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W H E N  THE RESEARCH THAT 

led to CommonKADS was conceived as part 

of the European Esprit program in 1983, the 

AI community as a whole showed little inter- 

est in methodological issues. At the time, the 

prevailing paradigm for building knowledge- 

based systems was rapid prototyping using 

special purpose hard- and software, such as 

LISP machines, expert system shells, and so 

on. Since then, however, many developers 

have realized that a structured development 

approach is just as necessary in knowledge- 

based systems as it is in conventional software 

projects. This structured development ap- 

proach is the aim of CommonKADS. 

Traditionally, knowledge engineering was 

viewed as a process of “extracting” knowl- 

edge from a human expert and transferring 

it to the machine in computational form. 

Today, knowledge engineering is approached 

as a modeling activity. In the CommonKADS 

methodology, KBS development entails con- 

structing a set of engineering models of prob- 

lem solving behavior in its concrete organi- 

zation and application context. This 

modeling concerns not only expert knowl- 

edge, but also the various characteristics of 

how that knowledge is embedded and used 

in the organizational environment. The dif- 

ferent models are a means of capturing the 

different sources and types of requirements 

that play a role in realistic applications. A 

THE AM OF COMMONMDS IS TO FILL THE 

NEED FOR A STRUCTURED METHODOLOGY FOR 

ms PROJECTS BY CONSTRUCTlNG A SET OF 

E N G l ” G  MODELS BUZLT W T H  THE 

ORGANlZATlON AND THE APPLlCATlON lN MIND. 

KBS, then, is a computational realization as- 

sociated with a collection of these models. 

Figure 1 summarizes the suite of models 

involved in a ComrnonKADS project. A cen- 

tral model in the CommonKADS methodol- 

ogy is the expertise model, which models the 

problem solving behavior of an agent in 

terms of the knowledge that is applied to per- 

form a certain task. Other models capture rel- 

evant aspects of reality, such as the task sup- 

ported by an application; the organizational 

context; the distribution of tasks over differ- 

ent agents; the agents’ capabilities and com- 

munication; and the computational system 

design of the KBS. These are engineering- 

type models and serve engineering purposes. 

The models are considered not as “steps 

along the way,” but as independent products 

in their own right that play an important role 

during the life cycle of the KBS. 

Here, we give a brief overview of the Com- 
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monKADS methodology, paying special at- 

tention to the expertise modeling - an aspect 

of KBS development that distinguishes it 

from other types of software development. 

We illustrate the CommonKADS approach 

by showing how aspects of the VT system’ 

for elevator design would be modeled (see 

sidebar, “The VT System” for background). 

Project management 
principles 

In CommonKADS, project management 

and development activities are separated. Pro- 

ject management is represented by a project 

management activity model that interacts with 

the development work through model states 

attached to the CommonKADS models. The 

development process proceeds in a cyclic, risk- 

driven way similar to Boehm’s spiral model? 
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The VT system 

Whenever possible, parallel development 

The VT system was originally developed 

for the Westinghouse company to support 

the routine design of elevators. The system 

was developed because processing standard 

design took too much time, and sales peo- 

ple wanted to serve customers with simple 

design problems more quickly. 

At the time of development, a number of 

software tools were available, such as a data- 

base of elevator components and specialized 

tools for calculating particular formulas. We 

selected the VT domain because it is well- 

known and is used for comparisons in the 

knowledge engineering community.’ 

References 
1 .  G. Yost, “Configuring Elevator Systems,” 

tech. repoIt, Digital Equipment Corpora- 

tion, Marlboro, Mass., 1992. 
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Figure 1 The (ommonKADS suite of models The lines indicate direct dependencies between elements of the models. 

of models is encouraged. Models must be 

maintained over the life cycle of the product. 

For each project a specialized “life cycle” 

can be configured depending on specific pro- 

ject objectives and risks. Finally, control of 

quality and progress is integrated through 

regular checking of model states that must 

be reached in a cycle. 

Figure 2 gives a stylized representation of 

how project management and development 

work are connected through model states. At 

the start of a management cycle, objectives 

for the cycle are defined, and associated risks 

are identified. From these objectives and 

risks, a set of model states is derived that 

must be realized within the cycle. These tar- 

get model states are projected onto develop- 

ment activities that should result in “filling” 

elements of the CommonKADS models. 

In Figure 2, the target state (validation of 

the problem description in the organization 

model) leads to the exploration of a number 

of additional states that the target state de- 

pends on (such as a description of the struc- 

ture of the organization). These information 

dependencies are depicted as dashed lines in 

the figure. CommonKADS provides exten- 

sive background information on such model 

state dependencies. At the end of each de- 

velopment cycle, a check is performed on the 

quality of the results. The project manager 

then reviews the results achieved in light of 

the overall objectives and risks. 

A CommonKADS project usually consists 

of many cycles, with the actual number de- 

pending on the planning horizon and the 

identification of new objectives and risks. 

U 
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Figure 2. Example management cycle with assaciated development activities. Solid lines indicate seqGGGj of aclivi- 
ties. Dashed lines describe information dependencies between development activities. OM = organization model; TM = 
task model. 

Steps within a cycle can be repeated many 

times. The CommonKADS model set plays 

a pivotal role in this process. It provides a 

comprehensive and organized collection of 

aspects that can be relevant in a KBS project. 

However, this does not mean that in an ac- 

tual project all models have to be fully de- 

veloped; only those model components and 

states that bear on the project objectives and 

risks are selected. This allows for a parsimo- 

nious approach whenever necessary. 

Modeling the KBS 
environment 

Any information system has to function in 

the context of the overall organization. Infor- 

mation and knowledge systems are minor 

components within an organization’s business 

processes. A KBS is only one agent among 

many - human and nonhuman - and car- 

ries out only a fraction of the organization’s 

tasks. As a result, it is essential to keep track 
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of the overall environment in which the KBS 

has to operate. Many KBS failures have re- 

sulted from the lack of concem for social and 

organizational factors. Yet, many system de- 

velopment methods still focus on the techni- 

cal aspects only, and provide little support for 

the analysis of the organizational elements that 

determine success or failure. 

The CommonKADS model set provides 

four models that are specifically geared to 

modeling the organizational environment of 

a KBS: the organization, task, agent, and 

communication models. 

The organization model supports the 

analysis of the major features of an organi- 

zation to discover problems and opportuni- 

ties for KBS development, as well as possi- 

ble effects a KBS could have when fielded. 

A template that defines object and relation 

types is associated with each model in the 

model set (see Figure 3). The different com- 

ponents and relations in Figure 3 constitute 

topics to explore in this process and “stores” 

for the information obtained. 

For example, an organizational analysis of 

the VT elevator design domain could result in 

the following (simplified) descriptions of or- 

ganization model components. 

Function: The central organizational 

function under consideration is design. 

Structure: Currently, three departments 

are carrying out design activities. 

Computing resources: A database of ele- 

vator components and some specialized 

computational tools are available. 

Current problems: First, the design lead 

time (currently three weeks) is too long. 

Second, communication between the 

three involved departments is cumber- 

some and time consuming. 

Solution: First, a separate group for solv- 

ing standard design problems will be 

formed, recruiting members from the ex- 

isting departments. Second, the three (re- 

duced) departments will act as expert 

groups for special, nonstandard designs. 

Third, the new group will act as the liai- 

son with the sales department, and will 

be supported by a new computational 

tool: a KBS. 

Clearly, this solution affects the organiza- 

tion. Effectively, the design function is di- 

vided into two new subfunctions - standard 

and nonstandard design. The organization 

structure is adapted accordingly. The KBS 

forms an addition to the computing resources 

of the organization and should fit into the cur- 

rent infrastructure. The intended organiza- 

tional changes will also lead to changes in 

other aspects, including the distribution of 

knowledge. Separate variants of the organi- 

zation model could model both the old and 

new situations. 

The task model describes, at a general 

level, the tasks that are performed or will be 

performed in the organization where the ex- 

pert system will be installed. The tasks it cov- 

ers are those that help realize an organiza- 

tional function. The task model is represented 

as a hierarchy of tasks. In addition, aspects 

like inputs and outputs of tasks, task features, 

and task requirements can be modeled. The 

task model also specifies the distribution of 

tasks over agents. 

An agent is an executor of a task. It can be 

human, computer software, or any other “en- 

tity” capable of executing a task. In the agent 
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model, the capabilities of each agent are de- 

scribed. The model can also be used to rep- 

resent constraints on an agent, such as norms, 

preferences, and permissions that apply to 

the agent. For example, a constraint might be 

an organizational rule: A specific decision- 

making task should not be performed by a 

computer. Often, more agents are involved 

in a task than just a user and a KBS. In the 

VT case, for example, there is a database of 

elevator components. 

Because several agents are usually in- 

volved in a task, it is important to model the 

communication between agents. This is the 

purpose of the CommonKADS communica- 

tion model. The transactions here are mod- 

eled at a level that is still independent of a 

computational realization. 

Figure 4 illustrates part of the task model 

for the VT application. The figure shows sev- 

eral agents (five departments, the KBS, and 

a database) in relation to several tasks. In the 

new situation, the liaison department handles 

standard designs with support from the KBS. 

Liaisons give nonstandard designs to spe- 

cialized departments, and the design output 

is routed back to the sales group. 

Using these models, a developer can build 

a project-specific picture of the social con- 

text in which a KBS must operate. The orga- 

nization model supplies the main high-level 

aspects of the organizational environment, 

while the task model focuses on a subset of 

tasks directly related to the problem to be 

solved. These tasks are allocated to agents 

characterized through the agent model. In- 

formation-exchange acts between agents are 

detailed in the communication model. Rea- 

soning capabilities required for tasks can be 

analyzed with the aid of the expertise model 

explained below. Together, the expertise and 

communication specifications form the con- 

ceptual basis for technical system design. 

Modeling expert knowledge 

Expertise modeling is a focus point of 

CommonKADS, and is a specific activity in 

the type of systems we have targeted. The 

first-generation knowledge-based systems 

used one relatively simple inference engine 

working on a knowledge base in a particular 

representational format, usually production 

rules. But such a knowledge base hides im- 

portant properties of the reasoning process 

and knowledge structure in the application 

d ~ m a i n . ~  Certain rules, or parts of rules, ful- 
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C1: leftplatformedgeclefthoistwaywall = 

openinghoistwayleftspec - carreturnleft 

C2: leftplatformedge-lefthoistwaywall >= 8 

C3: counterwtovertravel = 

toplandtobeam - (deflsheavep + counterwtfooth + counterwtbuffblockh 
+ counterwtbuffheight + counterwtrunby + (counterwtframeh - pitdepth)) 

C4: counterwtovertravel >= carrunby + (1.5 * (carbufferstroke + 6 ) )  I 
C5: IF machine-model is-one-of i”machine28”,”machine38”1 

THEN 3 >= noofhoistcables >= 6 

C 6 :  cwt-to-hoistway-rear >= cwt-ubracket-protrusion + 0.75 

C7: IF machine-model = “machinel8” AND elevatorspeed = 200 

THEN machine-efficiency = 0.18 

Figure 5. Domain knowledge fragments in the VI domain. 

till particular roles in the reasoning process 

that remain implicit in such a KBS organi- 

zation. This implicitness of underlying struc- 

tures impairs the acquisition and refinement 

of knowledge for the KBS, as well as ham- 

pering the reuse of the system, its explana- 

tory power, and the assessment of its relation 

with other systems. 

During the eighties, the idea of introduc- 

ing a knowledge-level description was taken 

on in knowledge-engineering research to 

solve these problems4 A knowledge-level 

model of a KBS makes the organization of 

knowledge in the system explicit through 

elaborate knowledge typing. This knowledge 

typing should provide an implementation- 

independent description of the role that var- 

ious knowledge elements play during the sys- 

tem’s problem solving process. A knowl- 

edge-level model should explain how and 

why the system carries out a task in a vocab- 

ulary understandable to users. The model is 

thus an important vehicle for communicat- 

ing about the system, both during develop- 

ment and during system execution. 

With respect to knowledge categories, a 

distinction is often made between domain 

knowledge and control knowledge. Domain 

knowledge is static, and consists of the con- 

cepts, relations, and facts that are needed to 

reason about a certain application domain. 

We divide control knowledge into two cate- 

gories: inference knowledge, which describes 

how to use domain knowledge in elementary 

reasoning steps (inferences); and tusk knowl- 

edge, which describes how to decompose the 

top-level reasoning task, and how to impose 

control on this decomposition. 

Domain knowledge. A CommonKADS de- 

scription of domain knowledge defines both 

the content and the structure of the domain- 

specific knowledge base in a declarative 

form. Figure 5 shows some typical fragments 

of the knowledge base used in the VT do- 

main. The formulas specify dependencies be- 

tween elevator system parameters. (The ex- 

amples were derived from the Ontolingua 

version of the VT knowledge base.5) 

When the formulas are studied in more de- 

tail, it becomes clear that there are in fact two 

types: 

(1) Calculation formulas, which can be 
used to compute the value of a parame- 

ter (C 1, C3, C7); and 

( 2 )  Constraint formulas, which define pa- 
rameter-value restrictions that should 

not be violated (C2, C4-6). 

Such an underlying structure of domain 

knowledge elements is represented in Com- 

monKADS through an ontology. Figure 6 

shows the ontology for the formulas in Fig- 

ure 5 .  The notation is part of the Com- 

monKADS Conceptual Modeling Language 

(CML) (see also the sidebar, “Specification 

formalisms”). In the figure, the diamonds 

represent relation types. The calculation is 

represented as a ternary relation between a 

formula, a set of parameters playing the role 

of inputs (represented by the Da symbol), 

and a single parameter serving as output. The 

constraint relation is modeled as a binary re- 

lation between a formula and the parameter 

involved. Modeling complex expressions 

such as formula types is a typical feature of 

KBS construction. 
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Figure 6 Graphical representation of the structure (”ontology”) underlying the knowledge fragments in Figure 5 
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Inference knowledge. Inference knowledge 

is modeled in CommonKADS in terms of the 

operations on domain knowledge (infer- 

ences) and in terms of roles. A role is a label 

for some class of domain knowledge ele- 

ments that are used in a particular inference 

operation. The label indicates the role these 

elements play in the reasoning process (such 

as “hypothesis”). 

Figure 7 shows two inferences present in 

the VT application. Ovals represent infer- 

ences; rectangles denote data elements ma- 

nipulated by the inference (dynamic roles). 

The double arrow indicates the underlying 

domain knowledge that is used by the infer- 

ence (static roles). In this case, a compute in- 

ference computes a value for a parameter, 

using the calculation formulas in the knowl- 

edge base. This new parameter assignment 

can be used as input for an evaluate infer- 

ence that can produce constraint violations. 

Structures like the one in Figure 7 are 

called inference structures. They show the 

data dependencies between inferences and 

constrain (but do not define) the flow of con- 

trol. Also, the inference knowledge is 

phrased in a domain-independent vocabu- 

lary: No VT-specific terms, such as “eleva- 

tor,” are used. 

The role of inference knowledge is sim- 

ilar to that of inference rules in classical 

logic. In logic, an inference rule describes 

how axioms (domain knowledge) can be 

combined to derive new information. The 

sequence or purpose of the inferences is not 

described in the inference rule, but may be 

part of a mechanism embodied in a theorem 

prover. Inferences in CommonKADS can 

be viewed as generalizations of inference 

rules in logic. The main differences lie in 

the following features of CommonKADS 

inferences: 

they operate on restricted parts of domain 

knowledge; 

they are not necessarily truth preserving; 

and 
they refer to a computational method that 

has a specific purpose in problem solving. 

An inference specified in the inference 

knowledge is assumed to be basic in the 

sense that it is fully defined through its name, 

an input/output specification, and a reference 

to the domain knowledge that it uses. The 

computational way in which the inference is 

carried out is assumed to be irrelevant for the 

purposes of modeling expertise. From the 

viewpoint of the expertise model, no control 

can be exercised on the internal behavior of 

the inference. The inference is only assumed 

to be basic with respect to the expertise 

model. It is very possible that such a basic 

inference is realized in the actual system 

through a complex computational technique. 

Task knowledge. Task knowledge in Com- 

monKADS is modeled as a hierarchy of 

tasks. Figure 8 shows a task decomposition 

for the standard design task based on the pro- 

pose-and-revise method.6 This method re- 

quires that a design be represented as a set of 

parameter assignments (parametric design). 

The leaf nodes in this task hierarchy (such as 

propose and verify) invoke particular infer- 

ences (such as compute and evaluate). 

A specification of a CommonKADS task 

is divided into two parts. The tusk definition 

is a declarative specification of the goal of the 

task, describing what must be achieved. The 

tusk body specifies a procedure, and prescribes 

the activities to accomplish the task. The task 

body describes how the goal can be achieved. 

In Figure. 9, a specification of the top-level 

task for the VT application is shown. The 

task definition defines the overall goal of this 

design task and its I/O. This particular task 

definition requires that the domain knowl- 

edge can be viewed in terms of a set of pa- 

rameters representing the skeletal design, 

and a set of constraints that involve these pa- 

rameters. Design starts off with proposing a 

design extension (a new parameter value). 

This value is checked to see if it introduces 

a constraint violation. If it does, the revise 

task is invoked with the violated constraint 

as input. This process is repeated until all 

parameters in the skeletal design have been 

assigned a value. If for some reason the pro- 

pose task or the revise task fails, the overall 

design task fails. 
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Expertise modeling: support 
and reuse 

violatton 

It is important to consider how to support 

the process of defining the expertise model for 

a particular application. Like most other meth- 

ods, CommonKADS provides this support by 

enabling reusability of previously defined 

model components. The main difference is 

that in CommonKADS, the components are 

metamodels of the domain and control knowl- 

edge descriptions. 

The separation of the domain knowledge 

and control-related knowledge gives rise to 

an important question: What are the depen- 

dencies between the two parts of the model? 

While the so-called interaction problem states 

that control knowledge and domain knowl- 

edge are highly dependent’ -one cannot de- 

fine the domain knowledge without knowing 

what the task is going to be, and vice versa 

- early work on KADS was done under the 

assumption that domain knowledge can be 

formulated independently from the task.8 

Domain metamodels: ontology. There is a 

growing consensus that some interaction be- 

tween the domain knowledge and the task 

must exist, but that different types of interac- 

tion can be distinguished. In CommonKADS, 

this is called the relative interaction hypoth- 

esis -different types of knowledge differ in 

the degree to which they are dependent on the 

nature of the task. In CommonKADS, these 

different knowledge types are explicitly de- 

scribed in a number of ontologies. 

These ontologies are metamodels describ- 

ing the model structure of (part of) the domain 

knowledge. The ontologies can be organized 

in a multilevel structure, where each level cor- 

responds to a particular type of interaction. 

Mappings between the layers represent “view- 

points” on the domain knowledge. Multiple 

mappings of a certain knowledge type can 

exist, representing multiple viewpoints. Figure 

10 shows a graphical representation of on- 

tologies involved in the VT application. The 

bottom shows two fragments in the knowl- 

edge base (taken from Figure 5). 

Several ontologies serve as metamodels of 

the VT knowledge base. The parametric de- 

sign ontology introduces the general notion 

of constraint expression to describe parame- 

ter dependencies (among other definitions 

not shown). This ontology should contain on- 

tological commitments that are required by 

the parametric design task in general, but are 

not necessarily sufficient for the method used 

task parametric-design; 
task-definition 

goal: “find a design that satisfies a set of constraints”; 
input: 

output: 

task-body 
type: composite; 
sub-tasks: init, propose, verify, revise; 
additional-roles: 

skeletal design: “the set of system parameters to which values need to be assigned”; 
requirements: “the set of initial parameterhahe pairs”; 

design: “final set of assigned parameters”; 

extended-design: “current set of assigned parameters”; 
design-extension: “proposed new element of the extended model”; 
violation: “violated constraint”; 

parametric-design(skeleta1-design t requirements + design) = 
control-structure: 

init(requirements + extended-design) 
REPEAT 

propose(skeleta1-design t extended-design --3 design-extension) 
extended-design := design-extension U extended-design 
verify(design-extension t extended-design + violation) 
IF “some violation“ 
THEN revise(extended-design t violation -+ extended-design) 

design := extended-design; 
UNTIL “a value has been assigned to all parameters in the skeletal-design” 

end 

Figure 9. Sample task spetificotion of the top level task for the V i  opplicotion. In the control structure, orrom ore used 
to distinguish input and output. The statements in italics describe actions hose representotionol detoils hove to be de- 
cided during KBS design. 
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Figure 10. Linking domain and inference knowledge through ontdogC thus making their interoction explicit. 

DECEMBER 1994 33 



Table 1. Characterization of the propose-and-revise Conglomerate of methods. 

IASK PSM RESULTING DECOMPOSITION 

design Propose-critique-modify propose, verify, revise 
propose Decomposition into design plan no sobtasks Table 1 characterizes propose-and-revise in 

verify Domain-specific calculations no subtasks terms of the design-task analysis f r a m e ~ o r k . ~  
revise Dependency-directed backtracking find-fixes, apply-fix, propagate-fix The method underlving tou-level decomuo- 

~ 

Specification formalisms 
CommonKADS provides two 

formalisms for the specification of an 

expertise model. The CML formalism 

used here is a highly structured but still 

informal notation. It is used for the ini- 

tial specification, and designed to be 

easily usable by knowledge engineers 

with a CommonKADS background. If 

the domain is well understood, this 

CML specification can be judged to be 

sufficient input for system design. Alter- 

natively, the ML2 formalism can be used 

to construct a formal specification. For 

ML2, a theorem prover is available that 

allows model validation through (partial) 

simulations of the reasoning behavior. 

Tools that support transformations from 

a CML specification to skeleton ML2 

specification are available. 

to carry out the task. Therefore, we can char- 

acterize it as a task-type-oriented ontology. 

The propose-and-revise ontology is shown 

in Figure 6. It describes the structure of the 

domain knowledge in the format required by 

the inferences of the method selected (pro- 

pose-and-revise). 

In Figure 6, constraint and calculation are 

defined as viewpoints on constraint expres- 

sion in the parametric-design ontology. This 

method-oriented viewpoint enables us to par- 

tition the set of constraint expressions into 

two subsets that are each used in a different 

way: The “calculations” are the constraint ex- 

pressions used by the compute inference; the 

“constraints” are used by the evaluate infer- 

ence. In this way, each ontology can define 

its own interpretation of terms. For example, 

the term “constraint” in the propose-and-re- 

vise ontology has a much more restricted 

meaning than “constraint expression” in the 

parametric design ontology. The ontological 

levels attribute context-spec@c semantics to 

domain knowledge elements. This is in con- 

trast with the traditional logicist’s view of 

model-theoretic semantics, which implies a 

description of semantics at one level. 

The elements of the propose and refine on- 

tology are linked to inferences. This creates 

yet another metamodel defining how domain 

knowledge elements are manipulated dynam- 

ically during reasoning. In addition, methods 

often require specific knowledge that is not 

part of a more general ontology such as the 

parametric design ontology. For example, the 

propose-and-revise method requires knowl- 

edge of$xes: knowledge that describes how 

to change parameters when a constraint is vi- 

olated. This additional method-specific 

knowledge is represented as a separate knowl- 

edge base, and has its own ontology. 

By using different ontologies with different 

generality, and by partitioning the knowledge 

base accordingly, we can identify different 

classes of knowledge bases with different 

scope, generality, and reusability. For exam- 

ple, when the distinction between task-type- 

oriented and method-oriented ontologies is 

identified, it is easier to identify parts of the 

knowledge base for reuse in a similar task 

when applying a different method. 

Control knowledge: problem-solving meth- 

ods. We have mentioned the propose-and-re- 

vise method to solve the VT task. However, in 

the task specification in Figure 9 this method 

is never explicitly mentioned. The reason for 

this is that a method is in fact a metalevel no- 

tion that prescribes how a task definition (a 

goal) can be mapped onto a task body (a goal 

satisfaction procedure). Such a method is 

called apmblem solving method (PSM). 

A specification of a PSM is similar to a task 

specification. The main difference lies in the 

additional information about competence and 

acceptance criteria of the PSM. The PSM can 

be selected when a task definition specifies a 

goal that matches the competence of the 

method, provided that the acceptance criteria 

are met. A PSM decomposes a task into sub- 

tasks (such as propose, verify, and revise) or, 

alternatively, provides a direct way to achieve 

a task. A PSM can introduce additional roles 

that serve as place holders for intermediate re- 

sults, and can provide a template for a control 

regime over the subtasks. This information is 

essentially sufficient to create a task body. 

The propose-and-revise method used in 

solving the VT task is in fact a conglomerate 

of methods for solving a design problem. 

, “ I  

sition in propose-and-revise is an instance of 

the class of propose-critique-modify meth- 

ods (although in propose-and-revise there is 

no explicit critique task). 

A KADS library of PSMs developed in 

1987 has proven to be of help to many knowl- 

edge engineers in application development. 

At the minimum it provides useful initial 

ideas for expertise models, and ideally it 

changes the nature of the modeling process 

from a design-from-scratch task into a con- 

figuration-like activity. In the present Com- 

monKADS library,I0 the support has been 

improved by reducing the grain size of li- 

brary elements from wholesale models to a 

broad range of configurable components, and 

by giving better guidance to the actual con- 

struction of an appropriate model. The Com- 

monKADS expertise modeling library cov- 

ers nine problem types: diagnosis, prediction, 

assessment, design, planning, assignment, 

scheduling, configuration, and modeling. 

The PSM specification in the library does 

not provide automatic mechanisms to apply 

a method to a task definition; the PSM spec- 

ification should be viewed as a structured 

way to write down knowledge about prob- 

lem solving. In principle, it is possible to in- 

tegrate the PSMs as an explicit part of the ex- 

pertise model, and allow the system to 

decompose the task dynamically. This ap- 

proach can greatly enhance the flexibility of 

the KBS, allowing it to cope with a wider 

range of problems. It requires, however, ad- 

ditional knowledge about how to achieve 

goals. We call this additional metaknowledge 

strategic knowledge.” It is in fact similar to 

the strategic layer in earlier versions of the 

KADS expertise model.* 

System design 

The models discussed so far capture the 

various types of requirements for the target 

system, in particular the expertise model and 

the communication model. Based on these 

requirements, the CommonKADS design 

model describes the structure of the system 

that needs to be constructed in terms of the 

computational mechanisms, representational 

constructs, and software modules that are re- 

quired to implement the expertise and com- 

munication models. The design model has 

three constituents: 
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Architecture design defines an abstract 

computational machine that provides 

the basic primitives for realizing the ap- 

plication. 

Application design describes how the var- 

ious elements of the expertise model and 

communication model are mapped onto 

the primitive elements of the architecture. 

Platfom design defines the hardware and 

software infrastructure in which the sys- 

tem will be implemented. 

CommonKADS does not prescribe a par- 

ticular design approach, such as object-ori- 

ented or rule-based design. As a general 

rule, realizing a system will be simple and 

transparent if the gap between application 

and architecture specification is small - 

that is, that the expertise and communica- 

tion modeling constructs map easily onto 

computational primitives in the architecture. 

For example, although it is possible in prin- 

ciple to map the expertise model onto a first- 

generation rule-based architecture, such a 

design would lose the distinctions between 

the various types of knowledge. All knowl- 

edge types would be mapped onto the flat 

rule base, reducing maintainability and 

reusability. 

The approach that is favored in Com- 

monKADS is the structure-presenting de- 

sign approach. The basic principle here is 

that distinctions made in the expertise model 

are maintained in the design and the imple- 

mented artifact, while design decisions that 

add information to the expertise model are 

explicitly documented. (Design decisions 

specify computational aspects that are left 

open in the expertise and communication 

models, such as the representational formats, 

computational methods used to compute in- 

ferences, dynamic data storage, and the com- 

munication media.) The advantage of a struc- 

ture-preserving design is that the expertise 

and communication models act as a high- 

level documentation of the implementation, 

and thus provide pointers to elements of the 

code that must be changed if the model spec- 

ifications change. 

The structure-preserving design approach 

predefines a skeletal architecture that pro- 

vides the basic computational mechanisms 

needed to implement the expertise model: 

task execution mechanism, dynamic data 

storage, inference method execution, and ac- 

cess mechanisms for the domain knowl- 

edge.'* To construct the part of the design 

model related to the expertise model, we first 

t 
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Figure 1 1. Modules in the VI system orrhitedure. 

map the elements of the expertise model onto 

elements of the skeletal architecture. Addi- 

tional design decisions are then made to 

specify the precise representation of the do- 

main knowledge, the locus of inference con- 

trol, and so on. Finally, an implementation 

platform is chosen that further constrains the 

design decisions. 

Figure 11 shows the software modules re- 

sulting from the high-level architecture de- 

sign for the VT application, based on the 

structure-preserving principle. White boxes 

represent the modules that are part of the 

skeletal architecture. Boxes with lightly 

shaded edges represent the modules that can 

be generated automatically from the exper- 

tise model specification. Together, these 

modules contain all the information present 

in the expertise model: &k and inference de- 

clarations, ontologies, definitions of map- 

pings between ontologies, and domain mod- 

els (the domain knowledge bases). The dark 

boxes are modules that contain specifications 

of additional design decisions, such as those 

with respect to the computational methods 

used. The result is a highly modular design, 

parts of which can be easily reused in other 

applications. 

CommonKADS in perspective 

One of the salient features of Com- 

monKADS is the modeling approach. The 

suite of models not only acts as a means to 

Gt'ireric architecture 

Module dvectly 
generated froin 
CML description 

Module specifying 
design decisions 

niOdUle 

carve up the world in manageable pieces, but 

it also supports the selection of those aspects 

that are relevant and potentially amenable to 

risks in the development process. The tem- 

plates for each of the models form the core of 

the methodology. The notion of model states, 

along with the decoupling of project man- 

agement and planning from the development 

process, also provide mechanisms for flexi- 

ble project configuration and control. 

The knowledge modeling approach in ear- 

lier versions of KADS has matured in Com- 

monKADS, and now includes extensive fa- 

cilities for modeling of domain knowledge. 

This approach has also been brought into 

line with others, such as components of ex- 

pertise, generic tasks, F'rot6gC-11, and SBF. 

The CommonKADS expertise model sup- 

ports the introduction of ontologies as a 

mechanism for generating abstracted de- 

scriptions of the structure and vocabulary of 

the domain knowledge. The ontologies also 

link the domain knowledge to the inference 

knowledge, thus explicating and minimiz- 

ing the interaction between declarative 

knowledge and the task. 

The decomposition of a knowledge sys- 

tem as used in the CommonKADS expertise 

model has similarities with the three view- 

points identified by current software-engi- 

neering approaches: data, functional, and 

control view. Separation of these views sup- 

ports structured analysis and design, as well 

as modularization of the models and systems. 

However, the methods employed in Com- 
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monKADS differ in several ways from con- 

ventional modeling techniques. First, the ex- 

pressiveness of the knowledge modeling for- 

malisms is larger than that of entity-relation 

models or object-oriented analysis tech- 

niques. Second, the functional view (infer- 

ence structure) in CommonKADS is much 

more constrained than in typical data-flow 

modeling techniques: the primitives that re- 

sult from a full, functional decomposition are 

limited to certain sets of standardized oper- 

ations. Finally, CommonKADS differs from 

the more conventional views in the nature of 

the link between domain knowledge (“data”) 

and the inferences (“functions”). Through in- 

troduction of abstraction mechanisms in the 

form of knowledge roles and ontologies, the 

coupling between the data and functional 

views of the model is indirect, and hence 

there exists more potential for reuse of indi- 

vidual components. 

design model does not prescribe a particular 

approach, the structure-preserving design 

was found to be particularly fruitful. Pre- 

serving the structure of the expertise model 

in the system design allows linking between 

the knowledge model and the actual code. 

Such links can be instrumental in explana- 

tion, testing, and maintenance. In addition, 

structure-preserving design provides handles 

for an advanced design-support environment. 

CommonKADS is a good candidate for 

becoming the de facto European standard 

and point of reference for knowledge engi- 

neering methodologies covering a wide 

range of KBS development aspects. Many 

successful projects have been performed with 

CommonKADS, albeit not always with the 

methodology in its present form. Commer- 

cial as well as academic (research-oriented) 

support tools are available for versions of 

CommonKADS. As a framework, Com- 

monKADS has given rise to numerous re- 

search projects, and keeps on doing so. Ideas 

like knowledge-level reflection, formal spec- 

ification, automated code generation, and 

knowledge sharing are being researched 

within the common framework provided by 

CommonKADS. The effects of these explo- 

rations will become more and more visible 

in the future. 
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A Probabilistic Analysis of 
Test Response Compaction 

by Slawomir Pilarski and Tiko Kameda 

T h e  text, containing all original material, presents the most 

fundamental results on aliasing, analyzes counter-based 

schemes, and focuses on aliasing in linear compactors. T h e  

first chapter briefly introduces VLSI circuit testing and 

defines the terminology used throughout the text. T h e  next 

chapter discusses some concepts needed to  link practical 

problems with theory, introduces some common compactors, 

and presents two definitions of aliasing probability. 

T h e  next two chapters present actual analyses of aliasing, 

first focusing on aliasing in linear compactors based on 

linear feedback shift registers and then concentrating on 

counter-based compaction. T h e  final chapter concludes 

the analysis and discusses the practical implications of this 

research. 
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