CommonKADS:
A Comprehensive Methodology
for KBS Development

Guus Schreiber, Bob Wielinga, and Robert de Hoog, University of Amsterdam
Hans Akkermans, University of Twente, The Netherlands
Walter Van de Velde, Free University of Brussels

WHEN THE RESEARCH THAT

led to CommonKADS was conceived as part
of the European Esprit program in 1983, the
Al community as a whole showed little inter-
est in methodological issues. At the time, the
prevailing paradigm for building knowledge-
based systems was rapid prototyping using
special purpose hard- and software, such as
LISP machines, expert system shells, and so
on. Since then, however, many developers
have realized that a structured development
approach is just as necessary in knowledge-
based systems as it is in conventional software
projects. This structured development ap-
proach is the aim of CommonKADS.
Traditionally, knowledge engineering was
viewed as a process of “extracting” knowl-
edge from a human expert and transferring
it to the machine in computational form.
Today, knowledge engineering is approached
as a modeling activity. In the CommonKADS
methodology, KBS development entails con-
structing a set of engineering models of prob-
lem solving behavior in its concrete organi-
zation and application context. This
modeling concerns not only expert knowl-
edge, but also the various characteristics of
how that knowledge is embedded and used
in the organizational environment. The dif-
ferent models are a means of capturing the
different sources and types of requirements
that play a role in realistic applications. A

THE am oF CoMmMONKADS IS TO FILL THE
NEED FOR A STRUCTURED METHODOLOGY FOR
KBS PROJECTS BY CONSTRUCTING A SET OF
ENGINEERING MODELS BUILT WITH THE
ORGANIZATION AND THE APPLICATION IN MIND.

KBS, then, is a computational realization as-
sociated with a collection of these models.

Figure 1 summarizes the suite of models
involved in a CommonKADS project. A cen-
tral model in the CommonKADS methodol-
ogy is the expertise model, which models the
problem solving behavior of an agent in
terms of the knowledge that is applied to per-
form a certain task. Other models capture rel-
evant aspects of reality, such as the task sup-
ported by an application; the organizational
context; the distribution of tasks over differ-
ent agents; the agents’ capabilities and com-~
munication; and the computational system
design of the KBS. These are engineering-
type models and serve engineering purposes.
The models are considered not as “steps
along the way,” but as independent products
in their own right that play an important role
during the life cycle of the KBS.

Here, we give a brief overview of the Com-

‘ monKADS methodology, paying special at-
tention to the expertise modeling — an aspect
of KBS development that distinguishes it
from other types of software development.
We illustrate the CommonKADS approach
by showing how aspects of the VT system!
for elevator design would be modeled (see
sidebar, “The VT System” for background).

Project management
principles

In CommonKADS, project management
and development activities are separated. Pro-
ject management is represented by a project
management activity model that interacts with
the development work through model states
attached to the CommonKADS models. The
development process proceeds in a cyclic, risk-
| driven way similar to Boehm’s spiral model.2

m
r

28

0885-9000/94/$4.00 © 1994 IEEE

IEEE EXPERT |

H

]
The VT system

The VT system was originally developed
for the Westinghouse company to support
the routine design of elevators. The system
was developed because processing standard
design took too much time, and sales peo-
ple wanted to serve customers with simple
design problems more quickly.

At the time of development, a number of
software tools were available, such as a data-
base of elevator components and specialized
tools for calculating particular formulas. We
selected the VT domain because it is well-
known and is used for comparisons in the
knowledge engineering community.!

References

1. G.Yost, “Configuring Elevator Systems,”
tech. report, Digital Equipment Corpora-
tion, Marlboro, Mass., 1992.

Whenever possible, parallel development
of models is encouraged. Models must be
maintained over the life cycle of the product.
For each project a specialized “life cycle”
can be configured depending on specific pro-
ject objectives and risks. Finally, control of
quality and progress is integrated through
regular checking of model states that must
be reached in a cycle.

Figure 2 gives a stylized representation of
how project management and development
work are connected through model states. At
the start of a management cycle, objectives
for the cycle are defined, and associated risks
are identified. From these objectives and
risks, a set of model states is derived that
must be realized within the cycle. These tar-
get model states are projected onto develop-
ment activities that should result in “filling”
elements of the CommonKADS models.

In Figure 2, the target state (validation of
the problem description in the organization
model) leads to the exploration of a number
of additional states that the target state de-
pends on (such as a description of the struc-
ture of the organization). These information
dependencies are depicted as dashed lines in
the figure. CommonKADS provides exten-
sive background information on such model
state dependencies. At the end of each de-
velopment cycle, a check is performed on the
quality of the results. The project manager
then reviews the results achieved in light of
the overall objectives and risks.

A CommonKADS project usually consists
of many cycles, with the actual number de-
pending on the planning horizon and the
identification of new objectives and risks.

Task

 ————]
Qrganization model ¢

Task

Function constituent - [
I

Expertise model | Reas&fﬁg capéEﬁiﬁé? Agent model! ‘

ask mode! L
Task
ingredient
Agent ingredient
Information item
Transaction

Application knowledge

Strategic knowledge

Decomposition
Expertise model

Transfer task
... Transaction

~ Transaction
interaction

Design model |-——— e

Agent
Initiative

_ |Communication model %4‘

Task

Application

Figure | . The CommonKADS suite of models. The lines indicate direct dependenciésigéglé& elements of the models.

Project management

Set objectives
* Understand current situation

Define target model states

Identify risks
* Misfit with company strategy
* Problem description is incomplete
i

Review objectives l

OM: problem description =
validated

r Plan development activities [

L
! Development
!
current modei descriptions —> new mode! descriptions
| Quality OM: process = OM:structure = |
¢ control[™7 OM:problem ="~ OM:problem =, described described

f validated described ™~ i
TM: time load = TM: decompaosition |
described = described !

Figure 2. Exumpleqr’ngt;nngemem cydle with associated development activities. Solid fnes undlgu;;eq;enclng of acivi
fies. Dashed lines describe information dependencies between development acfivifies. OM = organization model; TM =

task model.

| Steps within a cycle can be repeated many
times. The CommonKADS model set plays
a pivotal role in this process. It provides a
comprehensive and organized collection of
aspects that can be relevant in a KBS project.
However, this does not mean that in an ac-
tual project all models have to be fully de-
veloped; only those model components and
states that bear on the project objectives and
risks are selected. This allows for a parsimo-
nious approach whenever necessary.

- Modeling the KBS
environment

Any information system has to function in
the context of the overall organization. Infor-
mation and knowledge systems are minor
components within an organization’s business
processes. A KBS is only one agent among
many — human and nonhuman — and car-
ries out only a fraction of the organization’s
tasks. As a result, it is essential to keep track

DECEMBER 1994

29

organization |
context |

situated in

belongs

Refers to

\ addressed
current to [problems and}- by) by |
problem opportunities | *—@ agent

refers to

have position in

effected Agent model

‘sponsored ’ »
Vg W canactas oo

structure t

[. derived from hol

b can act as '
/ i ;

“possess: -applied by

realized in i derived L
i power | -
jtrom knowledge || COMPuUting
applied _ resources
b

i

process used in other
resources
-

requires
T
function oy
defines- ~ serves part O/f,///,/

‘(

Task model

Figure 3. Template of the (ommonKADS;orgnnizaﬁon model.

Liaison
dept.

Dept. Dept. !
A) B \ X
RO |

non-standard
design task

1] d N
d;?ggigk liaison task

! T
Cg;gs::em sales task

l.. [Sales i
dept. l

Figure 4. A fragment of the CommonKADS task model for the VT domain. Gircles denote agents; boxes correspond fo
tasks. Solid arrows indicate exchange of information between tasks; dashed arrows assign agents to fasks. If the KBS is
joirtly assigned with other agents to a task (as is the case for standard design), the communication mode! will need to
contain a specification of how the agents cooperate in performing the task.

of the overall environment in which the KBS
has to operate. Many KBS failures have re-
sulted from the lack of concern for social and
organizational factors. Yet, many system de-
velopment methods still focus on the techni-
cal aspects only, and provide little support for
the analysis of the organizational elements that
determine success or failure.

The CommonKADS model set provides
four models that are specifically geared to

modeling the organizational environment of
a KBS: the organization, task, agent, and
communication models.

The organization model supports the
analysis of the major features of an organi-
zation to discover problems and opportuni-
ties for KBS development, as well as possi-
ble effects a KBS could have when fielded.
A template that defines object and relation
types is associated with each model in the

model set (see Figure 3). The different com-
ponents and relations in Figure 3 constitute
topics to explore in this process and “stores”
for the information obtained.

For example, an organizational analysis of
the VT elevator design domain could result in
the following (simplified) descriptions of or-
ganization model components.

e Function: The central organizational
function under consideration is design.

e Structure: Currently, three departments
are carrying out design activities.

o Computing resources: A database of ele-
vator components and some specialized
computational tools are available.

e Current problems: First, the design lead
time (currently three weeks) is too long.
Second, communication between the
three involved departments is cumber-
some and time consuming.

o Solution: First, a separate group for solv-
ing standard design problems will be
formed, recruiting members from the ex-
isting departments. Second, the three (re-
duced) departments will act as expert
groups for special, nonstandard designs.
Third, the new group will act as the liai-
son with the sales department, and will
be supported by a new computational
tool: a KBS.

Clearly, this solution affects the organiza-
tion. Effectively, the design function is di-
vided into two new subfunctions — standard
and nonstandard design. The organization
structure is adapted accordingly. The KBS
forms an addition to the computing resources
of the organization and should fit into the cur-
rent infrastructure. The intended organiza-
tional changes will also lead to changes in
other aspects, including the distribution of
knowledge. Separate variants of the organi-
zation model could model both the old and
new situations.

The task model describes, at a general
level, the tasks that are performed or will be
performed in the organization where the ex-
pert system will be installed. The tasks it cov-
ers are those that help realize an organiza-
tional function. The task model is represented
as a hierarchy of tasks. In addition, aspects
like inputs and outputs of tasks, task features,
and task requirements can be modeled. The
task model also specifies the distribution of
tasks over agents.

An agent is an executor of a task. It can be
human, computer software, or any other “en-
tity” capable of executing a task. In the agenr

30

|EEE EXPERT

model, the capabilities of each agent are de-
scribed. The model can also be used to rep-
resent constraints on an agent, such as norms,
preferences, and permissions that apply to
the agent. For example, a constraint might be
an organizational rule: A specific decision-
making task should not be performed by a
computer. Often, more agents are involved
in a task than just a user and a KBS. In the
VT case, for example, there is a database of
elevator components.

Because several agents are usually in-
volved in a task, it is important to model the
communication between agents. This is the
purpose of the CommonKADS communica-
tion model. The transactions here are mod-
eled at a level that is still independent of a
computational realization.

Figure 4 illustrates part of the task model
for the VT application. The figure shows sev-
eral agents (five departments, the KBS, and
adatabase) in relation to several tasks. In the
new situation, the liaison department handles
standard designs with support from the KBS.
Liaisons give nonstandard designs to spe-

cialized departments, and the design output !

is routed back to the sales group.

Using these models, a developer can build
a project-specific picture of the social con-
text in which a KBS must operate. The orga-
nization model supplies the main high-level
aspects of the organizational environment,
while the task model focuses on a subset of
tasks directly related to the problem to be
solved. These tasks are allocated to agents
characterized through the agent model. In-
formation-exchange acts between agents are
detailed in the communication model. Rea-
soning capabilities required for tasks can be
analyzed with the aid of the expertise model
explained below. Together, the expertise and
communication specifications form the con-
ceptual basis for technical system design.

Modeling expert knowledge

Expertise modeling is a focus point of
CommonKADS, and is a specific activity in
the type of systems we have targeted. The
first-generation knowledge-based systems

toplandtobeam — (deflsheavep + counterwtfooth + counterwtbuffblockh
+ counterwtbuffheight + counterwtrunby + (counterwtframeh — pitdepth))

Cl: leftplatformedge lefthoistwaywall =
openinghoistwayleftspec — carreturnleft
C2: leftplatformedge_lefthoistwaywall >= 8
C3: counterwtovertravel =
C4: counterwtovertravel >= carrunby + (1.5 * (carbufferstroke +6))
C5: IF machine-model is-one-of {“machine28”,"machine38”}
THEN 3 >= noofhoistcables >= 6
C6: cwt_to_hoistway_rear >= cwt_ubracket_protrusion + 0.75
C7: IF machine-model = “machinel8” AND elevatorspeed = 200
THEN machine efficiency = 0.78

Figure 5. Domain knowledge fragments in the VT domain.

fill particular roles in the reasoning process
that remain implicit in such a KBS organi-
zation. This implicitness of underlying struc-
tures impairs the acquisition and refinement
of knowledge for the KBS, as well as ham-
pering the reuse of the system, its explana-
tory power, and the assessment of its relation
with other systems.

During the eighties, the idea of introduc-

 Domain knowledge. A CommonKADS de-

scription of domain knowledge defines both

| the content and the structure of the domain-

ing a knowledge-level description was taken

on in knowledge-engineering research to
solve these problems.* A knowledge-level
model of a KBS makes the organization of

- knowledge in the system explicit through
i elaborate knowledge typing. This knowledge
. typing should provide an implementation-

independent description of the role that var-

ious knowledge elements play during the sys-

tem’s problem solving process. A knowl-
edge-level model should explain how and
why the system carries out a task in a vocab-
ulary understandable to users. The model is
thus an important vehicle for communicat-
ing about the system, both during develop-
ment and during system execution.

With respect to knowledge categories, a

© distinction is often made between domain

used one relatively simple inference engine

working on a2 knowledge base in a particular
representational format, usually production
rules. But such a knowledge base hides im-
portant properties of the reasoning process
and knowledge structure in the application
domain.? Certain rules, or parts of rules, ful-

knowledge and control knowledge. Domain
knowledge is static, and consists of the con-
cepts, relations, and facts that are needed to

specific knowledge base in a declarative
form. Figure 5 shows some typical fragments
of the knowledge base used in the VT do-
main. The formulas specify dependencies be-
tween elevator system parameters. (The ex-
amples were derived from the Ontolingua
version of the VT knowledge base.’)

When the formulas are studied in more de-
tail, it becomes clear that there are in fact two

types:

(1) Calculation formulas, which can be
used to compute the value of a parame-
ter (C1, C3, C7); and

Constraint formulas, which define pa-
rameter-value restrictions that should
not be violated (C2, C4-6).

2

Such an underlying structure of domain
knowledge elements is represented in Com-
monKADS through an onrology. Figure 6
shows the ontology for the formulas in Fig-
ure 5. The notation is part of the Com-
monKADS Conceptual Modeling Language
(CML) (see also the sidebar, “Specification
formalisms”). In the figure, the diamonds

. represent relation types. The calculation is

reason about a certain application domain.

We divide control knowledge into two cate-
gories: inference knowledge, which describes
how to use domain knowledge in elementary
reasoning steps (inferences); and task knowl-
edge, which describes how to decompose the
top-level reasoning task, and how to impose
control on this decomposition.

represented as a ternary relation between a
formula, a set of parameters playing the role
of inputs (represented by the >< symbol),
and a single parameter serving as output. The
constraint relation is modeled as a binary re-
lation between a formula and the parameter
involved. Modeling complex expressions
such as formula types is a typical feature of
KBS construction.

DECEMBER 1994

31

formula

formula

\\\ output
inputs.”

parameter <]’

parameter

Figure 6. Graphical fepresentutionrﬁm;sitrrruﬁ(rﬁ;e(omology)underlymg the knowledge frugmems in F|gure 5.

i
current i
assignments |
- !
|
N
parameter to parameter)
be assigned assignment evaluate }—f violation

calculation formulas

constraint formulas

Figure 7. Two sample inferences in the VT domain.

I

(o)

[propase

revise

(o)

&pply fix]

Gropagate fix {

* Figure 8. Atask decomposition for design. Tusks are represented as rounded boxes. The ovals represen represenl nt two sample
inferences (part of the inference knowledge) that are invoked by leof tasks.

Inference knowledge. Inference knowledge
is modeled in CommonKADS in terms of the
operations on domain knowledge (infer-
ences) and in terms of roles. A role is a label
for some class of domain knowledge ele-
ments that are used in a particular inference
operation. The label indicates the role these
elements play in the reasoning process (such
as “hypothesis”).

Figure 7 shows two inferences present in
the VT application. Ovals represent infer-
ences; rectangles denote data elements ma-
nipulated by the inference (dynamic roles).
The double arrow indicates the underlying
domain knowledge that is used by the infer-
ence (static roles). In this case, a compute in-
ference computes a value for a parameter,
using the calculation formulas in the knowl-
edge base. This new parameter assignment
can be used as input for an evaluate infer-
ence that can produce constraint violations.

Structures like the one in Figure 7 are

trol. Also, the inference knowledge is
phrased in a domain-independent vocabu-
lary: No VT-specific terms, such as “eleva-
tor,” are used.

The role of inference knowledge is sim-
ilar to that of inference rules in classical
logic. In logic, an inference rule describes
how axioms (domain knowledge) can be
combined to derive new information. The
sequence or purpose of the inferences is not
described in the inference rule, but may be
part of a mechanism embodied in a theorem
prover. Inferences in CommonKADS can
be viewed as generalizations of inference
rules in logic. The main differences lie in
the following features of CommonKADS
inferences:

called inference structures. They show the |
data dependencies between inferences and !
constrain (but do not define) the flow of con-

o they operate on restricted parts of domain
knowledge;

o they are not necessarily truth preserving;
and

o they refer to a computational method that
has a specific purpose in problem solving.

An inference specified in the inference
knowledge is assumed to be basic in the
sense that it is fully defined through its name,
an input/output specification, and a reference
to the domain knowledge that it uses. The
computational way in which the inference is
carried out is assumed to be irrelevant for the
purposes of modeling expertise. From the
viewpoint of the expertise model, no control
can be exercised on the internal behavior of
the inference. The inference is only assumed
to be basic with respect to the expertise
model. It is very possible that such a basic
inference is realized in the actual system
through a complex computational technique.

Task knowledge. Task knowledge in Com-
monKADS is modeled as a hierarchy of
tasks. Figure 8 shows a task decomposition
for the standard design task based on the pro-
pose-and-revise method.® This method re-
quires that a design be represented as a set of
parameter assignments (parametric design).
The leaf nodes in this task hierarchy (such as
propose and verify) invoke particular infer-
ences (such as compute and evaluate).

A specification of a CommonKADS task
is divided into two parts. The task definition
is a declarative specification of the goal of the
task, describing whar must be achieved. The
task body specifies a procedure, and prescribes
the activities to accomplish the task. The task
body describes how the goal can be achieved.

In Figure 9, a specification of the top-level
task for the VT application is shown. The
task definition defines the overall goal of this
design task and its I/O. This particular task
definition requires that the domain knowl-
edge can be viewed in terms of a set of pa-
rameters representing the skeletal design,
and a set of constraints that involve these pa-
rameters. Design starts off with proposing a
design extension (a new parameter value).
This value is checked to see if it introduces
a constraint violation. If it does, the revise
task is invoked with the violated constraint
as input. This process is repeated until all
parameters in the skeletal design have been
assigned a value. If for some reason the pro-

! pose task or the revise task fails, the overall
- design task fails.

32

|EEE EXPERT

Expertise modeling: support
and reuse

It is important to consider how to support
the process of defining the expertise model for
a particular application. Like most other meth-
ods, CommonKADS provides this support by
enabling reusability of previously defined
model components. The main difference is
that in CommonKADS, the components are
metamodels of the domain and control know?1-
edge descriptions.

The separation of the domain knowledge
and control-related knowledge gives rise to
an important question: What are the depen-
dencies between the two parts of the model?
While the so-called interaction problem states
that control knowledge and domain knowl-
edge are highly dependent” — one cannot de-
fine the domain knowledge without knowing
what the task is going to be, and vice versa
— early work on KADS was done under the
assumption that domain knowledge can be
formulated independently from the task.®

Domain metamodels: ontology. There is a
growing consensus that some interaction be-
tween the domain knowledge and the task
must exist, but that different types of interac-
tion can be distinguished. In CommonKADS,
this is called the relative interaction hypoth-
esis — different types of knowledge differ in
the degree to which they are dependent on the
nature of the task. In CommonKADS, these
different knowledge types are explicitly de-
scribed in a number of ontologies.

These ontologies are metamodels describ-
ing the model structure of (part of) the domain
knowledge. The ontologies can be organized
in a multilevel structure, where each level cor-
responds to a particular type of interaction.
Mappings between the layers represent “view-
points” on the domain knowledge. Multiple
mappings of a certain knowledge type can
exist, representing multiple viewpoints. Figure
10 shows a graphical representation of on-
tologies involved in the VT application. The
bottom shows two fragments in the knowl-
edge base (taken from Figure 5).

Several ontologies serve as metamodels of
the VT knowledge base. The parametric de-
sign ontology introduces the general notion
of constraint expression to describe parame-
ter dependencies (among other definitions
not shown). This ontology should contain on-
tological commitments that are required by
the parametric design task in general, but are
not necessarily sufficient for the method used

task parametric-designm,
task-definition
goat: “find a design that satisfies a set of constraints”;
input:
skeletal design: “the set of system parameters to which values need to be assigned”;
requirements: “the set of initial parameter/value pairs”;
output:
design: “final set of assigned parameters”;
task-body
type: composite;
sub-tasks: init, propose, verify, revise;
additional-roles:
extended-design: “current set of assigned parameters”;
design-extension: “proposed new element of the extended model”;
violation: “violated constraint”;
control-structure:
parametric-design(skeletal-design + requirements — design) =
init(requirements — extended-design)
REPEAT
propose(skeletal-design + extended-design — design-extension)
extended-design := design-extension U extended-design
verify(design-extension + extended-design — violation)
IF “some violation”
THEN revise(extended-design + violation — extended-design)
UNTIL “a value has been assigned to all parameters in the skeletal-design”
design := extended-design;
end

Figure 9. Sample task specification of the top level task for the VT application. In the control structure, arrows are used
to distinguish input and output. The statements in talics describe actions whose representational details have fo be de-
cided during KBS design.

—
Inference current
structure assignments \
parameter to pa(ameter evaluate violation
be assigned assignment
!
calculation tuples constraint tuples
\ i
P&R
ontelogy/ | formula o
parameter 4 formula
parameter |
set inputs
Parametric :
design constraint constraint
ontology expression eXpression
i i
Domain ct: » C2:
knowledge leftplatformedge_lefthoistwall teftpiatformedge_lefthoistwall
hase = >=8

openinghoistwayleftspec
- carreturnieft

VFV‘iéurrerlrﬁr. 'Ir.rinkirng?dorﬁt;in and inferentrmﬁd&e;ﬁr:wgh;rﬁgﬁj tﬁsmu;mg their l;ﬂer;mon .explidi.

DECEMBER 1994

Table 1. Characterization of the propose-and-revise conglomerate of methods.

S ——

Task PSM RESULTING DECOMPOSITION

design Propose-critique-modify propose, verify, revise

propose Decomposition into design plan no subtasks

verify Domain-specific calculations no sublasks

revise Dependency-directed backtracking find-fixes, apply-fix, propagate-fix

Specification formalisms

CommonKADS provides two
formalisms for the specification of an
expertise model. The CML formalism
used here is a highly structured but still
informal notation. It is used for the ini-
tial specification, and designed to be
easily usable by knowledge engineers
with a CommonKADS background. If
the domain is well understood, this
CML specification can be judged to be
sufficient input for system design. Alter-
natively, the ML? formalism can be used
to construct a formal specification. For
ML2, a theorem prover is available that
allows model validation through (partial)
simulations of the reasoning behavior.
Tools that support transformations from
a CML specification to skeleton ML?2
specification are available.

to carry out the task. Therefore, we can char- |
acterize it as a task-type-oriented ontology.
The propose-and-revise ontology is shown
in Figure 6. It describes the structure of the
domain knowledge in the format required by
the inferences of the method selected (pro-
pose-and-revise).

In Figure 6, constraint and calculation are
defined as viewpoints on constraint expres-
sion in the parametric-design ontology. This
method-oriented viewpoint enables us to par-
tition the set of constraint expressions into
two subsets that are each used in a different
way: The “calculations” are the constraint ex-
pressions used by the compute inference; the !
“constraints” are used by the evaluate infer-
ence. In this way, each ontology can define
its own interpretation of terms. For example,
the term “constraint” in the propose-and-re-
vise ontology has a much more restricted
meaning than “constraint expression” in the
parametric design ontology. The ontological
levels attribute context-specific semantics to
domain knowledge elements. This is in con-
trast with the traditional logicist’s view of
model-theoretic semantics, which implies a
description of semantics at one level.

The elements of the propose and refine on-

tology are linked to inferences. This creates
yet another metamodel defining how domain
knowledge elements are manipulated dynam-
ically during reasoning. In addition, methods
often require specific knowledge that is not
part of a more general ontology such as the

parametric design ontology. For example, the .

propose-and-revise method requires knowl-
edge of fixes: knowledge that describes how
to change parameters when a constraint is vi-
olated. This additional method-specific
knowledge is represented as a separate knowl-
edge base, and has its own ontology.

By using different ontologies with different
generality, and by partitioning the knowledge
base accordingly, we can identify different
classes of knowledge bases with different
scope, generality, and reusability. For exam-
ple, when the distinction between task-type-
oriented and method-oriented ontologies is
identified, it is easier to identify parts of the
knowledge base for reuse in a similar task
when applying a different method.

Control knowledge: problem-solving meth-

+ ods. We have mentioned the propose-and-re-

vise method to solve the VT task. However, in
the task specification in Figure 9 this method
is never explicitly mentioned. The reason for
this is that a method is in fact a metalevel no-
tion that prescribes how a task definition (a

goal) can be mapped onto a task body (a goal

satisfaction procedure). Such a method is
called a problem solving method (PSM).
A specification of a PSM is similar to a task

specification. The main difference lies in the :

additional information about competence and
acceptance criteria of the PSM. The PSM can
be selected when a task definition specifies a

goal that matches the competence of the |

method, provided that the acceptance criteria
are met. A PSM decomposes a task into sub-
tasks (such as propose, verify, and revise) or,
alternatively, provides a direct way to achieve

a task. A PSM can introduce additional roles

that serve as place holders for intermediate re-

. sults, and can provide a template for a control

regime over the subtasks. This information is
essentially sufficient to create a task body.
The propose-and-revise method used in
solving the VT task is in fact a conglomerate
of methods for solving a design problem.

Table 1 characterizes propose-and-revise in
terms of the design-task analysis framework.’
The method underlying top-level decompo-
sition in propose-and-revise is an instance of
the class of propose-critique-modify meth-
ods (although in propose-and-revise there is
no explicit critique task).

A KADS library of PSMs developed in
1987 has proven to be of help to many knowl-
edge engineers in application development.
At the minimum it provides useful initial
ideas for expertise models, and ideally it
changes the nature of the modeling process
from a design-from-scratch task into a con-
figuration-like activity. In the present Com-
monKADS library,!? the support has been
improved by reducing the grain size of li-
brary elements from wholesale models to a
broad range of configurable components, and
by giving better guidance to the actual con-
struction of an appropriate model. The Com-
monKADS expertise modeling library cov-
ers nine problem types: diagnosis, prediction,
assessment, design, planning, assignment,
scheduling, configuration, and modeling.

The PSM specification in the library does
not provide automatic mechanisms to apply
amethod to a task definition; the PSM spec-
ification should be viewed as a structured
way to write down knowledge about prob-
lem solving. In principle, it is possible to in-
tegrate the PSMs as an explicit part of the ex-
pertise model, and allow the system to
decompose the task dynamically. This ap-
proach can greatly enhance the flexibility of
the KBS, allowing it to cope with a wider
range of problems. It requires, however, ad-
ditional knowledge about how to achieve
goals. We call this additional metaknowledge
strategic knowledge.! It is in fact similar to
the strategic layer in earlier versions of the
KADS expertise model.?

System design

The models discussed so far capture the
various types of requirements for the target
system, in particular the expertise model and
the communication model. Based on these
requirements, the CommonKADS design
model describes the structure of the system
that needs to be constructed in terms of the
computational mechanisms, representational
constructs, and software modules that are re-
quired to implement the expertise and com-
munication models. The design model has

i three constituents:

34

IEEE EXPERT

-

o Architecture design defines an abstract
computational machine that provides
the basic primitives for realizing the ap-
plication.

o Application design describes how the var-
ious elements of the expertise model and
communication model are mapped onto
the primitive elements of the architecture.

o Platform design defines the hardware and
software infrastructure in which the sys-
tem will be implemented.

CommonKADS does not prescribe a par-
ticular design approach, such as object-ori-
ented or rule-based design. As a general
rule, realizing a system will be simple and
transparent if the gap between application
and architecture specification is small —
that is, that the expertise and communica-
tion modeling constructs map easily onto
computational primitives in the architecture.
For example, although it is possible in prin-
ciple to map the expertise model onto a first-
generation rule-based architecture, such a
design would lose the distinctions between
the various types of knowledge. All knowl-
edge types would be mapped onto the flat
rule base, reducing maintainability and
reusability.

The approach that is favored in Com-
monKADS is the structure-preserving de-
sign approach. The basic principle here is
that distinctions made in the expertise model
are maintained in the design and the imple-
mented artifact, while design decisions that
add information to the expertise model are
explicitly documented. (Design decisions
specify computational aspects that are left
open in the expertise and communication
models, such as the representational formats,
computational methods used to compute in-

ferences, dynamic data storage, and the com-

munication media.) The advantage of a struc-
ture-preserving design is that the expertise
and communication models act as a high-
level documentation of the implementation,
and thus provide pointers to elements of the
code that must be changed if the model spec-
ifications change.

The structure-preserving design approach

vides the basic computational mechanisms
needed to implement the expertise model:
task execution mechanism, dynamic data
storage, inference method execution, and ac-
cess mechanisms for the domain knowl-
edge.'? To construct the part of the design
model related to the expertise model, we first

main ' I module 1 \ -| module 2\ .
| Module 1 is imported b
f i into module 2 1
task working task ! C/:‘:g;nc architecture
;) i ule
memory interpreter :
Module directly :
\ 7 ; M generated from ||
! CML description
task | inference [T Module specifying
declarations ‘ activation i
i module design decisions |
4 ’ |
computational Inference inference
! methods |~ procedures |~ | declarations
| t
i ontology domain domain
| mappings [| access ~ 7| knowledge base |
i :
| I
! ontology)
! \

Figure 11. Modules in the VT system architecture.

map the elements of the expertise model onto
elements of the skeletal architecture. Addi-
tional design decisions are then made to
specify the precise representation of the do-
main knowledge, the locus of inference con-
trol, and so on. Finally, an implementation
platform is chosen that further constrains the
design decisions.

Figure 11 shows the software modules re-
sulting from the high-level architecture de-
sign for the VT application, based on the
structure-preserving principle. White boxes
represent the modules that are part of the
skeletal architecture. Boxes with lightly
shaded edges represent the modules that can
be generated automatically from the exper-
tise model specification. Together, these
modules contain all the information present
in the expertise model: task and inference de-
clarations, ontologies, definitions of map-
pings between ontologies, and domain mod-
els (the domain knowledge bases). The dark
boxes are modules that contain specifications
of additional design decisions, such as those
with respect to the computational methods
used. The result is a highly modular design,

. parts of which can be easily reused in other
predefines a skeletal architecture that pro-

applications.

CommonKADS in perspective

One of the salient features of Com-
monKADS is the modeling approach. The
suite of models not only acts as a means to

carve up the world in manageable pieces, but
it also supports the selection of those aspects
that are relevant and potentially amenable to
risks in the development process. The tem-
plates for each of the models form the core of
the methodology. The notion of model states,
along with the decoupling of project man-
agement and planning from the development
process, also provide mechanisms for flexi-
ble project configuration and control.

The knowledge modeling approach in ear-
lier versions of KADS has matured in Com-
monKADS, and now includes extensive fa-
cilities for modeling of domain knowledge.
This approach has also been brought into
line with others, such as components of ex-
pertise, generic tasks, Protégé-II, and SBF.
The CommonKADS expertise model sup-
ports the introduction of ontologies as a
mechanism. for generating abstracted de-
scriptions of the structure and vocabulary of
the domain knowledge. The ontologies also
link the domain knowledge to the inference
knowledge, thus explicating and minimiz-
ing the interaction between declarative
knowledge and the task.

The decomposition of a knowledge sys-
tem as used in the CommonKADS expertise
model has similarities with the three view-
points identified by current software-engi-
neering approaches: data, functional, and
control view. Separation of these views sup-
ports structured analysis and design, as well
as modularization of the models and systems.
However, the methods employed in Com-

DECEMBER 1994

35

monKADS differ in several ways from con-
ventional modeling techniques. First, the ex-
pressiveness of the knowledge modeling for-
malisms is larger than that of entity-relation
models or object-oriented analysis tech-
niques. Second, the functional view (infer-
ence structure) in CommonKADS is much
more constrained than in typical data-flow
modeling techniques: the primitives that re-
sult from a full, functional decomposition are
limited to certain sets of standardized oper-
ations. Finally, CommonKADS differs from
the more conventional views in the nature of
the link between domain knowledge (“data’)
and the inferences (“functions”). Through in-
troduction of abstraction mechanisms in the
form of knowledge roles and ontologies, the
coupling between the data and functional
views of the model is indirect, and hence
there exists more potential for reuse of indi-
vidual components.

ALTHOUGH THE COMMONKADS
design model does not prescribe a particular
approach, the structure-preserving design
was found to be particularly fruitful. Pre-
serving the structure of the expertise model
in the system design allows linking between
the knowledge model and the actual code.
Such links can be instrumental in explana-
tion, testing, and maintenance. In addition,
structure-preserving design provides handles
for an advanced design-support environment.

CommonKADS is a good candidate for
becoming the de facto European standard
and point of reference for knowledge engi-
neering methodologies covering a wide
range of KBS development aspects. Many
successful projects have been performed with
CommonKADS, albeit not always with the
methodology in its present form. Commer-
cial as well as academic (research-oriented)
support tools are available for versions of

CommonKADS. As a framework, Com-

monKADS has given rise to numerous re-

search projects, and keeps on doing so. Ideas

like knowledge-level reflection, formal spec-
ification, automated code generation, and
knowledge sharing are being researched
within the common framework provided by
CommonKADS. The effects of these explo-
rations will become more and more visible
in the future.

Acknowledgments

Almost all participants in the KADS-II project
have contributed to this work with comments, val-
idation feedback, reviews, tool development, and
so on. In particular, we acknowledge the contribu-
tions of Manfred Aben, Anjo Anjewierden, John
Balder, Christian Bauer, Richard Benjamins, Bart
Benus, Amaia Bernaras, Bert Bredeweg, Joost
Breuker, Clive Bright, Cuno Duursma, Frank van
Harmelen, Christiane Lockenhoff, Rob Martil,
Winifred Menezes, Olle-Olsson, Klas Orsvirn,
Philip Rademakers, Luc Steels, Peter Terpstra, Jan
Top, André Valente, Johan Vanwelkenhuysen, and
Steve Wells. We are grateful to Manfred Aben,
Ameen Abu-Hanna, Anjo Anjewierden, Bart Benus,
Frank van Harmelen, Gertjan van Heijst, and Peter
Terpstra for their comments on earlier drafts.

Our research was carried out in the course of the
KADS-II project. This project was partially funded
by the Esprit Programme of the Commission of the
European Communities as project number 5248.
The partners in the project were Cap Gemini In-
novation (France), Cap Programmator (Sweden),
Netherlands Energy Research Foundation ECN
(The Netherlands), Eritel SA (Spain), IBM France
(France), Lloyd’s Register (United Kingdom),
Swedish Institute of Computer Science (Sweden),
Siemens AG (Germany), Touche Ross MC (United
Kingdom), University of Amsterdam (The Nether-
lands), and Free University of Brussels (Belgium).
This paper reflects the opinions of the authors and
not necessarily those of the consortium.

1. S.Marcus, J. Stout, and J. McDermott, “VT:
An Expert Elevator Designer That Uses
Knowledge-Based Backtracking,” Al Maga-
zine, Vol. 9, Spring, 1988, pp. 95-111.

2. B.W. Boehm, “A Spiral Model of Software
Development and Enhancement,” Computer,
Vol. 21, No. 5, May 1988, pp. 61-72.

3. W.J. Clancey, “The Epistemology of a Rule-
Based System — A Framework for Explana-
tion,” Artificial Intelligence, Vol. 20, No. 3,
1983, pp. 215-251.

4. A. Newell, “The Knowledge Level,” Artifi-
cial Intelligence, Vol. 18, No. 1, 1982, pp.
87-127.

5. G. Yost, “Configuring Elevator Systems,”
tech. report, Digital Equipment Corporation,
Marlboro, Mass., 1992.

6. S. Marcus and J. McDermott, “SALT: A
Knowledge Acquisition Language for Pro-
pose-and-Revise Systems,” Artificial Intelli-
gence, Vol. 39, No. 1, 1989, pp. 1-38.

7. T. Bylander and B. Chandrasekaran, “Generic
Tasks in Knowledge-Based Reasoning: The
Right Level of Abstraction for Knowledge
Acquisition,” in Knowledge Acquisition for
Knowledge Based Systems, B. Gaines and J.

Boose, eds., Vol. 1, Academic Press, London,
;. wielinga@swi.psy.uva.nl.

1988, pp. 65-77.

8. B.J. Wielinga and J.A. Breuker, “Models of
Expertise,” in Advances in Artificial Intelli-
gence II, B. du Boulay, D. Hogg, and L.
Steels, eds., Elsevier Science, Amsterdam,
1987, pp. 497-509.

9. B. Chandrasekaran, “Design Problem Solv-
ing: A Task Analysis,” Al Magazine, Vol. 11,
Winter, 1990, pp. 59-71.

. J.A. Breuker and W. Van de Velde, eds., The
CommonKADS Library for Expertise Model-
ing, 10S Press, Amsterdam, 1994.

. F. van Harmelen et al., “Knowledge-Level
Reflection,” in Enhancing the Knowledge En-
gineering Process - Contributions from Es-
prit, B.L. Pape and L. Steels, eds., Elsevier
Science, Amsterdam, 1992, pp. 175-204.

12. A.T. Schreiber, B.J. Wielinga, and J.A.

Breuker, eds., KADS: A Principled Approach

to Knowledge-Based System Development,

Vol. 11 of Knowledge-Based Systems Book

Series, Academic Press, London, 1993.

Guus Schreiber is a postdoctoral fellow at the
University of Amsterdam, where he is currently
technical coordinator of an Esprit Project on
reusable ontologies. He studied medicine at the
University of Utrecht, The Netherlands, and
worked for two years in medical informatics.
Since 1986 he has been involved in a number of
Esprit projects on methodologies for knowledge-
based system development and reflective rea-
soning. In 1992, he was awarded a PhD on a the-
sis entitled “Pragmatics of the Knowledge Level.”
He has also co-organized a number of knowledge
acquisition workshops. Guus Schreiber can be
reached at the University of Amsterdam, Social
Science Informatics, Roetersstraat 15, NL-1018
WB Amsterdam, The Netherlands; Internet:
schreiber @swi.psy.uva.nl.

Bob Wielinga is a professor of social science in-
formatics in the Faculty of Psychology, The Uni-
versity of Amsterdam, where he is team leader of
several research projects. Since 1983, Wielinga has
performed research on the methodology of knowl-
edge-based system design and knowledge acqui-
sition, and was one of the main developers of the
KADS methodology for knowledge-based system
development. He received his PhD degree cum
laude from the University of Amsterdam in 1972
for a thesis in nuclear physics. From 1974 to 1977
Wielinga performed research on knowledge rep-
resentation for computer vision in the Department
of Computer Science of the University of Essex,
Great Britain, and in 1977 was appointed senior
lecturer at the Department of Psychology of the
University of Amsterdam. Bob Wielinga can be
reached at the University of Amsterdam, Social
Science Informatics, Roetersstraat 15, NL-1018
WB Amsterdam, The Netherlands; Internet:

36

IEEE EXPERT

—

Hans Akkermans is a professor of information
systems at the University of Twente and principal
consultant at ECN, the Netherlands Energy Re-
search Foundation. Prior to that he was manager
of ECN’s software engineering department. He
recently founded a consulting firm AKMC
Knowledge Management. His research interests
include the use of knowledge engineering meth-
ods in technological applications, in particular
modeling, simulation, and engineering design,
and he regularly.publishes on topics in theoreti-
cal and computational physics. He received his
MS and PhD degrees cum laude in physics from
the State University at Groningen. He can be
reached at the University of Twente, INF/IS De-
partment, P.O. Box 217, NL-7500 AE Enschede,
and at AKMC Knowledge Management,
Klareweid 19, NL-1831 BV Koedijk, The Nether-
lands; Internet: J.M.Akkermans @cs.utwente.nl.

‘Walter Van de Velde is a senior researcher for the
Belgian National Science Foundation, and co-
director of the Artificial Intelligence Laboratory of
the Vrije Universiteit Brussel. His research topics
include second generation expert systems, machine
learning, general architectures of intelligence, and
autonomous systems. Within knowledge engineer-
ing, he has been particularly interested in knowl-
edge-level modeling, reusability, and understand-
ing the modeling process. His present research
centers on coordination of behavior and its relation
to cognition, specifically in a multiagent context.
His advanced education is in mathematics, and in
1988 he earned his PhD from the Vrije Universiteit
Brussel with a thesis on learning from experience.
Walter Van de Velde is a member of the board of
the European Coordinating Committee on Al and
president of the Belgian Al Association. He can be
reached at the Free University of Brussels, Al Lab,
Pleinlaan 2, B-1050, Brussels, Belgium; Internet:
walter @arti.vub.ac.be.

Robert De Hoog is an associate professor of social
science informatics at the University of Amsterdam,
Faculty of Psychology. His main research interests
are in knowledge-based systems and decision sup-
port systems. He is involved in several international
research projects sponsored by the European Com-
munity. He has also carried out several studies in
the field of knowledge-based systems for govern-
ment agencies and the European Space Agency. He
has published more than 50 papers in these fields
and also coauthored a book on project management.
Robert De Hoog can be reached at the University
of Amsterdam, Social Science Informatics,
Roetersstraat 15, NL-1018 WB Amsterdam, The
Netherlands; Internet: dehoog @swi.psy.uva.nl.

Additional information about CommonKADS can
be obtained through anonymous FTP at
swi.psy.uva.nl/pub/CommonKADS, or through the
World Wide Web at http://www.swi.psy.uva.nl/
projects/CommonKADS/home.html.

A Probabilistic Analysis of
Test Response Compaction

by Slawomir Pilarski and Tiko Kameda

The text, containing all original material, presents the most
fundamental results on aliasing, analyzes counter-based
schemes, and focuses on aliasing in linear compactors. The
first chapter briefly introduces VLSI circuit testing and
defines the terminology used throughout the text. The next
chapter discusses some concepts needed to link practical
problems with theory, introduces some common compactors,
and presents two definitions of aliasing probability.

The next two chapters present actual analyses of aliasing,
first focusing on aliasing in linear compactors based on
linear feedback shift registers and then concentrating on
counter-based compaction. The final chapter concludes
the analysis and discusses the practical implications of this
research.

Sections: Introduction ® Background ® Linear Compactors
* Computer-Based Compactors ® Practical Implications
* Bibliography

104 pages. December 1994. Case. ISBN 0-8186-6532-7.
Catalog # 6532-04 — $40.00 Members $30.00

1994 International Gonference on
Computer Design (ICCD *94)

October 10-12, 1994 — Cambridge, MA

Sections: Combinational and Logic Synthesis ® Memory
Architectures ¢ Parallel Processing and Fault Tolerance

® Synthesis for Testability ® Concurrent Error Detection
¢ Field Programmable Systems ® BIST and Testability
Analysis ® Microprocessor Architecture ® State-Based
Formal Verification ® Applications of High-Level Synthesis
® 'Test Generation ® Timing Analysis and Optimization
® Asynchronous Circuit Design ® FPGA Architectures

® Software Testing ® Computer Arithmetic ® Special
Purpose VLSI Architectures ® High-Speed Interconnect
Analysis ® MCM Applications and Design Methodologies

664 pages. Paper. ISBN 0-8186-6565-3.
Catalog # 6565-02 — $130.00 Members $65.00

IEEE COMPUTER SOCIETY
10662 Los Vaqueros Circle ® Los Alamitos, CA 90720-1264
Call toll-free: 1-800-CS-BOOKS

Fax: (714) 821-4641
E-Mail: cs.books @ computer.org

http://www.swi.psy.uva.nl
http://computer.org

