
The KACTUS View on the ’O’ Word �

Guus Schreiber Bob Wielinga Wouter Jansweijer

University of Amsterdam, Social Science Informatics
Roetersstraat 15, NL-1018 WB Amsterdam, The Netherlands

Tel: +31 20 525 6789; Fax: +31 20 525 6896
E-mail: schreiber@swi.psy.uva.nl; URL: http://www.swi.psy.uva.nl

Abstract

This paper describes the view taking in the ESPRIT project “KACTUS” on the notion of
ontology. KACTUS is an application-driven project concerned with knowledge reuse in
technical doamins. This paper discusses part of the theoretical background of the project. The
use of the definitions of “ontology” and related terms is illustrated through an example in the
VT elevator-design domain.

1 Introduction

The term “ontology” is currently fashionable in the context of knowledge sharing and reuse.
However, no agreement exists on what an ontology is or how it can be used (Guarino & Giaretta,
1995). In this paper we state the view taken by the European ESPRIT projectKACTUS on what
an ontology is and we illustrate through examples one particular way of using ontologies. The
KACTUS project aims at the development of methods and tools for the reuse of knowledge about
technical systems during their life-cycle. The project is application-driven: systems are being
developed in the domains of preliminary-ship design, oil-production processes, and electrical
networks. The paper is organized as follows. In Sec. 2 we define “ontology” and related terms as
perceived inKACTUS. Sec. 3 describes the elevator design (VT) case to illustrate one particular use
of an ontology for the construction of a knowledge base suitable for performing a configuration
task. Sec. 4 summarizes the main conclusions.

2 The Notion of Ontology

2.1 Ontologies and domain theories Gruber (1993) defines an ontology as an “explicit spec-
ification of a conceptualization”. A conceptualization is a set of definitions that allows one to
construct expressions about some application domain. Although this definition has intuitive appeal
it leaves a lot unsaid about what exactly a “conceptualisation” is. Guarino and Giaretta clarify

�The research reported here was carried out in the course of the KACTUS project. This project is partially funded
by the ESPRIT Programme of the Commission of the European Communities as project number 8145. The partners
in the KACTUS project are Cap Gemini Innovation (France), LABEIN (Spain), Lloyd’s Register (United Kingdom),
STATOIL (Norway), Cap Programmator (Sweden),University of Amsterdam (The Netherlands),University of Karlsruhe
(Germany), IBERDROLA (Spain), DELOS (Italy), FINCANTIERI (Italy) and SINTEF (Norway). This paper reflects
the opinions of the authors and not necessarily those of the the consortium.

this notion in a recent paper and conclude that one sense of the word ontology is “a logical theory
which gives an explicit, partial account of a conceptualization” (Guarino & Giaretta, 1995). In
their view a conceptualization accounts for the intended meaning of the terms used in a particular
knowledge base. Since the ontologies that are of practical interest for the knowledge engineering
community, only partially specify the intended semantics, Gruber’s definition should be interpreted
as a “partial specification”.

The view that we illustrate in this paper is largely compatible with the definition proposed by
Guarino and Giaretta with two differences. First, we view the relation between a domain theory
and an ontology as an object-meta relation.1 An ontology is formulated as ameta-level theory
representing a certain viewpoint on a set of possible domain theories. A domain theory contains
a set of expressions that represents a model of some application domain. A second difference is
that we do not restrict ontologies to account for “intended semantics” only. An ontology may
introduce additional meaning beyond the meaning intended by the creator of a domain theory.

In this section we illustrate this definition of “ontology” through a number of simple examples.
Section 3 gives some real-life examples. In Fig. 1 a domain theory is depicted with two sample
expressions. The use of a mathematical language in the example is arbitrary: any language
would have been fine. The domain theory has some application domain as its referent, which is
characterized through an interpretation context2 (e.g. “task-type = design”).

domain theory

application
domain

x + y = z
0 < z < 10

interpretation
context

FIGURE1: Domain theory as a model of some part of an application domain

The reason for defining an ontology as a meta-level viewpoint on a domain theory is that
it allows many-to-many relations between ontologies and domain theories. We can use one
ontology to describe a spectrum of domain theories, each having its own representation. Similarly,
several ontologies can express a viewpoint on one single domain theory, thus allowing for multiple
interpretations (and reuse) of the same theory.

Fig. 2 depicts a sample ontology. This particular ontology contains two knowledge-type
definitions, namelyparameter andconstraint-expression, which together constitute the
conceptualization introduced by this ontology. This conceptualization is expressed as a meta-
level viewpoint on the domain theory of Fig. 1: the mathematical formulae are interpreted as

1we use the term domain theory for that part of the knowledge base that represents knowledge about some state of
affairs in the world.

2We use the term “interpretation context” in a similar spirit as Shahar (1994).

domain theory

application

domain

x + y = z
0 < z < 10

ontology

parameter
constraint-expression

viewpoint

domain theory’
parameter(x)
parameter(y)
parameter(z)
constraint-expression(x + y = z)
constraint-expression(0 < z < 10)

rewritten
as

.

mapping
rules

-

interpretation
context

interpretation
context

FIGURE 2: Ontology as a meta-model that describes a domain theory

constraint expressions; the variables in the formulae asparameters. Only one domain
theory is shown in Fig. 2 on which the ontology is defined as a viewpoint. In practice, there can
be many different theories, for which this viewpoint is expressed. A viewpoint on a particular
domain theory can be operationalized in terms of a set of mapping rules that rewrites a domain
theory into a form dictated by the ontology (seedomain-theory’ in Fig. 2). The latter theory
can be seen as a direct “instantiation” of the ontology, where the relation between ontology and
theory is trivialized and not really “meta-level” any more. Builders of knowledge-based systems
might say at this point: why didn’t you express the domain theory directly in the “instance”
format? However, this is only possible if the domain theory is constructed from scratch each time
an application is built. Typically, in reusing domain theories we need to do at least some rewriting
and/or reinterpretation. An example of a minimal mapping would be to rewrite a domain theory
in KIF ground facts into a Prolog-like formalism.

Thus, theKACTUS view on ontology can be summarized in the following definition:

An ontology is an explicit, partial specification of a conceptualization that is express-
ible as a meta-level viewpoint on a set of possible domain theories for the purpose of
modular design, redesign and reuse of knowledge-intensive system components.

The last part of the definition is included to stress that we view ontologies and domain
theories asengineering products. Ontological engineering is a discipline that enables modular
design, redesign and reuse of knowledge-intensive systems and their components. There is no
requirement that ontologies and domain theories represent faithful descriptions of some part of
the real world. This implies that the notion of ontology as used inKACTUS is different from the

way the term is used in philosophy. Thus, although expressions in a domain theory are assumed
to have a referent in some real or artificial application domain, no formal interpretation function
is required. Instead, we enable a characterization of the referent through the specification of an
interpretation context. This interpretation context typically consists of application domain indices
such as task-type, method-type and domain-type.

2.2 Ontology libraries The ontology in Fig. 2 constitutes a simple conceptualization. In most
realistic applications, the ontologies are much more complex. In Fig. 3 both the domain theory
and the ontology contains additional complexity: components are introduced, and the parameters
are related to these components.

domain theory

application

domain

has-slots(a, {x, y, z})
x + y = z

0 > z > 10

ontology
parameter
constraint-expression

viewpoint

domain theory’
component(a)
parameter(x) has-parameter(a, x)
parameter(y) has-parameter(a, y)
parameter(z) has-parameter(a, z)
constraint-expression(x+y=z)
constraint-expression(0 > z > 10)

rewritten
as

component
parameter
has-parameter

constraint-
expression

ontology-2

ontology-1

component
has-parameter

.

mapping
rules

interpretation
context

-

import

import

interpretation
context

FIGURE3: Import as an example of compositionality of ontologies

When the ontology becomes more complex, the need arises to modularize ontologies. One
key idea behind modularization of ontologies is that the overall ontology of an application (which,
not surprisingly, is called “application ontology” in the literature (Gennariet al., 1994)) is at least
partially constructed from of a library of small-scale ontologies. Although a promising approach,
this also gives rise to a number of research topics that need to be addressed:

� What kind of relations need to be possible between ontological theories?

For example,ONTOLINGUA andCML currently only support “import”.EXPRESS3 also supports
“rename” and “export”. Other operations have to be considered as well (e.g. “parametrisa-
tion”).

� How should a library of ontologies be structured?

Case studies on this issue have been performed (cf. theONTOLINGUA library and the
GAMES-II medical library (van Heijstet al., 1995)).

� What are the primitive ontological categories in a library?

Research in formal ontologies and in philosophy in general has focused on finding universal
ontological categories. Although the results provide an interesting source of ideas, these
efforts clearly have not produced a single top-level categorization. A more pragmatic
approach is to develop such shared definitions for a class of application domains (e.g.
medicine, ships, electrical networks, oil platforms, ...).

� How can one cope with alternative and/or conflicting definitions in ontologies within a
library?

There are multiple ways to conceptualize the world. Assuming that a library will contain
ontologies that have proven useful in practice, libraries need to cope with situations where
multiple, possibly conflicting, definitions are available for the same construct.

� How can we support the selection of relevant ontological theories from the library?

To this end we need some sort of indexing schema of ontologies. An indexing scheme that
has been proposed in previous publications (Wielinga & Schreiber, 1994) is to characterize
the interpretation context in which an ontology can be used through three dimensions:

– Task type: e.g. diagnosis, prediction, assessment, design, planning, etc.

– Problem-solving method: e.g. propose-and-revise, skeletal planning, abductive diag-
nosis.

– Domain-model type: e.g. structural model, functional model, behavioral model, causal
model.

– Domain-type: e.g. oil production platform, mid-ships, electrical networks, elevators.

2.3 Leveling of Ontologies Ontologies can also have a recursive structure, meaning that an
ontology expresses a viewpoint on another ontology. Such a viewpoint entails a reformulation
and/or reinterpretation of the other ontology. The VT case study (see the next section) gives
a good example of such a leveling of ontologies, and shows how this can support reuse. This
layered organization is depicted graphically in Fig. 4. The figure shows a second ontology
that expresses a viewpoint on part of the ontology shown previously. The knowledge type
constraint-expression is split into two sub-types, namelycalculation andconstraint.
This viewpoint can be operationalized through a second set of mapping rules that enables a
partial rewrite ofdomain-theory’ to domain-theory’’. The latter theory has a different

3It is the explicit purpose of the KACTUS to be able to support multiple ontology specification languages. Currently,
the project is investigating an integrated use ofONTOLINGUA, CML (the CommonKADS expertise model notation) and
EXPRESS(a language used for sharing CAD/CAM data).

interpretation context. In this way the closely-related termsconstraint-expression and
constraint are associated with different context-specific semantics.

domain theory

application

domain

x + y = z
0 > z > 10

ontology
parameter
constraint-
 expression

viewpoint

domain theory’
rewritten

as

ontology’

calculation
constraint

domain theory’’

calculation(x + y = z)
constraint(0 > z > 10)

partially
rewritten

as

parameter(x),
parameter(y)
parameter(z)
constraint-expression(x + y = z)
constraint-expression(0 > z > 10)

interpretation
context

.

.

 - -

interpretation
context

mapping
rules

mapping
rules

interpretation
context

viewpoint

FIGURE4: Leveling of ontologies: one ontology as a meta-model of another ontology

This multi-level organization raises research questions such as the required expressivity of the
mapping formalisms for expressing viewpointsbetween ontologies. At least two different mapping
operations can be identified. The first one is the mapping of the vocabulary of one ontology onto
the vocabulary of the other ontology without a change in the semantics of the expressions. The
second one entails a change in the semantics of the ontology.

The first type of mapping will occur frequently. The vocabulary used by ontologies can be
different while conveying the same meaning (i.e. boat in one ontology can be mapped onship
in another ontology if they refer to the same type of objects in the universe of discourse). In this
case the mapping formalism expresses an identity relation. This type of mappings is important
for the rewriting of a knowledge base in one formalism (and described by one ontology) in
another representional formalism (described by another ontology). The mappings have the effect
of representation mappings.

The second type of mapping occurs when we provide an interpretation of an underlying
ontology. Sometimes this interpretation can be expressed in an identity relation as well. An
example is the mapping of the conceptvariable in a mathematical-formula ontology on

the conceptparameter in a state ontology. A slightly different case of this mapping occurs
when we identifyroles for ontology expressions in a problem solving environment. A problem-
solving task has an ontology of it’s input and output roles which needs to be mapped onto the
ontology that describes the domain of the application (for instance, the mapping of the task-notion
of hypothesis onto a domain notion ofstate).

Often, however, this type of mapping provides a more specific interpretation of an ontology and
introduces additional commitments. This is what happened in the mapping examples presented
in Fig. 4 where the “=” symbol is interpreted as an assignment operator. Such a change in the
semantics of expressions in an ontology also occurs when we subsume (part of) a domain specific
ontology under a high level ontology (e.g. by connecting an ontology about an electrical network
with a high-level ontology aboutcomponents andconnecting-components) from a library).
We will need an expressive mappings formalism for this semantical type of mappings.

3 Example of Ontology Use: The VT Case

Background The V(ertical)T(ransportation) problem is concerned with the the routine design of elevators. The
VT example has been used by the knowledge engineering community as a testbed in the so-called Sisyphus experiment
(Schreiber & Birmingham, 1994). In this context an Ontolingua ontology and domain theory4 were developed for this
domain. The description of the VT example in this section represents a simplification of the description given in the
COMMONKADS Sisyphus contribution (Schreiber & Terpstra, 1995).

3.1 VT ontologies We distinguished two ontologies that describe the domain knowledge re-
quired for solving the VT parametric design problem: theparametric-design ontology and the
propose-and-revise ontology.

Parametric-design ontology This ontology describes a number of basic conceptualizations
that are typical for parametric-design problems. The three central constructs introduced by this
ontology are:

1. component: a part of the artefact to be designed, e.g. “platform”, “counter-weight”. The
termcomponent-model is used to refer to a particular component type (e.g. “platform-type
4B”).

2. parameter-slot: a characteristic of acomponent to which a value is assigned during
the design process. An example would be the weight or the length of a component.

3. constraint-expression: this term refers to formulae that describe (logical/numerical)
dependencies between parameter-slot values.

This ontology is used in VT as a so-called “task-type oriented” ontology: the ontology describes
the general ontological commitments required in the context of the parametric-design task. It is
assumed not to be biased towards a particularmethod for solving a parametric design problem.

Propose-and-Revise ontology Propose-&-Revise (P&R) (Marcuset al., 1988) is a method used
by the VT system to solve the parametric-design problem. The P&R ontology can be seen as a
method-oriented ontology describing ontological commitments specific for the method selected to
solve a parametric design task. The P&R ontology is thus more specific (application-dependent)
than the parametric-design ontology.

4http://www-ksl.stanford.edu/knowledge-sharing/README.html

It turns out that the P&R ontology can partially be described as a meta-level viewpoint on the
parametric design ontology. The main constructs in this part of the P&R ontology are:

Parameters P&R assumes that a design is represented as a flat set of parameters. This means
that components for which during design a component model has to be selected need to be
reformulated as parameters. Parameter slots are also represented as parameters.

Calculations and constraints The P&R method partitions the set of constraint expressions into
two sub-sets that each play a different role in the reasoning process:calculations

and constraints. Calculations contain amathematical-expression: a formula
that produces a value for a parameter. Constraints contain alogical-expression that
evaluates to either true or false.

The two sub-sets correspond to differentroles that these domain-knowledge fragments play
in the problem-solving process dictated by P&R. Calculations are only used to derive design
extensions. The constraints are used to verify the design.

In this way, the P&R ontology defines its own interpretation of terms. For example, the
term “constraint” in the P&R ontology has a much more restricted meaning than “constraint
expression” in the parametric-design ontology. The ontological levels can be seen asattributing
context-specific semantics to domain knowledge elements. This is in contrast with the traditional
logicist’s view of model-theoretic semantics, which implies a description of semantics at one level.

3.2 Sharing the VT domain theory In the situation where a KBS is built from scratch it is
possible to define one ontology, and view the actual knowledge base as a pureinstantiation of
that ontology. In the light of efforts to share and/or reuse knowledge bases and ontologies, this
approach turns out to be insufficient. For example, in the VT domain there was an existing domain
theory with its own ontology, specified inONTOLINGUA. We were able to rewrite the domain
expressions in this ontology by a set of mapping rules into statements of the types defined in the
parametric-design ontology.

component

fixed-model-value

fixed-component-value

constraint-expression

parameter-slot

28

253

365

242

10

parameter

calculation

constraint

280

88

529

27

253

88

277
242

10

Parametric design
ontology P&R ontology

#expressions

#expressions

FIGURE5: Overview of the transformation of expressions in the parametric-design ontology to the P&R ontology. The
figures indicate the number of expressions involved. It can be seen that constraint expressions are split into two sub-sets.
Only 88 constraint expressions are used as real “constraints”. Components are transformed into parameters, if they
have associated component models (this is true for all components but one). See (Schreiber & Terpstra, 1995) for more
details about the transformation process

Subsequently we have specified a set of ontology mappings that define how the P&R viewpoint
on the parametric design ontology can be realized. The mapping is a partial one: not all constructs

in the parametric design ontology are mapped onto constructs in the P&R ontology. The mappings
were used in the VT implementation to reuse the VT domain theory within our application. Fig. 5
shows the most important results of the transformation of expressions in the parametric-design
ontology to expressions in the P&R ontology. It shows, for instance, that in the P&R ontology
only a subset of the domain costructs in the parametric-design ontology are “real” constraints;
the others are used to compute values. The details of this transformation process are described
elsewhere (Schreiberet al., 1994; Schreiber & Terpstra, 1995).

4 Conclusions

In this paper we have developed the notion of ontology as a meta-level theory about a set of
domain knowledge statements. This view on ontologies is in many respects compatible with the
recent definition given in (Guarino & Giaretta, 1995). The advantage of choosing the meta-level
for defining the ontology is that the ontology itself can be formulated as a first-order theory, rather
than as a modal theory as is done in (Guarinoet al., 1994). The mapping rules between the
object and meta-level terms provide the second order aspects of the ontology. Our approach does
not commit to a particular semantic framework in which an ontology is constructed. Rather we
propose that the ontology can not only represent aspects of the intended semantics of the domain
theory, but that new semantics can be added to a domain theory through ontology mappings. Such
additional meaning may be necessary to provide a problem solver with the required knowledge to
solve a problem.

The VT example showed how ontology mappings can be applied in sharing knowledge bases.
The Ontolingua domain theory, built at another site, on a different platform, using a different
representation, could be used within our framework to access the knowledge types defined in
the task-type oriented ontology. In the VT case approx. 90% of the total amount of knowledge
required for the application could be reused in this way. It actually meant a reduction of a number
of weeks with respect to the effort of building the application.5

The use of ontologies is not restricted to the construction of task-oriented domain theories.
Many operations on domain theories can be performed using the notion of reformulation through
ontologies. For example general concepts from a library of general ontologies can be combined
to create ontologies and knowledge bases for specific application domains. New interpretations
of a data or knowledge base can be generated using the techniques described in this paper. This
way of reformulation and reinterpretation of existing knowledge will-we believe- be an important
tool for knowledge sharing and reuse.

Acknowledgements

This paper has been extracted from the KACTUS project deliverable DO1b.1 “Framework and
Formalism for Expressing Ontologies”. It is the result of a series of discussions to which many
participants in KACTUS contributed. Helpful comments were received from Anjo Anjewierden,
Philippe Gobinet, Frank van Harmelen, Gertjan van Heijst, Rob Martil and Erling Woods. Peter
Terpstra contributed to the devlopment of the VT example.

5Even taken into account that various bugs were found and repaired in the VT knowledge base.

References

GENNARI, J., TU, S., ROTENFLUH, T., & MUSEN, M. (1994). Mapping domains to methods in support of reuse.
International Journal of Human-Computer Studies, 41:399–424.

GRUBER, T. (1993). A translation approach to portable ontology specifications.Knowledge Acquisition, 5:199–220.
GUARINO, N., CARRARA, M., & GIARETTA, P. (1994). Formalizing ontological commitments. InProceedings AAAI’94,

Seattle. Morgan Kaufmann.
GUARINO, N. & GIARETTA, P. (1995). Ontologies and knowledge bases: Towards a terminological clarification. Paper

to be presented at the KB&KS’95 Conference, University of Tente, The Netherlnads.
MARCUS, S., STOUT, J., & MCDERMOTT, J. (1988). VT: An expert elevator designer that uses knowledge-based

backtracking.AI Magazine, Spring:95–111.
SCHREIBER, A. T. & BIRMINGHAM , W. P., editors (1994).Proceedings of the 8th Banff Knowledge Acquisition for

Knowledge-Based Systems Workshop. Volume 3: Sisyphus II – VT Elevator Design Problem, Calgary, Alberta,
Canada. SRDG Publications, University of Calgary.

SCHREIBER, A. T. & TERPSTRA, P. (1995). Sisyohus-VT: A CommonKADS solution. Technical report, esprit project
8145 kactus, University of Amsterdam. Submitted for publication.

SCHREIBER, A. T., TERPSTRA, P., MAGNI, P., & VAN VELZEN, M. (1994). Analysing and implementing VT using
COMMON-KADS. In Schreiber, A. T. & Birmingham, W. P., editors,Proceedings of the 8th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop. Volume 3: Sisyphus II – VT Elevator Design Problem, pages
44–1 – 44–29, Alberta, Canada. SRDG Publications, University of Calgary.

SHAHAR, Y. (1994). A Knowledge-Based Method for Temporal Abstraction of Clinical Data. PhD thesis, Stanford
University, Medical Information Sciences.

VAN HEIJST, G., FALASCONI, S., ABU-HANNA, A., SCHREIBER, A. T., & STEFANELLI, M. (1995). A case study in
ontology library construction.Artificual Intelligence in Medicine. Forthcoming.

WIELINGA, B. J. & SCHREIBER, A. T. (1994). Conceptual modelling of large reusable knowledge bases. In von Luck,
K. & Marburger, H., editors,Management and Processing of Complex Data Structures, volume 777 ofLecture
Notes in Computer Science, pages 181–200, Berlin, Germany. Springer Verlag.

