering, 11, 1337-1351.

Runker, J. T., BirmingHAM, W. P. & Barkany, A. (1996). Solving VT by reuse.
International Journal of Human-Computer Studies, 44, 403-433.

ScHrEIBER, A. T. (1994). Applying KADS to the office assignment domain. International
Journal of Human-Computer Studies, 40, 349-377.

ScHREIBER, A. T., WIELINGA, B. J., AkKkErRMANS, J. M., Van pE VELDE, W. &
ANJEWIERDEN, A. (1994a). CML: the CommonKADS conceptual modelling language. In
L. SteeLs, A. T. ScHrReEIBER & W. Van pE VELDE, Eds. A Future for Knowledge
Acquisition. Proceedings of the S8th European Knowledge Acquisition Workshop
EKAW’94, volume 867 of Lecture Notes in Artificial Intelligence, pp. 1-25. Berlin:
Springer-Verlag.

ScHREIBER, A. T., WIELINGA, B. J. & BREUKER, J. A., Eds (1993). KADS: a Principled
Approach to Knowledge-Based System Development, volume 11 of Knowledge-Based
Systems Book Series. London: Academic Press.

SCHREIBER, A. T., WIELINGA, B. J., bE HooG, R., AKKERMANS, J. M. & VAN DE VELDE, W.
(1994b). CommonKADS: a comprehensive methodology for KBS development. /EEE
Expert, 9, 28-37.

402 A. TH. SCHREIBER AND P. TERPSTRA

Tank, W. (1992). Modellierung von Expertise iiber Konfigurierungsaufgaben. Sankt Augustin,
Germany: Infix.

TerpPSTRA, P. (1994). An environment for application design. ESPRIT Project 5248,
Deliverable DM7.5a KADS-1I/M7/UvA/072/1.0, University of Amsterdam, The
Netherlands.

TERPSTRA, P. & ScHROOTEN, R. (1993). CommonKADS specific design decisions and their
notation. Deliverable DM7.2b, ESPRIT Project P5248 KADS-1I/M7.2/DD/UvVA/
043/1.1, University of Amsterdam, The Netherlands and Free University of Brussels,
Belgium.

VaN DE VELDE, W., Duursma, C., ScHREIBER, G., TErRPsTRA, P., ScHrROOTEN, R.,
GOLFINOPOULOS, V., OLssoN, O., SUNDIN, U. & GusTAVSSON, M. (1994). Design model
and process. Deliverable DM7.1, ESPRIT Project P5248 KADS-1I/M7/VUB/RR/
064/2.1, Free University Brussels, University of Amsterdam, The Netherlands, Swedish
Institute for Computer Science, Sweden and Cap Programmator, Brussels, Belgium.

vaN HARMELEN, F. & BALDER, J. R. (1992). (ML)* a formal language for KADS models of
expertise. Knowledge Acquisition, 4.

vanN Heust, G., FarLasconi, S., ABu-Hanna, A., ScHREIBER, A. T. & STEFANELLI, M.
(1995). A case study in ontology library construction. Artificial Intelligence in Medicine, 7,
227-255.

WIELINGA, B. J., VaN DE VELDE, W., SCHREIBER, A. T. & Akkermans, J. M. (1993).
Towards a unification of knowledge modelling approaches. In J.-M. Davip, J.-P.
Krivine & R. Stmmons, Eds. Second Generation Expert Systems, pp. 299-335. Berlin:
Springer-Verlag.

