
 Int . J . Human – Computer Studies (1996) 44 , 373 – 402

 Sisyphus-VT : A CommonKADS solution

 A . T H . S CHREIBER AND P . T ERPSTRA

 Uni y ersity of Amsterdam , Social Science Informatics , Roetersstraat 1 5 , NL - 1 0 1 8
 WNB Amsterdam , The Netherlands . email : schreiber ê swi .psy .u y a .nl

 This article represents a CommonKADS contribution to the Sisyphus-VT experi-
 ment . This experiment is concerned with a comparison of knowledge modelling
 approaches . The data set for this experiment describes the knowledge for designing
 an elevator system . The ultimate goal is to arrive at standards for sharing and
 reusing problem-solving methods and related ontologies .

 ÷ 1996 Academic Press Limited

 1 . Knowledge modelling approach

 This article contains a CommonKADS description of the Sisyphus ’93 problem : the
 VT elevator design . The term ‘‘CommonKADS’’ is used to refer to KADS as it has
 been developed within ESPRIT project P5248 KADS-II . The goal of this project
 was to arrive at a de facto European standard for KBS development . As the term
 ‘‘KADS’’ has become strongly associated with the University of Amsterdam , it is
 worthwhile to point out that CommonKADS is the result of a cooperative ef fort of a
 number of partners , in particular also (in the context of this paper) the Free
 University of Brussels and the Netherlands Energy Research Centre ECN .

 A central theme of CommonKADS is the idea that various perspectives or models
 are important in the KBS development process : models of the organization , of the
 overall task , of the agents involved , of the required communication , of the expertise ,
 and of the design of the final artifact . In this article the focus is on expertise
 modelling and its relation to design and implementation . An overview of
 CommonKADS can be found in Schreiber , Wielinga , de Hoog , Akkermans and Van
 de Velde (1994 b) ; the textual and graphical notations used are described in
 Schreiber , Wielinga , Akkermans , Van de Velde and Anjewierden (1994a) . †

 In Section 2 a brief characterization is given of the VT data set and of the
 application task . Section 3 describes the structure of the VT domain knowledge in
 the form of two ontologies . In Section 4 a top-down description is given of tasks and
 inferences involved . The methods underlying this decomposition are characterized .
 System design and implementation are addressed in Section 5 . The process of using
 the VT domain theory within our application is discussed also in this context .
 Section 6 discusses the possible contributions of this paper , as well as its limitations .
 This article assumes that the reader is familiar with the VT data set and the
 associated ONTOLINGUA ontologies .

 † See also the WWW pages at http : / / www . swi . psy . uva . nl / projects / CommonKADS / home . html .

 373

 1071-5819 / 96 / 3 / 40373 1 30$18 . 00 / 0 ÷ 1996 Academic Press Limited

 A . TH . SCHREIBER AND P . TERPSTRA 374

 2 . Initial problem analysis

 2 . 1 . NATURE OF THE VT DATA SET

 The emphasis in the VT application description lies on the domain knowledge . This
 domain description is biased in the sense that it contains precisely the knowledge
 necessary for the propose-and-revise (P&R) method (Marcus , Stout & McDermott ,
 1988) . At numerous places in the text indications are given of how the knowledge
 should be applied in a particular step of P&R . Therefore , we decided to model and
 implement the VT task using the P&R method . Given the goals of Sisyphus
 (comparison of knowledge modelling approaches) this is a logical choice . We do not
 claim that P&R is necessarily the best method to solve the VT problem .

 2 . 2 . CHARACTERIZATION OF P&R AS A METHOD FOR SOLVING DESIGN PROBLEMS

 Informally , a (routine) design task can be characterized as follows (Chandrasekaran ,
 1988) .

 $ There exists a fixed set of potential components of the artifact to be designed . No
 creative design of components is performed .

 $ The goal of design is twofold , namely
 (1) to select and arrange a set of components , and
 (2) to specify values for component characteristics (i . e . parameters) in such a way
 that the result meets the requirements and satisfies internal constraints .

 Tank (1992) defines two specializations of this routine design task , each focusing on
 one of the two goals .

 $ Arrangement (or layout) is a specialization of design in which the components
 have fixed parameter values , and the design problem is restricted to the selection
 and arrangement of components . An example of this type of configuration is the
 configuration of plastic parts on a mould (Barthe ̀ lemy , Frot & Simonin 1988) .

 $ Parametric design is a specialization of design in which the arrangement of
 components is fixed . The design problem is in this case limited to finding values
 for component parameters .

 Within this typology P&R can be classified as a method that supports a restricted
 form of design , namely parametric design problems . The method does not require
 an explicit structural model of the artifact : the artifact is represented as a flat set of
 parameters . All arrangement problems have to be reformulated as parametric design
 problems in order to be solvable by P&R . One consequence is that the method itself
 is unable to explain the result of its reasoning in terms of a structural device model .

 3 . Domain-knowledge description

 A CommonKADS domain-knowledge description consists of three parts .

 Ontologies : sets of type definitions of domain constructs , such as concepts and
 relations .
 Ontology mappings : a description of how types defined in one ontology can be
 mapped onto types in another ontology .

 A COMMONKADS SOLUTION 375

 Domain models : potential knowledge base partitions containing domain expressions
 that use a set of ontology definitions .

 The rationale for having multiple ontologies , and explicit mappings between those
 ontologies , lies in the CommonKADS ‘‘relative interaction’’ hypothesis (Schreiber et
 al . , 1994 b) : dif ferent types of knowledge dif fer in the degree in which they are
 dependent on the nature of the task . This hypothesis is put into use as a principle for
 organizing the domain knowledge . Ontologies are a means to group specifications of
 conceptualizations that share the same level of domain , task or method dependency .

 Based on this principle , we distinguished two ontologies in the VT case .

 (1) Parametric design ontology . This ontology is a task - type oriented ontology
 describing general ontological commitments in the context of the parametric design
 task . It is assumed not to be biased towards a particular method for solving a
 parametric design problem .

 (2) Propose - and - Re y ise ontology . The P&R ontology is a method - oriented
 ontology describing ontological commitments specific for the method selected to
 solve a parametric design task .

 The P&R ontology is thus more specific (application-dependent) than the
 parametric-design ontology . Each of the two ontologies has one or more corres-
 ponding domain models . Also , a (partial) mapping is specified between the two
 ontologies . Figure 1 gives an overview of the ontologies , ontology mappings and
 domain models used in VT . We discuss the ontologies and the mapping in more
 detail in the rest of this section .

 We used the CommonKADS CML (Conceptual Modelling Language) (Schreiber
 et al . , 1994 a) to describe the VT domain knowledge . Compared to ONTOLINGUA ,
 the CML notation provides a more expressive but less formal vocabulary for

 F IGURE 1 . Ontologies , ontology mapping and domain models in VT .

 A . TH . SCHREIBER AND P . TERPSTRA 376

 specifying ontologies . CML is probably best viewed as a tool for generating an initial
 semi-formal description of an ontology , which could be refined at a later stage to an
 ONTOLINGUA-like formal specification . Within the framework of CommonKADS
 a formal language (ML) 2) was developed for knowledge-level specifications together
 with a number of tools for transforming CML descriptions into skeletal formal
 specifications (van Harmelen & Balder , 1992 ; Aben , 1995) .

 3 . 1 . TASK-TYPE ORIENTED ONTOLOGY : PARAMETRIC DESIGN

 We interpreted the ONTOLINGUA specification of the ontology underlying the VT
 domain as a proposal for a task-type oriented ontology . In the original ‘‘description’’
 slot of the configuration-design ontology it was indicated that the purpose of the
 ontology was to provide the minimal ontological commitments for solving this task .
 The authors expected that applications would define their own specific interpreta-
 tions of this basic knowledge . Also , knowledge about fixes was considered to be
 P&R-specific and not always required in the general case , and was therefore not
 included in the ONTOLINGUA definitions . †

 Figure 2 shows how the parametric-design ontology is graphically represented in
 the CommonKADS CML . Boxes represent concepts (classes) ; diamonds represent
 relations . Binary relations may have a directional arrow , when the relation is
 asymmetric . A constraint is modelled as a concept representing a reification (a
 name) of a formula . The box labelled parameter-slot is a special type of concept
 called an attribute , which denotes a concept pointing to a value . The oval represents
 an expression , a modelling primitive in the CML . This construct is used to model
 simple expressions about values such as p 5 10 . 5 . It is used here to model
 expressions about the value of a parametric-slot . The two binary relations
 fixed-model-value and fixed-component-value link component models (or

constraint
expression

constraint
to

expression
constraint

name

component component

component
model

has
models

has
constraint

used in
constraint

has
parameter

slot

fixed
component

value

fixed
model
value

parameter
slot

parameter
expression

x

has
sub-component

·> number OR string

 F IGURE 2 . Parametric-design ontology . Boxes represent concepts (classes) ; diamonds represent relations .
 The oval represents a reified function (a modelling primitive in the CML) . The dashed arrow extending

 from the has-sub-component relation represents a property (i . e . function) defined on the relation .

 † During the Sisyphus discussions it has been argued that fix knowledge is an integral part of all design
 problem solving , but that is another issue .

 A COMMONKADS SOLUTION 377

 components) to expressions about fixed values of their parameters , e . g . fixed - model -
 y alue (safety - B 4 , safety - beam - height 5 10) .

 Although there is a large overlap between the ONTOLINGUA ontology and this
 one , there are a few dif ferences . These are of three types .

 (1) Terminology . We use the phrase ‘‘constraint name’’ instead of ‘‘constraint’’ to
 avoid confusion between the label given to a constraint expression (which is what
 ‘‘constraint’’ is used for in the ONTOLINGUA specification) and the actual
 expression .
 (2) Representation . Due to the dif ferent representational primitives underlying
 ONTOLINGUA and CML , some constructs are represented dif ferently . For
 example , in the ONTOLINGUA VT domain theory the fixed values are represented
 using the GF (generic frame) formalism , whereas in CML these have to be
 represented explicitly using a relation construct .
 (3) Extensions . The CommonKADS parametric-design ontology contains one major
 extension , namely the distinction between component and component-model .

 In the ONTOLINGUA definition no explicit distinction is made between a
 component such as platform and a particular type of platform , e . g . platform-4B .
 Both are represented as components . However , in design domains it is useful to
 make a distinction between a ‘‘component’’ and a ‘‘component model’’ . Component
 is used to refer to the general category , i . e . platform , safety , etc . A component-
 model refers to the actual type of component that is selected during design :
 platform-2B , safety-B4 . Component models are typically associated with par-
 ticular fixed parameter values , e . g . safety-B4 always has a height of 10 inches . The
 has-models relation defines how components and component models are related .
 Component models inherit the parameter slots defined on components , but may
 introduce additional slots specific for a component model (cf . the parameter slot x
 and s of a platform) .

 In an implicit manner , the ONTOLINGUA definition actually makes a distinction
 between components and their models (see the VT domain theory) .

 $ Direct sub-classes of vt-component are components .
 $ Direct sub-classes of components are component models .
 $ The model-if slot fulfills a special role by linking components and their models .

 We have made this distinction explicit through these two dif ferent concept classes .
 This is warranted by the fact that these two concepts refer to dif ferent entities with
 dif ferent characteristics . Representing these through class / sub-class or class / instance
 distinctions does not capture these dif ferences adequately . Runkel , Birmingham and
 Balkany (this issue) make a similar distinction between function (i . e . component)
 and part (i . e . component model) .

 3 . 2 . METHOD-ORIENTED ONTOLOGY : P&R

 The P&R ontology describes the specific conceptualizations that are required for the
 P&R problem solving method . We distinguished two parts of this method-oriented
 ontology based on their dif ferent ‘‘reusability status’’ .

 A . TH . SCHREIBER AND P . TERPSTRA 378

 (1) One part of the P&R ontology can be defined as a method - specific y iewpoint on
 the parametric-design ontology . This concerns , for example , distinctions that can be
 made within the set of constraint expressions .
 (2) Another part of the P&R ontology contains additional conceptualizations that
 fall outside the scope of the parametric-design ontology . An example in VT is the fix
 knowledge .

 We discuss these two parts separately .

 (1) Viewpoints on the parametric-design ontology . The parametric-design ontology
 defines the minimal conceptualizations required for this task . The assumption is that
 for a particular method-specific viewpoints can be defined on elements of this
 ontology which reflect their use in reasoning . The main constructs in this part of the
 P&R ontology are :
 (i) Parameters . P&R assumes that a design is represented as a flat set of parameters .
 This means that components for which during design a component model has to be
 chosen need to be represented as parameters . Parameter slots are also represented
 as parameters .
 (ii) Calculations and constraints . The P&R method also partitions the set of
 constraint expressions into two sub-sets that each play a dif ferent role in the
 reasoning process : calculations and constraints . Calculations contain a
 mathematical-expression : a formula that produces a value for a parameter .
 Constraints contain a logical-expression that evaluates to either true or false .

 Figure 3(a) shows the graphical CML representation of this part of the P&R
 ontology . Both calculations and constraints are represented as ternary relations . The
 italic annotations denote argument roles . Figure 3(b) shows a number of example
 tuples of the two relations . The formula typically corresponds to a constraint
 expression or some fixed value in the parametric-design ontology . The examples also
 show that the P&R representation is redundant : the information about input / output
 variables could have been derived from the formula . This is typical for a
 method-specific representation , as the redundant information is useful for ef ficient
 reasoning .

 The ontology mapping defines how the viewpoint can be realized . An informal
 description of the mapping between the parametric-design ontology and the P&R
 ontology is shown in Figure 4 . The mapping is a partial one : not all constructs in the
 parametric design ontology are mapped onto constructs in the P&R ontology . For a
 formal description a rewrite formalism such as used in (ML) 2 (van Harmelen &
 Balder , 1992) can be used .

 The mappings were used in the VT implementation to reuse the VT domain
 theory within our application . Figure 5 shows the actual results of the transformation
 of expressions in the parametric-design ontology to expressions in the P&R
 ontology . The details of this transformation process are described in Section 5 .

 The P&R-specific distinction between calculation and constraint implies that
 only a sub-set of the constraint-expressions in the parametric-design ontology plays
 the role of ‘‘constraint’’ during problem solving , meaning that violation of the
 constraint expression gives rise to some repair action . Thus , for the P&R method

 A COMMONKADS SOLUTION 379

label

mathematical
expression

logical
expression

parameter

parameter

parameter

calculation

constraint

constraint
name

X
X

formula

formula

input
variables

output
variable

affected
variables

calculation(formula(machine-total-weigh = machine-weight + motor-weight)
 input-variables({machine-weight, motor-weight})
 output-variables(machine-total-weight))

calculation(formula(car-speed = 200 => hoist-cable-safety-factor-min = 8.75)
 input-variables({car speed})
 output-variables (hoist-cable-safety-factor-min))

calculation(formula(safety-beam-model=safety-b4 => safety-beam-height = 10)
 input-variables({safety-beam-model})
 output-variables(safety-beam-model))

constraint(formula(2 < platform-weight-factor-ap < 11)
 affected-variables({platform-weight-factor-ap})
 label(platform-weight-factor-ap-c01))

(a)

(b)

 F IGURE 3 . (a) CML representation of the two relations calculation and constraint in the P&R
 ontology that can be expressed as a viewpoint on the parametric-design ontology , (b) some sample tuples

 of the two relations .

 only a sub-set of the domain constraints are ‘‘real’’ constraints ; the others are only
 used to compute values . In this way , a method introduces its own vocabulary ,
 independent of the underlying task-type oriented ontology .
 (2) Additional method-specific ontological commitments . The method-oriented
 ontology contains usually also additional conceptualizations introduced by a
 particular method . The prominent example in the VT domain is the knowledge
 concerning fixes . Another example of method-specific knowledge is contained in the
 statement at the beginning of Section 5 of the VT description , namely that the
 ordering of components in this section can be used as a rough guide for the order in
 which values should be proposed by the propose step . Table 1 lists the additional
 P&R-specific conceptualizations .

 A . TH . SCHREIBER AND P . TERPSTRA 380

 ONTOLOGY-MAPPING
 FROM : parametric-design-ontology ;
 TO : P-and-R-ontology ;
 MAPPINGS :
 ’ ’ parametric-design P-and-R-ontology
 àààààààààààààààààààààààà
 parameter-slot u 2 . parameter
 component u 2 . parameter

 IF the component has associated component
 models

 component-model u 2 .

 parameter-value
 constraint-expression u 2 . calculation

 IF the expression can be classified as a
 mathematical-expression .

 Typical format of a mathematical-expression :
 , par . 5 , expression .

 , expression . 2 . , par . 5 , expression . OR
 constraint-expression u 2 . constraint

 IF the expression can be classified as a
 logical-expression

 fixed-model-value u 2 . calculation
 fixed-component-value u 2 . calculation ’ ’ ;

 END ONTOLOGY-MAPPING

 F IGURE 4 . Informal specification of mappings from types in the parametric design ontology onto types in
 the P&R ontology .

 4 . Problem-solving model

 The aim of this section is to construct a CommonKADS description of the P&R
 method . Tasks and inferences are described in a top-down fashion .

 4 . 1 . PARAMETRIC DESIGN

 The top-level task that we used as the starting point for expertise modelling is
 parametric design . In CommonKADS the identification of this task would be the
 result of building a task model . In this model tasks are identified in the current
 and / or future organization . Expertise modelling is done for those tasks in the task
 model that have been assigned to a reasoning agent .

 A CommonKADS description of a ‘‘task’’ consists of two parts .

 (1) The task definition is a declarative specification of the goal of the task . It
 describes what needs to be achieved . A CommonKADS task definition is equal to
 the notion of ‘‘task’’ in the Sisyphus glossary .
 (2) The task body specifies a procedure , prescribing activities to accomplish the task .
 The task body describes how the goal can be achieved .

 Roughly speaking , the task body can be seen as a method (PSM) for realizing
 the task (definition) . However , in the CommonKADS vocabulary the term ‘‘PSM’’
 is reserved for the generic (application-task independent) description of the method .
 In this view , the task body is strictly speaking the instantiation of a method for a

 A COMMONKADS SOLUTION 381

Parametric design
ontologyNo. of

expressions

28

253

365

242

10

component

parameter-slot

constraint-expression

fixed-model-value

fixed-component-value

280

88

529

parameter-slot

constraint

calculation

No. of
expressions

P&R ontology

27

253

242

10

88
277

 F IGURE 5 . Overview of the transformation of expressions in the parametric-design ontology to the P&R
 ontology . The figures indicate the number of expressions involved . It can be seen that constraint
 expressions are split into two sub-sets . Only 88 constraint expressions are used as real ‘ ‘constraints’ ’ .
 Components are transformed into parameters , if they have associated component models (this is true for

 all components but one) . See Section 5 for more details about the transformation process .

 particular task . Task body descriptions are usually annotated with the (generic) PSM
 that underlies it (see , for example , the CML description in Figure 7) .

 The task definition of the parametric-design task (shown in Figure 6) describes the
 overall goal of the task and its I / O . This task definition requires that the domain
 knowledge can be viewed in terms of a set of parameters representing the ‘‘skeletal
 design’’ , and a set of constraints that involve these parameters .

 The name ‘‘propose-and-revise’’ suggests that the first PSM that should be applied
 to this task is a decomposition of the top-level task into two sub-tasks : propose and
 revise . However , when examining the textual description of the method there
 appear to be at least three distinct sub-tasks at the first level of decomposition ,
 namely :

 T ABLE 1
 Three knowledge types representing additional ontological commitments required by

 the P&R method

 Knowledge
 type

 Domain
 model Description

 fix fixes Fix knowledge represented as a ternary relation
 between a constraint , an operation , and a
 preference rating . An operation is also a
 relation which has two possible sub-types : (i) a
 unary relation such as upgrade defined on a
 ‘‘component-model’’ parameter , or (ii) a binary
 relation such as assign , decrease and
 increase which holds between a parameter
 and a mathematical expression .

 order parameter-order Representation of the heuristic that parameters
 should be assigned roughly in the order in which
 associated components are described in the VT
 data description .

 par-expression initial-values Initial assignments to parameters , based on
 domain heuristics .

 A . TH . SCHREIBER AND P . TERPSTRA 382

 TASK parametric-design ;
 TASK-DEFINITION
 GOAL :
 ‘ ‘find a design that meets the requirements and
 satisfies a set of constraints’ ’ ;

 INPUT :
 skeletal-design : ‘ ‘the set of system parameters’ ’ ;
 requirements : ‘ ‘requirements in the form of a set of parameter / value
 pairs’ ’ ;

 OUTPUT :
 design : ‘ ‘set of assigned parameters’ ’ ;

 F IGURE 6 . Task definition of the top-level task .

 (1) propose a design extension ;
 (2) verify the current design ;
 (3) revise the design , if necessary .

 This is in line with the decomposition provided by the ‘‘PCM’’-class of methods
 for routine design as described by Chandrasekaran (1990) . In PCM-type methods
 the top-level design task is decomposed into four possible sub-tasks : propose , verify ,
 critique and modify . The goal of the verification task is to check a proposed (partial)
 design . Critiquing is concerned with blame assignment in cases were verification
 indicates that there is a problem . As the verification of P&R produces a constraint
 violation which directly serves as input for the revise (i . e . modify) task , there is no
 explicit separation between verification and critiquing in this method . The direct link
 between verification and revision is possible , because P&R assumes that there is
 knowledge linking constraints directly to possible modifications (‘‘fixes’’ , see
 Table 1) . †

 The task body in Figure 7 is the result of applying this method to the top-level
 task . A task body usually introduces new vocabulary to describe the relations
 between the sub-tasks . In the decomposition of the parametric-design task the
 following terms , or ‘‘task roles’’ , are introduced .

 (1) Extended design : this term is used to denote the set of parameters to which
 values have been assigned .
 (2) Design extension : a new parameter assignment .
 (3) Violation : a constraint (in the P&R sense) that was violated .

 The control structure of the task body is stated in a form of pseudo-code . Arrows
 are used to distinguish input and output . The parametric-design task starts of f with
 proposing a design extension (i . e . a new parameter value) . The value is checked to
 see whether it introduces a constraint violation . If this is the case , the revise task is
 invoked with the violated constraint as input . This process is repeated until the
 propose task is not able to produce new design extensions . Parameters in the
 skeletal design have been assigned a value . If , for some reason , the revise task

 † This statement is not true for SALT , the knowledge acquisition system supporting P&R . In SALT the
 acquisition of fix knowledge is guided by explaining to the user what are the possible contributors of a
 constraint violation . This is in fact a form of critiquing .

 A COMMONKADS SOLUTION 383

 TASK-BODY
 TYPE : COMPOSITE ;
 SUB-TASKS : init , propose , verify , revise ;
 PSM : ‘ ‘PCM-type decomposition’ ’ ;
 ADDITIONAL-ROLES :
 extended-design : ‘ ‘current set of assigned parameters
 represented as a set of tuples , parameter , value . ’ ’ ;

 design-extension : ‘ ‘proposed new element of the extended design’ ’ ;
 violation : ‘ ‘violated constraint’ ’ ;

 CONTROL-STRUCTURE :
 ‘ ‘parametric-design(skeletal-design 1 requirements 2 . design) 5

 init(requirements 2 . extended-design)
 REPEAT
 propose(skeletal-design 1 extended-design 2 . design-extension)
 extended-design : 5 design-extension JOIN extended-design
 verify(design-extension 1 extended-design 2 . violation)
 IF , some violation .

 THEN revise(extended-design 1 violation 2 . extended-design)
 UNTIL , the propose task fails to produce a design extension .

 design : 5 extended-design’ ’ ;
 END TASK parametric-design ;

 F IGURE 7 . Task body of the parametric-design defining the first level of decomposition , as well as the
 control imposed on the decomposition .

 fails , the overall design task fails . Note that there is no check in P&R whether all
 relevant parameters have been assigned a value . The assumption is that the
 knowledge underlying the propose step is capable of generating values for all
 relevant parameters . The main reason such an explicit completeness check is missing
 in P&R is probably the fact that there is no explicit component structure , that would
 allow the identification of relevant parameters .

 The task body contains one additional task not mentioned in the PCM method .
 This init task can be viewed as an ‘‘administrative’’ task which ensures that the
 original input of the task is transformed into the form necessary for the sub-tasks .
 Here , the initialization task records the requirements as parameter values , thus
 providing the first version of the extended design .

 The data flow between the sub-tasks is represented graphically in Figure 8 . This

requirements

skeletal
design

init

propose

extended
design

revise

extended
design

extended
design

verify

 F IGURE 8 . Top-level data flow in the parametric design task .

 A . TH . SCHREIBER AND P . TERPSTRA 384

 INFERENCE select-parameter ;
 OPERATION-TYPE : ‘ ‘select’ ’ ;
 INPUT-ROLES :
 parameter-set 2 . SET(parameter) ;
 current-assignments 2 . ‘ ‘set of tuples , parameter , value . ’ ’ ;

 OUTPUT-ROLES :
 selected-parameter 2 . parameter ;

 STATIC-ROLES :
 order IN parameter-order ;
 par-expression IN initial-values ;
 calculation IN calculations :

 SPEC :
 ‘ ‘Select a parameter from the input set that has not been assigned a
 value and for which the preconditions that the domain knowledge poses
 for computing the value are fulfilled .

 The expressions in the domain model initial-values are evaluated as
 soon as possible .
 A heuristic ordering of components is used to rank the set of para-
 meters . (see VT description , start of Sec . 5)’ ’ ;

 END INFERENCE select-parameter ;

 INFERENCE specify-value ;
 OPERATION-TYPE : ‘ ‘compute’ ’ ;
 INPUT-ROLES :
 selected-parameter 2 . parameter ;
 current-assignments 2 . ‘ ‘set of tuples , parameter , value . ’ ’ ;

 OUTPUT-ROLES :
 parameter-assignment 2 . ‘ ‘single tuple , parameter , value . ’ ’ ;

 STATIC-ROLES :
 par-expression IN initial-values ;
 calculation IN calculations ;

 SPEC :
 ‘ ‘Specify the value of a parameter by interpreting the formulae
 provided by the domain models , using the set of current assignments to
 retrieve already computed values . ’ ’ ;

 END INFERENCE specify-value ;

 F IGURE 9 . Inferences involved in the propose task .

 figure should be interpreted as a pro y isional inference structure . It fulfills the role of
 a working hypothesis in the knowledge engineering process . It can (and will) be
 refined in the process of model construction , e . g . through task decomposition . For
 clarity , rounded boxes are used in the diagrams to refer to functions that can be
 decomposed further , in contrast to ovals which denote leaf functions (inferences in
 the CommonKADS vocabulary , see further) .

 4 . 2 . PROPOSE

 The method underlying the propose task is a strong form of decomposition .
 Invocation of this task does not produce a full design , but the smallest possible
 extension of an existing design , namely one new parameter assignment .

 The input and output roles refer to the objects that are manipulated by the
 inference . The role label is supposed to be indicative of the way in which the object

 A COMMONKADS SOLUTION 385

 is used within an inference , e . g . selected parameter . The specification of I / O
 roles also provides a pointer to the types of domain objects that can play this role ,
 e . g . parameter . The static roles point to the domain knowledge that is used but not
 changed within the inference . A static role specification is of the form
 k type l IN k domain model l , meaning that the inference uses expressions of the
 specified type from the domain model indicated . In the two sample inferences
 expressions from several domain models are used . The order in which parameters
 are selected is guided by heuristic knowledge as provided by the remark at the start
 of Section 5 of the VT data description :

 ‘‘The subsections are ordered roughly in the order that values can be computed for
 design parameters . ’’

 This is heuristic control knowledge (see parameter-order in Table 1) . An
 alternative method would have been to analyse the constraint dependencies and
 derive from these an optimal ordering .

 A precise description of the internal details of inferences is not assumed to be part
 of a CommonKADS expertise model ; it is part of the system design activity , in
 which a suitable computational method is selected for the inference . Nevertheless ,
 the knowledge engineer can informally describe the typical reasoning process in the
 ‘‘spec’’ slot . Also , an optimal ‘‘operation-type’’ can be specified . This operation type
 should be selected from the library of formally defined inference schema’s
 developed by Aben (1995) . Operation types can be used in several ways , e . g . as
 input for verification through formal specification , or as an index for computational
 method selection .

 Inferences introduce their own role vocabulary , such as current-assignments .
 The invocation of an inference from a task indicates how task roles map onto
 inference roles . This distinction between task roles and inference roles allows the
 knowledge engineer to distinguish between , on the one hand , names that refer to the
 overall role of objects in problem solving (e . g . skeletal-design) and , on the other
 hand , names that refer to the role of an object within one inference step (e . g .
 parameter-set) . Figure 10 shows the data dependencies between the inferences in
 the propose task . Such a figure is called in CommonKADS an ‘‘inference
 structure’’ . The names in the boxes denote inference roles . The annotations
 represent the corresponding task role . In Figure 11 the full CML specification of the
 propose task is given . This task is defined as a primiti y e task , as it requires no
 further task decomposition : all sub-tasks are inferences .

 4 . 3 . VERIFY

 The verification task in P&R applies a simple form of constraint evaluation . The
 method used here is to perform domain-specific calculations linked to the con-
 straints . Two inferences are defined for this task (Figure 12) . The specify inference
 produces the constraints that are associated with a parameter . As pointed out in
 Section 3 , the term ‘‘constraint’’ as used in the method-oriented ontology of P&R
 refers to a sub-set of the constraint expressions in the domain . The evaluate
 inference uses a simple form of deduction to find out whether a constraint is
 consistent with the parameter assignments . The verify task invokes the two
 inferences defined above and returns the name of a constraint , if a violation is

 A . TH . SCHREIBER AND P . TERPSTRA 386

selected
parameter parameter set

extended
design

parameter
assignment

select

specify

extendible
parameter

design
extension

skeletal
design

current
assignments

 F IGURE 10 . Inference structure of the propose task . Boxes denote inference roles ; ovals denote
 inferences .

 TASK propose ;
 TASK-DEFINITION
 GOAL : ‘ ‘propose a design extension’ ’ ;
 INPUT :
 skeletal-design : ‘ ‘set of parameters to which values needs to be

 assigned’ ’ ;
 extended-design : ‘ ‘set of tuples , parameter , value . ’ ’ ;

 OUTPUT :
 design-extension : ‘ ‘new tuple , parameter , value . ’ ’ ;

 TASK-BODY
 TYPE : PRIMITIVE ;
 SUB-TASKS : select-parameter , specify-value ;
 PSM : ‘ ‘single element decomposition’ ’ ;
 ADDITIONAL-ROLES :
 extendible-parameter : ‘ ‘parameter for which a value will be proposed’ ’ ;

 CONTROL-STRUCTURE :
 ‘ ‘propose(skeletal-design 1 extended-design 2 . design-extension) 5

 select-parameter(skeletal-design 1 extended-design 2 . extendible-

 parameter)
 specify-value(extendible-parameter 1 extended-design 2 . design-

 extension)’ ’ ;
 END TASK propose ;

 F IGURE 11 . Specification of the propose task .

 A COMMONKADS SOLUTION 387

associated
constraint

parameter
assignment

current
assignments

truth value

specify

evaluate

 F IGURE 12 . Inference structure of the verify task . The x v symbol indicates a set . In this case it
 indicates that the output of specify is a set of constraints . Input to evaluate is one element

 of this set .

 found . Verification is also a primitive task , as it invokes only inferences . In Figure 12
 the data dependencies between the two inferences are shown in the corresponding
 inference structure .

 4 . 4 REVISE

 The revise task in P&R implements a quite specific strategy for modifying the
 current design , whenever some constraint violation occurs . To this end , the task
 requires a knowledge about fixes (see Table 1) . Input to the task is a constraint
 violation . The goal of the revise task is to change the extended design in such a
 way that it is consistent with the violated constraint . This goal is realized by applying
 combinations of fix operations which change the value of parameters , and
 subsequently propagating these changes through the network formed by the
 computational dependencies between parameters . This leads to the following task
 decomposition of revise .
 Find Fixes . Generate an ordered list of fix combinations that can be applied to the
 extended design to repair the violation .
 Apply fix combinaiton . Create a temporary version of the extended design to which
 a fix is applied .
 Update . Recompute the parameters which are computationally dependent on the
 parameters changed by the application of a fix .
 Verify . Verify whether the new values of parameters changed by fixes or fix
 propagations are consistent with their constraints . This task is the same one as the
 verify task described previously .

 The application of a fix may introduce new violations . Fixing these new violations
 would involve a recursive invocation of revise . P&R tries to reduce the complexity
 of parametric design by disallowing recursive fixes . Instead , if the application of a
 fix introduces a new constraint violation , the fix is discarded and a new combination
 of fixes is tried .

 A . TH . SCHREIBER AND P . TERPSTRA 388

 The method underlying the revise task avoids unnecessary fix propagation , by
 verifying the ef fects of afix application as soon as possible . We identified three
 situations in which verification should be carried out .

 $ After the application of a single fix in a fix combination , the constraints on the
 parameter which is changed by the fix should be verified . If such a constraint is
 violated , application of the rest of the fix combination should be aborted . During
 this step only those parameters should be updated that are computationally
 dependent on fixed parameters and also influence constraints on this parameter .

 $ After the application of a fix combination as a whole one should verify whether
 the constraint violation which triggered revise has been resolved . Up to this
 point only those parameters should be updated which influence the verification of
 the constraint .

 $ Only when the original constraint violation has been resolved , the other
 consequences of the application of the fix combination should be propogated .
 Finally all remaining parameters that were updated should be verified .

 This leads to one additional sub-task for revise :
 Find constraint influences . Find those parameters that directly or indirectly influence
 the verification of some constraint .

 We have included the CML specification of the revise task in Figure 13 . Six new
 inferences were specified for revise (see Table 2) . The task also invokes inferences
 specified for propose and verify . We have omitted the specification of the control
 in sub-tasks involved in revise . This description is a very detailed specification of
 the algorithms employed by P&R , and it is debatable whether these detailed
 descriptions should be part of a knowledge-level model (see also the discussion
 section) .

 We limit the description here to some remarks about two issues that came up
 during the specification of revise .
 Antagonistic constraints . The P&R problem-solving method limits the search space
 for parametric design by disallowing ‘‘recursive fixing’’ . Whenever the application of
 a fix gives rise to a new constraint violation , the fix is rejected and no attempts are
 made to fix the new violation . A disadvantage of this search strategy is that it
 corrupts the declarative nature of the domain knowledge involved . The meaning of
 certain constraints is dependent on the order in which they are applied by the PSM .
 Such dependencies between constraints through fix ordering (termed ‘‘antagonistic
 constraints’’ by Marcus & McDermott , 1989) can be defined as follows .

 Let changed - by (constraint) be the set parameters that might be changed by
 applying a fix for a violation of the constraint . The parameter might either be
 changed by a fix operation itself or by propagation of the fix .
 Let influences (constraint) be the set of parameters that , directly or indirectly ,
 influences the verification of a constraint .
 Constraint A and B are antagonistic if f

 changed - by (A) > influences (B) ? [

 Antagonistic constraints may prevent the system from finding a solution . For
 example when a violation of the constraint hoist-cable-traction-ratio is

 A COMMONKADS SOLUTION 389

 TASK revise ;
 TASK-DEFINITION
 GOAL :
 ‘ ‘modify the current design in such a way
 that no constraints are violated’ ’ ;

 INPUT :
 extended-design : ‘ ‘set of tuples , parameter , value . ’ ’ ;
 violation : ‘ ‘constraint violated by the last extension’ ’ ;

 OUTPUT :
 revised-design : ‘ ‘revised extended design’ ’ ;

 TASK-BODY
 TYPE : COMPOSITE ;
 SUB-TASKS : find-constraint-influences , find-fixes ,

 apply-fix-combination , update-fix , eval-constraint , verify ;
 PSM : ‘ ‘domain-specific revision strategies 1 dependency-directed

 backtracking’ ’ ;
 ADDITIONAL-ROLES :
 fix-combinations : ‘ ‘list of fix combinations’ ’ ;
 fix-combination : ‘ ‘sequence of actions which might resolve a violation’ ’ ;
 constraint-influences : ‘ ‘those parameters which are directly or

 indirectly influence the verification of the violated
 constraint’ ’ ;

 af fected-parameters : ‘ ‘parameters af fected by a fix combination’ ’ ;
 CONTROL-STRUCTURE :
 ‘ ‘revise(extended-design 1 violation 2 . revised-design) 5

 find-fixes(violation 2 . fix-combinations)
 REPEAT
 1 . Select a fix combination
 2 . Apply the fix combination to the af fected-parameters
 3 . If step (2) did not introduce any violations then :

 (3a) find the constraint-influences
 (3b) update the parameters belonging to the intersection

 of constraint-influences and af fected-parameters
 (3c) evaluate the original constraint
 (3d) if the violation has been resolved then

 update the rest of the parameters in af fected-
 parameters

 (3e) verify each update resulting from step (3d)
 UNTIL revised-design is consistent’ ’ ;

 END TASK revise ;

 F IGURE 13 . Specification of the revise task .

 T ABLE 2
 O y er y iew of inferences in y ol y ed in the revise task

 Inference Description

 specify-fixes
 order-fixes
 apply-fix
 parameter-children
 parameter-parents

 constraint-parameters

 Find all fixes for a violation
 Construct and sort all possible combinations of fixes
 Recompute the value of a parameter
 Find all parameters that are dependent on a parameter
 Find all parameters that directly or indirectly determine
 the value of the input parameter
 Find parameters used in a constraint

 A . TH . SCHREIBER AND P . TERPSTRA 390

 repaired before a violation of the constraint machine-beam-section-modulus
 P&R fails to find a solution . However , when the repair order is reversed a solution is
 found . The KA front end to VT (SALT , Mardus & McDermott , 1989) , tries to deal
 with these antagonistic constraints by eliciting heuristic orderings of constraint fixes .
 An alternative is to derive these constraint dependencies at compile time , and to use
 the direction of the antagonistic relation to establish the order in which parameters
 should be derived .
 Internal dependencies in a fix combination . The current conceptualization of P&R
 does not take into consideration that fixes in a fix combination may be dependent of
 each other . These dependencies can be of two types .

 (1) Fixes may use parameters in their computation , which are changed by another
 fix in the combination .
 (2) Fixed parameters may have constraints which are (in)directly related to
 parameters which are changed by another fix .

 These observations have two consequences . Firstly , fixes in a fix combination
 should be ordered in such a way that dependent fixes are applied after fixes that
 depend on it . Secondly , these dependencies should be propagated before the
 application of a dependent fix .

 4 . 5 . SUMMARY OF PROBLEM-SOLVING METHODS IN P&R

 P&R is in fact a conglomerate of related methods . We have tried to indicate what
 the types of methods are that appear in the decomposition of the parametric-design
 task as dictated by P&R . For this purpose we used the task analysis framework
 defined by Chandrasekaran (1990) . Summarizing , the task decomposition as
 described in this section encompassed the following method .

 $ The decomposition of the top-level task design into three sub-tasks , propose ,
 verify and revise is an instance of the class of PCM-class of design methods .

 $ The propose task is realized through a particular type of decomposition
 method , namely a design plan consisting of subsequent steps of single
 parameter assignments .

 $ The method used by verify method employs domain-specific calculations
 provided by the expressions attached to the constraints (e . g . the calculation of
 the traction ratio) .

 $ The revise task uses domain-specific revision strategies provided by the fix
 knowledge . The control is governed by the dependency-directed backtracking
 method .

 Figure 14 shows the relation between tasks and methods graphically .

 5 . Design and implementation

 In CommonKADS expertise modelling is followed by an explicit design step
 resulting in a design model . † A CommonKADS design model (Van de Velde ,

 † Other inputs for the design model may come from the task , agent and communication models , but
 those models are not covered in this article .

 A COMMONKADS SOLUTION 391

parametric design

PCM-type method

propose

decomposition
in design plan

verify

domain-specific
calculations

revise

domain-specific
revision strategies

+
dependency-directed

backtracking

 F IGURE 14 . Task decomposition generated by P&R . The italic annotations characterize the methods on
 which the decomposition is based .

 Duursma , Schreiber , Terpstra , Schrooten , Golfinopoulos , Olsson , Sundin & Gus-
 tavsson , 1994) consists of an architecture design , an application design , and a
 platform design . The architecture design defines an abstract computational engine
 that contains the computational primitives for realizing the application (e . g .
 representation languages , implemented algorithms) . Application design describes
 how the ingredients of the expertise model (and / or task , communication and agent
 models) are mapped onto the architecture . The platform design describes the
 hardware and software platforms on which the application is implemented .

 One important principle that we apply during design is the notion of structure -
 preser y ing design : both the content and the structure of the information in the
 expertise model should be preserved as much as possible in the final system . This
 ensures the explainability (in knowledge-level terms) and maintainability of the
 system (Schreiber , Wielinga & Breuker , 1993 : chapter 6) . Structure-preserving-
 design has a parallel in other approaches , e . g . the program writer in EES (Neches ,
 Swartout & Moore , 1985) . The first step in structure-preserving design is to define
 CommonKADS specific constructs on top of the architecture as defined in the
 architecture design . This CommonKADS specific viewpoint on the architecture then
 provides a framework for enumerating and documenting application-specific design
 decisions (Terpstra & Schrooten , 1993) .

 5 . 1 . ARCHITECTURE AND PLATFORM DESIGN

 For realizing the VT application we used the SIADL † implementation of a
 CommonKADS-specific architecture (Terpstra , 1994) . This architecture implemen-
 tation was based on the previous architecture used in Sisyphus-I (Schreiber , 1994)
 with additional facilities for handling multi-level ontologies and ontology transfor-
 mations . Using such an environment the knowledge engineer can concentrate on the
 application design activity . The environment also enables the transformation of

 † Simulated Application Design Language .

 A . TH . SCHREIBER AND P . TERPSTRA 392

 CML descriptions as (skeletal / partial) application design specifications . The SIADL
 system was developed in SWI-PROLOG , a public-domain Prolog that is available
 on both Unix and Windows platforms .

 5 . 2 . APPLICATION-DESIGN : DOMAIN KNOWLEDGE

 To support structure-preserving design , the SIADL environment provides a default
 domain-knowledge representation . This representation is a simple tuple-oriented
 representation , and acts as an intermediate between the CML and representations
 defined for other specification languages (e . g . KIF) or representations which are
 optimized towards a computational technique (‘‘symbol level representations’’) . As
 the language has a formal syntax for domain axioms , it can be used for the
 realization of mappings through transformation of domain expressions .

 The SIADL environment provides facilities for defining mappings . Two types of
 domain-model mappings are being distinguished .
 Ontology mapping . An ontology mapping maps a set of expressions onto a set of
 expressions that has a dif ferent ontology . This means that semantics of the
 expressions is changed . The mapping between the parametric-design domain model
 and the P&R domain models is example of an ontology mapping . A P&R specific
 meaning is attached to the transformed expressions . For example , the ‘‘ 5 ’’ symbol
 is interpreted in calculation formulae as an assignment operator . The semantics of
 the expressions used by P&R is thus closely connected to their role in problem
 solving (in this case , computing the value of the variable at the left-hand side of the
 equation) .
 Representation mapping . A representation mapping maps expressions in one
 representation onto expressions in another representation under the assumption that
 the semantics of the expressions is preserved . This implies that the representations
 share an ontology . This type of mapping is similar to the translations provided by
 the ONTOLINGUA software .

 The mapping from the VT domain theory onto expressions in the parametric-
 design domain model is largely a representation mapping : the CML ontology only
 dif fers marginally from the Ontolingua one . Only with respect to the additional
 distinction made between component and component-model the , transformation is
 of the ontology-mapping type .

 The VT implementation that we constructed is an example of how multi-level
 ontologies and the dif ferent types of mappings enable knowledge reuse . Figure 15
 shows how the ONTOLINGUA knowledge base for VT was made available in our
 SIADL environment . This process consisted of the following steps .
 Step 1 : Representation mapping Ontolingua S KIF . The starting point is the VT
 domain theory in the ONTOLINGUAform (the file y t - domain .lisp) . This theory is
 translated into the KIF form by the Ontolingua-to-KIFtranslator . KIF was chosen as
 an intermediate representation , because the KIF format is closest to Prolog .
 Step 2 : Representation mapping KIF S Prolog . The file y t - domain .kif is parsed into
 a Prolog-readable file y t - domain .pl . The transformations are mainly
 lexical / syntactical , e . g . handling the dif ferent lexical conventions for symbols / atoms .
 The parser is not a full KIF-to-Prolog parser : it handles only the sub-set of KIF used
 in the VT application .

 A COMMONKADS SOLUTION 393

VT problem solver

used by

Propose-Revise
operational KBs

representation
mapping

Propose-Revise
domain models

calculations
constraints

fixes
parameter order
initial values

Ontolingua
domain theory
vt-domain.lisp

Ontolingua-to-KIF
 translator

vt-domain.kif

KIF-to-Prolog
parser

vt-domain.pl

mixed
ontology/representation

mappnig parametric design
domain model

ontology
mapping

 F IGURE 15 . Mapping process from the VT domain theory in Ontolingua / KIF to the CommonKADS
 domain models based on the parametric design and P&R ontologies .

 Step 3 : Mixed mapping vt-domain S parametric-design . The file y t - domain .pl is
 subsequently interpreted by a set of mapping rules that rewrite the domain
 expressions into statements of the types defined in the parametric-design ontology .
 These mapping rules handle the dif ferences between the ONTOLINGUA and the
 CML ontology definitions (cf . the discussion in Section 3 . 1) . The result is the
 parametric-design domain model , represented in the default representation of
 our environment .
 Step 4 : Ontology mapping parametric-design S P&R . The task-type oriented on-
 tology in turn is mapped through a second set of rewrite rules onto those constructs
 in the (method-oriented) P&R ontology that specify viewpoints on the parametric-
 design task ontology (see the mapping rules in Figure 4) . This mapping creates a set
 of domain models in the P&R format (see also Figure 5) .

 In addition , this method-oriented ontology defines a number of conceptualizations
 that are specific for this method , and thus have no counterpart in the task-type
 oriented ontology . An example in the VT domain is the fix knowledge . These were
 added manually to the appropriate method-oriented domain models fixes ,
 initial-values and parameter-order .
 Step 5 : Representation mapping P&R S computational technique . The VT ap-
 plication uses computational techniques that may require a specific representation
 optimized towards ef ficient computation (see the next sub-section) . Therefore , an
 additional mapping may be needed that transforms certain domain models into the
 symbol-level representation imposed by a computational technique . An example is
 the representation required by the formula evaluator employed in our application .

 Figure 16 shows three examples of mapping rules used for the transformation of
 the parametric-design domain model into the P&R representation (Step 4) . The first
 two rules specify the mapping from both parameter-slot and component to

 A . TH . SCHREIBER AND P . TERPSTRA 394

 mapping(parameter , % name of construct in destination
 ontology

 parameter(P) , % representation in destination
 ontology

 component(P) , % matching representation in the
 source ontology

 model – ref(has – model(P , –))) . % conditions / actions on source
 ontology construct

 mapping(parameter ,
 parameter(P) ,
 parameter – slot(P)) .

 mapping(calculation ,
 calculation(Expr , Output , Inputs) ,
 constraint – expression(Expr) ,
 (ontology – ref(mathematical – expression , Expr)
 , rewrite(Expr , Output , Inputs))) .

 F IGURE 16 . Three examples of mapping rules for the transformation of the parametric-design domain
 model into the P&R representation . The first rules specify the mapping from parameter-slot and
 component to parameter . The third rule is one of the mapping rules that generates tuples of the

 calculation relation . See the text for explanation of the structure of the mapping rules .

 parameter . The third rule is one of the mapping rules that generates tuples of the
 calculation relation . Each mapping rule has four arguments . The first argument
 indicates the construct in the destination ontology that the mapping rule generates .
 The second argument specifies the representation of this construct in the destination
 domain model . The third argument specifies the representation of expressions in the
 source domain ontology to which the mapping rule applies . The last argument is
 optional , and specifies conditions and / or actions on the source expressions . The
 conditions can be type checks (ontology-ref) or references to the existence of
 other source expressions (model-ref) . The actions are typically rewrite operations ,
 such as the retrieval of the variables involved in calculations (see the third mapping
 rule) . The underlying transformation techniques make use of Prolog unification .

 Table 3 lists the number of mapping rules used in steps 3 – 5 , plus the number of
 ontology constructs involved in these rules .

 5 . 3 . APPLICATION-DESIGN : INFERENCE KNOWLEDGE

 In application design inference procedures need to be specified that define the
 computational realization of inferences specified in the expertise model . An
 inference procedure consist of a set of domain-knowledge retrieval operations and
 calls to computational methods . The relation between inferences and inference
 procedures is not necessarily one-to-one . The knowledge engineer may decide to
 organize the reasoning process dif ferently for ef ficiency reasons . Typically , there is a
 trade-of f between complete structure-preserving design and designing a very ef ficient
 system . One of the purposes of the CommonKADS application design activity is to
 document such trade-of f decisions explicitly .

 In the VT case three design decisions were taken to improve the ef ficiency of the
 propose task .

 (1) In the specification of the inference select-parameter it was indicated that a

 A COMMONKADS SOLUTION 395

 T ABLE 3
 O y er y iew of transformation steps 3 – 5

 Source Destination Type
 No . of

 constructs
 No . of
 rules

 vt-domain (Prolog) S parametric-design Mixed 15 15
 parametric-design S P&R Ontology 3 7
 P&R S formula-evaluator Representation 6 6

 heuristic ordering was to be imposed on the parameter set (the skeletal design) .
 Computing this ordering each time the inference is invoked would , however , be very
 inef ficient . For this reason , a design decision was made to represent the skeletal
 design as an ordered list of parameters , so that a simple select-first method could
 be used by the inference procedure implementing select-parameter . To achieve
 this , an inference procedure order-parameter-set was added to the initialization
 task . This procedure accesses the domain knowledge provided by the static role
 parameter-order .
 (2) The specification of select-parameter mentions that formula’s specifying
 initial values should be evaluated first . Also , both the select-parameter and the
 specify-value inference are reused in the revise task , but using only the domain
 model calculations . For these reasons , both the select and the specify step were
 specialized into two sub-types , each accessing a separate domain model (see
 inference procedures 3 – 6 in Table 4) .
 (3) In the expertise-model specification both select-parameter and specify-
 value retrieve the formula for assigning a value . This is inef ficient , as only the first
 retrieval is necessary . This formula can be passed on to the procedure implementing
 specify-value as an additional input argument .

 This type of small modification is typical for the design process in
 CommonKADS . The additional input is not necessary from an knowledge-level
 point of view : the system would produce exactly the same result without it . It would
 only take more time .

 Table 4 lists the set of inference procedures used in the VT implementation . For
 each inference procedure , the associated computational methods are shown . Most
 procedures invoke one or two simple general-purpose methods (e . g . predicate-
 sort , transitive-closure) or just retrieve domain knowledge through role
 instantiation . The only exception is the inference procedure order-fixes , which
 uses a method specific for P&R .

 5 . 4 . APPLICATION-DESIGN : TASK KNOWLEDGE

 The design decisions with respect to task knowledge are usually not very
 complicated . The pseudo-code used in the task descriptions has to be transformed
 into task procedures . In cases where the set of inference procedures is dif ferent from
 the inferences , the corresponding task procedure has to be updated accordingly . For
 example , the task procedure for the propose task has to take into account that the
 two inference procedures involving initial values are applied before the other two .

 Other detailed specifications that may have to be added mainly concern

 A . TH . SCHREIBER AND P . TERPSTRA 396

 T ABLE 4
 Computational methods used to realize inference procedures (i .e . , the design
 equi y alent of an inference) . Almost all computational methods are simple standard

 algorithm . One inference procedure uses a P&R specific algorithm (order-fixes)

 Inference procedures Procedural description Methods

 order-parameter-set Sort parameter set based on heuristics predicate-sort
 init-assignments Record the requirements as initial

 parameter assignments
 retrieval

 select-initial-
 parameter

 Select the first parameter for which
 an initial value exists

 select-first
 retrieval

 specify-initial-value Assign value to parameter unification
 select-calculation-
 parameter

 Select the first parameter for which a
 calculation exists in which all input
 variables have a value

 select-first
 retrieval
 set-completeness

 specify-calculation-
 value

 Evaluate a formula given the values
 of parameters in the current set of
 assignments

 formula-evaluator

 specify-constraints Find all constraints on a parameter retrieval
 evaluate-constraint Evaluate a constraint , given the cur-

 rent set of assignments
 formula-evaluator

 specify-fixes Find all fixes for a violation retrieval
 order-fixes Construct all possible combinations

 of fixes
 power-set

 Sort the fix combinations predicate-sort
 Compute update dependencies
 between fixes

 P&R-specific

 apply-fix Recompute the value of a parameter formula-evaluator
 parameter-children Find all parameters that are com-

 putationally dependent on input
 parameter

 transitive-closure

 parameter-parents Find all parameters that directly or
 indirectly determine the value of the
 input parameter

 transitive-closure

 constraint-parameters Retrieve all parameters used in a
 constraint

 retrieval

 bookkeeping activities (storing immediate results) . Task procedures are also the
 place where actions specified in the communication model are integrated : I / O
 activities such as reading the requirements , printing trace information , etc . As VT is
 modelled here largely as a ‘‘batch’’ system , this was not an important issue in this
 case .

 5 . 5 . SAMPLE TRACE

 This section lists some fragments of the trace that was generated for the sample
 problem in the VT documentation . The trace information displayed by the system is
 just meant to show the essentials of the reasoning process in terms of the expertise
 model . No ef fort was made to build any sort of nice interface or complete trace
 facility .

 A COMMONKADS SOLUTION 397

 Starting VT
 User datum : car – cab – height 5 96
 User datum : car – capacity – range 5 3000
 . . .
 . . .
 User datum : platform – width 5 70

 Extension sling – model 5 sling – model – m01
 Extension motor – generator – model 5 motor – generator – model – m03
 Extension machine – model 5 machine – model – m01
 Extension machine – groove – model 5 machine – groove – model – m02
 . . .
 . . .
 . . .
 Extension safety – beam – model 5 safety – beam – model – m01
 Extension safety – beam – load – maximum 5 8000
 Extension safety – beam – height 5 9
 Extension safety – beam – constant 5 2 . 250000

 F IGURE 17 . Trace of some user specifications and design extensions .

 The first fragment (see Figure 17) shows parts of the trace of the init task and the
 propose task . No violations were found for the design extensions generated in this
 fragment .

 Figure 18 shows a fragment in which a constraint is violated and needs to be fixed .
 The constraint involved is hoist-cable-traction-ratio . Fifteen fix combina-
 tions were found (for reasons of space only a few are shown in Figure 18) . The
 eighth combination was successful . As most fix operations (e . g . upgrade , increase ,
 decrease) within a fix combination can be repeated several times , one fix
 combination actually defines a space of possible fixes . Propagating the fixes resulted
 in updating 64 parameters of the extended design .

 The system , running on a Sun-Sparc 10 , solved the problem in 271 seconds
 (average speed 27K Lips) .

 6 . Discussion
 The goal of this paper was to provide a good data point for comparison of
 knowledge modelling approaches , with respect to the description of the ontology
 and the problem-solving model . We discuss each of these separately , and also briefly
 address the issues with respect to the system design process and the relation with
 Sisyphus-I .
 (1) Multi - le y el ontologies as landmarks for reuse .
 We have found that the use of dif ferent ontologies at dif ferent levels of generality is
 a powerful and indispensable tool for knowledge sharing and reuse . The description
 in Section 3 and Section 5 give evidence of this . The Ontolingua knowledge base ,
 built at another site , on a dif ferent platform , using a dif ferent representation , could
 be used in our environment to access knowledge types needed by the application .
 This would not have been possible if the ontology of our application had just been
 phrased in pure method-specific terms . In the VT case approximately ninety
 percent of the total amount of knowledge required for the application could be

 A . TH . SCHREIBER AND P . TERPSTRA 398

 Extension hoist – cable – traction – ratio 5 1 . 853457 is violated by c – 48 – 2 :

 machine – groove – model 5 machine – groove – model – m02 5 .

 hoist – cable – traction – ratio 5 , 0 . 006555 * machine – angle – of – contact 1
 0 . 755000

 Found 15 fix combinations .

 Trying fix combination :
 fix : counterweight – to – platform – rear is counterweight – to – platform – rear 2

 0 . 5 Cost : d3

 Trying fix combination :
 fix : compensation – cable – model is upgrade(compensation – cable – model)
 Cost : d6

 fix : car – supplement – weight is car – supplement – weight 1 100 Cost : d4

 Trying fix combination :
 fix : compensation – cable – model is upgrade(compensation – cable – model)
 Cost : d6

 fix : car – supplement – weight is car – supplement – weight 1 100 Cost : d4
 fix : counterweight – to – platform – rear is counterweight – to – platform – rear 2
 0 . 5 Cost : d3

 Applied successful fix
 Fix results
 compensation – cable – model : compensation – cable – model – m07 2 2 .

 compensation – cable – model – m03
 car – supplement – weight : 0 2 2 . 500
 counterweight – to – platform – rear : 5 . 250000 2 2 . 1 . 750000

 Propagated :
 counterweight – to – hoistway – rear : 6 2 2 . 9 . 500000
 machine – angle – of – contact : 152 . 405213 2 2 . 155 . 761553
 machine – sheave – to – deflector – sheave – diagonal : 54 . 886958 2 2 . 53 . 071444
 machine – sheave – to – deflector – sheave – horizontal : 29 . 750000 2 2 .

 26 . 250000
 car – cable – hitch – to – counterweight – cable – hitch : 54 . 750000 2 2 .

 51 . 250000
 ? ? ?
 ? ? ?
 ? ? ?
 cable – load – unbalanced : 78 . 914250 2 2 . 6 . 014250
 compensation – cable – length : 0 2 2 . 993

 F IGURE 18 . A trace fragment of fixing the violation of constraint c – 48 – 2 .

 reused through the structured mapping process . It actually meant a reduction of a
 number of weeks with respect to the ef fort of building the application . †

 In this article a distinction was made between a general ontology for a task such as
 parametric design on the one hand and a more application-specific method-oriented
 ontology on the other hand . Although this distinction proved to be useful for this
 application , the borderline is not as firm as it looks , and it is also not the only
 possible borderline . For example , one could argue that a fix is a general notion that

 † Even taken into account that various bugs were found and repaired in the VT domain theory .

 A COMMONKADS SOLUTION 399

 can be found in any design task . One could also argue that the part-of structures of
 components are not task-type oriented , but represent in fact a more general ,
 task-independent , notion . With respect to method-oriented ontologies it is likely
 that classes of methods share a number of ontological commitments . It is thus
 probably best to view the distinction between task-oriented and method-oriented
 ontologies as a hypothesis about one useful landmark in a spectrum of types of
 ontological commitments (Wielinga et al . , 1993) . Such landmarks can guide the
 reusability and / or shareability of parts of a knowledge base .

 The ontologies described in Section 3 should be seen as a first start . We make no
 claim , for example , that the parametric-design is valid to its full extent . We view the
 process of building reusable ontologies basically as an empirical process . Ontologies
 such as the ones proposed for VT have to be used in practice , and should then be
 refined modified , split into sub-theories , etc . according to the experiences gained . In
 our view , such an empirical process is the only way we can arrive at a useful set of
 reusable ontologies . The VT exercise is just a first step in this direction . To support
 this ontology-building process techniques for describing semantical mappings
 between ontologies and storing ontologies in a library with some ‘‘reusability index’’
 will need to be developed . One approach to ontology indexing is proposed by van
 Heijst , Falasconi , Abu-Hanna , Schreiber and Stefanelli (1995) .
 (2) PSM descriptions .
 The description of the problem-solving model is a fair example of how
 CommonKADS task and inference descriptions are constructed . In CommonKADS
 a PSM is a meta-level notion describing the rationale underlying a task / inference
 decomposition . The method itself is mentioned , but not explicitly represented in the
 description . The methods are considered to be part of the background knowledge of
 the knowledge engineer . We started looking for a KADS / CommonKADS descrip-
 tion of the method , but none were available at that time . As we decided to model
 propose-and-revise as closely as possible , we could not reuse directly the method
 used for the of fice assignment problem . Therefore , we ended up constructing the
 CommonKADS description of P&R more or less from scratch , using
 Chandrasekaran’s (1990) task analysis framework for design as a guideline . We did
 not keep records of this development process , but the ef fort spent was in the order
 of a few weeks . Some details of the revise task only became clear after the
 operationalization of the model in a running system .

 In the mean time , the CommonKADS library book (Breuker & Van de Velde ,
 1994) has become available , so it is worthwhile to look a posteriori whether this
 would have been of help . The description of propose-and-revise in chapter 11 of this
 book would have provided the following structure .

 $ A decomposition of propose into three sub-tasks each of which can be found in
 our VT model : sequence (ordering of the parameter set) , select-unit (select
 parameter) , and propose-assignment (specify value) .

 $ The revise task is decomposed into an evaluate task (corresponds to the VT
 verify task) , and a modify task . For this last task five methods are mentioned ,
 including generic-fixes . No further decompositions are provided .

 It seems fair to conclude that the library would have given a first top-level
 description of P&R , but more or less on the same level as Chandrasekaran’s

 A . TH . SCHREIBER AND P . TERPSTRA 400

 framework . It would not have provided the detailed descriptions presented in
 Section 4 . For detailed PSMs such as the method used in the revise task , it would
 be worthwhile to consider how we can generate useful knowledge-level descriptions
 of the algorithms involved . A description of this part cannot be derived from the
 textual descriptions of this method . Providing support for this step through reusable
 models of optimization algorithms would have been extremely useful here .
 Researchers involved in Sisyphus are in fact already proposing such models (see for
 example the contributions to KAW’95 on this topic) .
 (3) Rationale of a separate system - design acti y ity .
 KADS has been critized for the fact that the knowledge-level analysis does not
 directly produce an operational system . We strongly believe , however , that a
 separate design activity is necessary for any realistic application . Operational
 knowledge-level models require that the operational interpretation of a knowledge-
 level description is fixed in advance . This is in general too strong a constraint , either
 leading to unacceptably inef ficient systems , or to severely limited expressiveness of
 the modelling language . The small adaptations made during operationalization of
 the inferences involved in the propose task are typical design activities that increase
 the ef ficiency of the resulting system drastically . The first CommonKADS system ,
 built by Magni (1993) , was not optimized during design and solved the problem in
 approximately two hours . The few optimizations that were added for the application
 described in this article reduced the time required to solve the problem to about 4%
 of the original figure .

 It would definitely be very undesirable to change the knowledge-level model each
 time such an ef ficiency decision is made . That would be cumbersome from a
 management point of view , but would also lead to a level of detail in the description
 that destroys its knowledge-level character .
 (4) Relation to Sisyphus - I : of fice assignment .
 A comparison between the model presented in this paper and the of fice-assignment
 model is dif ficult . Although we could have decided to solve the of fice-assignment
 problem with a method similar to P&R , we decided at the start of Sisyphus-I to
 model the protocol (featuring Sigi D .) as closely as possible (Schreiber , 1994) . The
 result was a model for the propose task of an allocation problem . An allocation
 problem has characteristics that make it dif ferent from the type of design described
 in this paper . One prime dif ference is the fact that in allocation the domain consist
 of two groups of objects (consumers and providers) . Mapping this on a P&R type
 problem would mean reformulating consumers and providers as parameters and
 values . This is in principle , possible , but it corrupts the neat distinction between the
 two groups . There are a number of commonalities between the two models with
 respect to the propose task . These commonalities are described in the
 CommonKADS library (Breuker & Van de Velde , 1994 ; Ch . 11) , where the
 Sisyohus-I descriptions were used to describe possible decompositions of the
 propose task of P&R .

 Paolo Magni and Marc van Velzen contributed to early versions of the VT model and
 systems . Anjo Anjewierden and Manfred Aben built parsers for CML , thus helping us to
 correct many small errors . We have profited from discussions with Gertjan van Heijst , Bob
 Wielinga , and other colleagues at SWI . We also wish to thank the participants of the Sisyphus
 meetings during KAW’94 and EKAW’94 . We are grateful for the many things we learned
 from this collaborative ef fort of the knowledge engineering community .

 A COMMONKADS SOLUTION 401

 The research reported here was carried out in the course of the KADS-II and the
 KACTUS projects . The KADS-II project was partially funded by the ESPRIT Programme of
 the Commission of the European Communities as project number 5248 . The partners in this
 project were : Cap Gemini Innovation (France) , Cap Programator (Sweden) , Netherlands
 Energy Research Foundation ECN (The Netherlands) , Eritel SA (Spain) , IBM France ,
 Lloyd’s Register (United Kingdom) , Swedish Institute of Computer Science (Sweden) ,
 Siemens AG (Germany) , Touche Rosse MC (United Kingdom) , University of Amsterdam
 (The Netherlands) and Free University of Brussels (Belgium) . The KACTUS project is
 partially funded by the ESPRIT Programme of the Commission of the European
 Communities as project number 8145 . The partners in this project are : Cap Gemini
 Innovation (France) , LABEIN (Spain) , Lloyd’s Register (United Kingdom) , Statoil (Nor-
 way) , CAP Programator (Sweden) , University of Amsterdam (The Netherlands) , University
 of Karlsrule (Germany) , IBERDROLA (Spain) , DELOS (Italy) , FINCANTIERI (Italy) and
 SINTEF (Norway) . This article expresses the opinions of the authors and not necessarily
 those of the consortium .

 References

 A BEN , M . (1995) . Formal methods in knowledge engineering . Ph . D . thesis , University of
 Amsterdam , Faculty of Psychology . ISBN 90-5470-028-9 .

 B ARTH E ̀ LEMY , S ., F ROT , P . & S IMONIN , N . (1988) . Analysis document experiment F 4 . ESPRIT
 Project P1098 , Deliverable E4 . 1 , Cap Sogeti Innovation .

 B REUKER , J . A . & V AN DE V ELDE , W ., Eds (1994) . The CommonKADS Library for Expertise
 Modelling . Amsterdam : IOS Press .

 C HANDRASEKARAN , B . (1988) . Generic tasks as building blocks for knowledge-based systems :
 the diagnosis and routine design examples . The Knowledge Engineering Re y iew , 3 ,
 183 – 210 .

 C HANDRASEKARAN , B . (1990) . Design problem solving : a task analysis . AI Magazine , 11 ,
 59 – 71 .

 M AGNI , P . (1993) . Un ambiente per l ’ acquisizione della conoscenza . Master’s thesis ,
 Universita degli Studi di Pavia , Italy . (In Italian) .

 M ARCUS , S . & M C D ERMOTT , J . (1989) . SALT : A knowledge acquisition language for
 propose-and-revise systems . Artificial Intelligence , 39 , 1 – 38 .

 M ARCUS , S ., S TOUT , J . & M C D ERMOTT , J . (1988) . VT : an expert elevator designer that uses
 knowledge-based backtracking . AI Magazine , Spring , 95 – 111 .

 N ECHES , R ., S WARTOUT , W . R . & M OORE , J . D . (1985) . Enhanced maintenance and
 explanation of expert systems through explicit models of their development . IEEE
 Transactions in Software Engineering , 11 , 1337 – 1351 .

 R UNKEL , J . T ., B IRMINGHAM , W . P . & B ALKANY , A . (1996) . Solving VT by reuse .
 International Journal of Human - Computer Studies , 44 , 403 – 433 .

 S CHREIBER , A . T . (1994) . Applying KADS to the of fice assignment domain . International
 Journal of Human - Computer Studies , 40 , 349 – 377 .

 S CHREIBER , A . T ., W IELINGA , B . J ., A KKERMANS , J . M ., V AN DE V ELDE , W . &
 A NJEWIERDEN , A . (1994a) . CML : the CommonKADS conceptual modelling language . In
 L . S TEELS , A . T . S CHREIBER & W . V AN DE V ELDE , Eds . A Future for Knowledge
 Acquisition . Proceedings of the 8 th European Knowledge Acquisition Workshop
 EKAW ’ 9 4 , y olume 8 6 7 of Lecture Notes in Artificial Intelligence , pp . 1 – 25 . Berlin :
 Springer-Verlag .

 S CHREIBER , A . T ., W IELINGA , B . J . & B REUKER , J . A ., Eds (1993) . KADS : a Principled
 Approach to Knowledge - Based System De y elopment , y olume 1 1 of Knowledge - Based
 Systems Book Series . London : Academic Press .

 S CHREIBER , A . T ., W IELINGA , B . J ., DE H OOG , R ., A KKERMANS , J . M . & V AN DE V ELDE , W .
 (1994 b) . CommonKADS : a comprehensive methodology for KBS development . IEEE
 Expert , 9 , 28 – 37 .

 A . TH . SCHREIBER AND P . TERPSTRA 402

 T ANK , W . (1992) . Modellierung y on Expertise u ̈ ber Konfigurierungsaufgaben . Sankt Augustin ,
 Germany : Infix .

 T ERPSTRA , P . (1994) . An en y ironment for application design . ESPRIT Project 5248 ,
 Deliverable DM7 . 5a KADS-II / M7 / UvA / 072 / 1 . 0 , University of Amsterdam , The
 Netherlands .

 T ERPSTRA , P . & S CHROOTEN , R . (1993) . CommonKADS specific design decisions and their
 notation . Deliverable DM7 . 2b , ESPRIT Project P5248 KADS-II / M7 . 2 / DD / UvA /
 043 / 1 . 1 , University of Amsterdam , The Netherlands and Free University of Brussels ,
 Belgium .

 V AN DE V ELDE , W ., D UURSMA , C ., S CHREIBER , G ., T ERPSTRA , P ., S CHROOTEN , R .,
 G OLFINOPOULOS , V ., O LSSON , O ., S UNDIN , U . & G USTAVSSON , M . (1994) . Design model
 and process . Deliverable DM7 . 1 , ESPRIT Project P5248 KADS-II / M7 / VUB / RR /
 064 / 2 . 1 , Free University Brussels , University of Amsterdam , The Netherlands , Swedish
 Institute for Computer Science , Sweden and Cap Programmator , Brussels , Belgium .

 VAN H ARMELEN , F . & B ALDER , J . R . (1992) . (ML) 2 : a formal language for KADS models of
 expertise . Knowledge Acquisition , 4 .

 VAN H EUST , G ., F ALASCONI , S ., A BU -H ANNA , A ., S CHREIBER , A . T . & S TEFANELLI , M .
 (1995) . A case study in ontology library construction . Artificial Intelligence in Medicine , 7 ,
 227 – 255 .

 W IELINGA , B . J ., V AN DE V ELDE , W ., S CHREIBER , A . T . & A KKERMANS , J . M . (1993) .
 Towards a unification of knowledge modelling approaches . In J . -M . D AVID , J . -P .
 K RIVINE & R . S IMMONS , Eds . Second Generation Expert Systems , pp . 299 – 335 . Berlin :
 Springer-Verlag .

