Int. J. Human—Computer Studies (1994) 40, 349-377

Applying kaps to the office assignment domain

A. Th. SCcHREIBER

University of Amsterdam, Social Science Informatics, Roetersstraat 15, NL-1018 WB
Amsterdam, The Netherlands

In this article the kaps approach is used to moedel and implement the office
assignment problem. We discuss both the final products (the model of expertise and
the design) and the process that led to these products. Emphasis is put on modelling
the problem in such a way that it closely corresponds to the behaviour of the expert
in the sample protocol. The last section of the paper addresses the evaluation points
raised by the initiators of Sisyphus,

1. Introduction

This article describes an exercise to model and implement the sample problem of the
Sisyphus-91/92 project using the kaps approach. xaps has been and is being
developed in a series of espriT projects (P12, P1098, P5248). The most well-known
ingredient of xans is the so-called “four-layer model”: a conceptual framework for
modelling the problem-solving expertise in a particular domain using several layers
of abstraction. The layers allow the knowledge engineer to describe the problem-
solving process in a domain-independent fashion. Another central aspect of KaDS is
the distinction between (i} a conceptual model of expertise independent of a
particular implementation, and (ii) a design model specifying how a model of
expertise s operationalized using particular computational and representational
techniques.

The kaps approach has evolved over the years. Here, we apply KADS as it is
described in Wielinga, Schreiber and Breuker (1992) and Schreiber, Wielinga and
Breuker (1993). We do not take recent developments in the KAaDs-u project into
account.

This article is organized as follows. In Section 2 a brief account is given of the
steps that were taken to arrive at the model for the office-assignment task-domain.
Section 3 discusses some initial observations that came out of a first global analysis
of the problem description. Sections 4—6 describe the model of expertise that was
constructed for this application. Section 7 discusses the step from model of expertise
to design and implementation. Finally, in Section 8 the proposed solution to the
problem is evaluated with respect to the questions raised in the problem description.

2. Modelling the office assignment problem
The problem description basically consists of two parts:

1. A description of the major entities {employees, rooms, projects) and relation-
ships (hierarchies, project assignments, floor plan) in the sample domain.
2. A think-aloud protocol showing how an expert solves a particular office
assignment problem.
349
1071-5819/94 /020349 + 29308.00/0 © 1994 Academic Press Limited

350 A. Th. SCHREIBER

As there is only one protocol, it can occur in the remainder of this article that
there is not sufficient information to make a particular (modelling) choice. Such a
situation usually gives rise to a knowledge engineering (ke) goal: a topic for which
further knowledge elicitation and/or analysis is necessary. We will point to these ke
goals in the text and state what kind of assumptions we have made about such goals’
outcomes in building the model.

We should also mention here that it is our goal to build a model and a system that
reflects as closely as possible the reasoning process of the expert. It is not our goal to
find an algorithm that, given the input, would produce the same or similar output.

The process which led to the construction of the model of expertise presented in
this article roughly consisted of the following steps:

INITIAL OBSERVATIONS

Firstly, the protocol was used to make some initial observations about the nature of
the task, e.g.:

What kind of task is it: analytic, synthetic?

Are there clearly identifiable sub-tasks?

What can be said about the information and the knowledge that the expert
uses?

Does the task resemble some known (generic) task? If so, what are the
similarities and differences?

« Does it seem feasible to automate (part of) the task?

TENTATIVE DOMAIN SCHEMA

Subsequently, a first sketch was made of the types of domain knowledge that play a
role in solving this task. This characterization of domain knowledge is done before
any detailed model construction for a dual purpose:

1. To guide and verify the process of model selection and/or decomposition: is
the knowledge available for achieving this task?

2. To prevent as much as possible domain knowledge just being specified because
it is required by the particular problem-solving method that was chosen to
achieve the task.

The chosen problem-solving method will of course infiuence the required
representation of domain knowledge. Our goal is, however, to specify such
representations as much as possible as a viewpoint on the available domain
knowledge. For example, in the office-assignment domain relations exist
between particular employees and their roles in the department (employee X
has the role of head-of-group). The fact that this relation. can be used as
classification knowledge is a method-{or use)-specific viewpoint.

MODEL SELECTION AND TOP-DOWN MODEL CONSTRUCTION

The next step was to specify the top-level task (in this case office assignment) in
terms of sub-tasks and primitive inferences required for solving the problem. This
model construction process consists of one or both of the following activities:

1. Selection of a predefined generic decomposition in sub-tasks and inferences: an
interpretation model. The selection of such a model is guided by characteristics

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 351

of the task such as the nature of the input and output of the top-level task {e.z.
an enumerable set of solutions suggests an interpretation model for an analytic
task) and of the required types of domain knowledge (e.g. a model of the
normal behaviour of a device). These selection criteria are represented in the
form of a decision tree (Wielinga et al., 1992: p. 32).

2. A (repeated) process of model decomposition. In the worst case, no (partial)
interpretation model is available for the task at hand. The knowledge engineer
then has to decompose the top-level task into sub-tasks and inferences
(primitive leaf tasks) on the basis of the elicited data (in particular protocols).

There are, however, also a number of other situations in which decomposi-
tion plays a role:

o The top-level task is not a generic fask for which an interpretation model
can be selected, but is a compound, “real-life” (Breuker et al., 1987), task.
In that case, the knowledge engineer will first have to decompose the
top-level task to the level of generic tasks.

» The decomposition given by the selected interpretation model is too

coarse-grained.
The “‘inferences” in such a model are in fact complex sub-tasks that need
further specification and decomposition to arrive at inferences that can be
linked to fragments of domain knowledge. For example, many models for
synthetic tasks in the kaps library of interpretation models provide only a
first level of decomposition.t Also, even if a detailed interpretation model
such as systematic diagnosis is selected, it is possible that this model needs
further detailing for the task-domain at hand.

Often, there is an interplay between the selection of generic components and
model decomposition. In the office assignment case the emphasis was on decom-
position, as there was no detailed interpretation model available.

REFINEMENT

When a first (partial) model of expertise has been established through selection
and/or decomposition, it will need to be refined. This refinement was in this case
performed in two ways:

i. By formulating task structures (i.e. control relations between sub-tasks) and
checking whether these task structures could serve as plausible explanations of
the behaviour of the expert.

2. By trying to identify the types of domain knowledge that would be needed to
carry out the various inferences, and checking whether this knowledge could
be derived from the domain schema. If it is not derivable, the question arises
whether it can be formulated as an extension of this theory and whether
expertise data are available for formulating this knowledge. Often, this
involves additional knowledge elicitation (ke goal).

The refinement process acts in a sense as a verification of the chosen
decomposition.

+ One could view problem-solving methods such as “propose & revise” (Marcus & McDermott, 1989),
“cover & differentiate” (Eshelman, 1988) and “skeletal planning” (Musen, 1989) also as partial
interpretation models that can be used as a starting point for a model of expertise.

352 A. Th. SCHREIBER

In the next section, the initial observations about the office assignment probiem
are discussed.

3. Initial observations

Initially, the protocol is our focus of attention. While reading the protocol, we noted
the following features of the problem-solving process of the expert:

* A first thing to note is that the office assignment problem is of a synthetic
nature: the solution is not chosen from a given set of predefined solutions, but
is constructed using knowledge about employees, rooms and allocation
constraints.

* The expert appears to solve the problem in two steps: (i) selecting a particular
(group of) employee(s), and (ii} assigning this (group of) employee(s) to a
room.

+ It scems that the selection process is based on a global plan of the expert,
namely assigning employees in a particular order. This plan is, however, not
explicitly mentioned by the expert. This assumption would nzed to be verified
in a future session with the expert (ke goal).

* The ordering in the allocation plan is not an ordering of specific employees, but
of types of employees, e.g. head of group, manager, etc. The underlying
knowledge on which this ordering is based seems to be quite subtle. For
example, it is not just based on a simple hierarchy of employee types, as one
could be inclined to deduce from the fact that the head of group is assigned
first: this would not explain why the secretaries are assigned before the manager
and the heads of projects.

*» The elements of the aliocation plan are not just single employees. These
elements can also be sets of employees that are assigned in a random order
(heads of projects) or groups of employees that are assigned in blocks to a
room (secretaries, researchers).

If one requires of the final model that it indeed models the behaviour of the
expert as closely as possible, then this would exclude every model or method in
which employees are assigned one at a time.

* The expert does not backtrack in the protocol. There is no evidence of a
verification and/or a revision process. Most existing models and systems for
synthetic problems (e.g. Marcus & McDermott, 1989; Chandrasckaran, 1990)
contain such a verify/revise step. The absence of this step could very well be an
artifact of the sample problem solved in the protocol. This should be a major
topic for future sessions with the expert (ke goal). We will come back to this
issue in the discussion section.

This is by no means meant to be a complete or even correct list.¥ Such initial
observations, however, focus the modelling process (see the next section).
In the next three sections, the results of the process of modelling expertise are

t It is in fact the list that the author presented at the EKAW91 Sisyphus workshop in Crieff, Scotland,
after a first reading of the sample problem.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 353

described, notably:

» Description of the domain schema (Section 4).
* Classification of the office-assignment task and model selection {Section 5).
* Model decomposition and resulting inferences and tasks (Section 6).

4. Domain schema

In the description of the domain knowledge we are mainly interested in a structural
description: what types of knowledge are available in the problem description? For
this schematic description we use the constructs of the kaps data-description
language (ppL) (Schreiber et al., 1993: chapter 4): concepts, sets, properties, and
relations between concepts, instances and/or expressions. Figure 1 gives a graphical
overview of the structure of the domain knowledge described below.

Employees and rooms stand out as central concepts in this domain. Employees
have properties (such as whether they smoke or like to hack) and relations with
projects they work on or are the head of. Also, a number of relations between two
employee instances seem to be important: a smoker and a non-smoker, employees
working on different projects, etc. Rooms have a number of properties (size,
number, type, etc.) and relations with other rooms (distance, next to).

A ppL description of the concept employee and of one relation between employee

works-well-with
SMOoker-nNon-gmokar
on-differant-projacts
hacke?-non-hackar

project works-on o)'90
| = e
head -of smokoﬂ role
room
Fro(o boss-of
i ToOm-pr role-inleraction property: level

""-;":9’ elorence occupancy nearo prefarence praperly; strength

size)
location

K)

nexl-to head of haad of
dislance managor [socrotary] [group] [P’Diﬂﬂj [rnsnard\nr]

FIGURE 1. Schema of the domain knowledge in the office assignment domain. See Schreiber ef al. {1993:
chapler 4) for an explanation of the graphical notation used,

354 A. Th. SCHREIBER

instances is given below. A full poL description of the domain schema is given in
Schreiber (1992: appendix A).

concept emplovee;
properties:
smoker: [true, false];
hacker: [true, false];

relation on-different-projects;

argument-1: instance(employee};

argument-2: instance(employee);

semantics: associative;

axioms:

YEl, E2:employee, P1, P2:project

on-different-projects(El, E2) &
works-on(El, P1) Aworks-on(El, P1) A P1#P2;

Another central concept in this domain is the notion of a department role: head of
group, secretary, etc. As observed in the previous section, the expert seems to base
most of his allocation decisions on properties of employee fypes and not on
individual employees. The employee types are represented as sub-concepts of
department role (see Figure 1).

Several types of relations concerning department roles seem to be important in
the domain:

» A hierarchy of roles (¢.g. the head of the group is the boss of the manager);

« The amount of daily interaction (e.g. a high level of interaction between the
head of the group and secretary),

« Positional preferences (e.g. the head of the group should be near to a
secretary);

+ Relations between department roles and expressions about rooms, denoting
room preferences (¢.g. the head of the group should have a large, central
roomy}.

This room-preference relation is represented in the pDL as follows:

relation room-preference;

argument-1: department-role;

argument-2: expression(room);

tuples:
(department-role, type(room) = office)
(head-of-group, location(room) = central)
{(head~of-group, size(room) =1large)
(head-of-project, size(room) =small)
(researcher, size(room) =large)
(manager, size(room) =small)
(secretary, size(room) = large);

These relation tuples should be interpreted as universally quantified statements
about the employees that fulfil a particular role, e.g. the statement about “head of

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 355

project” should be interpreted as “‘all heads of projects need to get some small,
single room™.

5. Task classification and model selection

The office-assignment task takes as input a set of employee instances and a set of
room instances and produces as output a set of allocations of rooms to employees.
The office-assignment task can be classified as a design task: although the solutions
are in principle enumerable for a given input problem, in practice the solution is not
selected, but constructed.

In Chandrasekaran (1988) three classes of design tasks are described: creative
design tasks, routine design tasks, and a mix of routine and creative design. The
prime property of routine design is that the elements from which the solution is
constructed are known in advance. Office-assignment can thus be classified as a
routine design task.

Puppe (1990) distinguishes three sub-classes of routine design tasks: planning,
configuration and allocation (in German: *zuordnung”). According to Puppe, the
main features that distinguish allocation from planning and configuration are:

+ 11 operates on at least two disjunct sets of objects.
« The solution consists of allocation relations between objects of different sets
that satisfy particular requirements.

Office-assignment is thus clearly an allocation task. The two disjunct sets of
objects are in this case the employees and the rooms.

Unfortunately, the KaDs interpretation madel library in Breuker et al. (1987) does
not contain a model for allocation. In such a case, it can be useful to look at a more
general model for design tasks and use this as a starting point. Such a model for a
more general task provides, however, only a first level of decomposition.

Chandrasekaran (1990) describes methods for routine design tasks. The general
structure of the design task is presented as consisting of three major sub-tasks:
propose, critique and modify. For each sub-task a number of methods are described
(informally) that can be used for realizing the task. For example, the propose task
can be realized with decomposition methods, with constraint satisfaction, etc.

The saLT system (Marcus & McDermott, 1989) implements a similar model for
routine design called “‘propose & revise”. The propose step proposes a value for a
design parameter. Design parameters are linked to design constraints. When a
constraint violation is detected, the revise task is activated to suggest changes
{“fixes”) 1o the design. This process is iterated until all design parameters have a
value and no constraints are violated.

In the mixer-configuration system (Wielemaker & Billault, 1988), design starts
with building an ordered list of “duties” (i.e. design requirements). The first duty of
the list (the “top duty”; the requirement which is considered to be the most critical
one) is used to generate an initial configuration, which is subsequently tested and
refined on the basis of the other requirements. If a conflict arises, for example
because some requirement cannot be satisfied, this duty becomes the top-duty and
the design is modified.

356 A. Th. SCHREIBER

In each of these models, the general structure of routine design appears to have
an iterative structure: first, a (partial) solution is proposed, which is subsequently
verified and if necessary adapted and/or refined. This leads to a new proposal and
thus starts a new cycle of verification and adaptation/refinement.

As noted in Section 3, the expert in the sample protocol seems 10 carry out only
the propose task. We limit the modelling enterprise in this article to a study of the
nature of this propose task. However, this apparent absence of verification and
revision should be a major focus for further knowledge engineering.

6. Task and inference knowledge

Initially, we observed (Section 3) that this propose task seems 10 consist of two
steps: selecting an employee and assigning him/her to a room. Also, the point was
made that this selection step scemed to be based on a global allocation plan. In
other models for design tasks the notion of a plan also appears. For example, in the
mixer-configuration system (Wielemaker & Billault, 1988), the notion of a plan
plays a role in terms of an ordering of requirements. “Tackle the most difficult
requirement first” appears to be a quite general strategy in design tasks. We will
assume here that the expert indeed has some allocation plan. The precise nature of
this plan is discussed below. As already pointed out, this assumption would need to
be verified during further knowledge engineering (ke goal).

This gives us a first decomposition of the propose task (see Figure 2). This figure
should be interpreted as a provisional inference structure. It fulfils the role of a
working hypothesis in the knowledge engineering process. It can (and will) be
refined in the process of model construction, e.g. through task decomposition and
knowledge differentiation (see aiso Schreiber er al., 1993: chapter 3).

As task and inference knowledge are described in a domain-independent way, we
coin the general role names component and resource to talk at the task and inference

e)

allocation

FiGURE 2. First provisional structure of the propose task. See Schreiber er al. (1993: chapter 5) for a
description of the graphical notation used.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 357

level about employees and rooms. This is one way of enabling a potential reusage of
{(part of) the resulting model for another resource allocation domain.

The task structure of the propose task is specified below in a structured-English
format. The top-level task propose-allocations consists of two major steps:

« Assemble plan: which generates a plan in which the allocation order of
components is specified;

* Assign resources: which produces parts of the solution. This last step is carried
out for each element in the plan.

task propose-allocations
input:
components: set of components to be allocated
resources: set of available resources
output:
allocations: set of tuples {resource, set of
components)
control-terms:
plan: list of (sets of) components representing an
allocation ordering
plan-element: (set of) components representing an element
of the plan
task-structure:
propose-allocations{components + rescurces —
allocations) =
assemble(components—plan)
FOREACH plan-element eplan DO
assign-resources({plan-element + resources—
allocations)

We use the format proposed in Wielinga et al. (1992). The slots input, output and
control-terms describe the data manipulated by the task, such as single objects,
tuples, sets and lists. The task structure specifies the sub-tasks and their control
dependencies in the form of a piece of psendo-code. The arrows in the task siructure
describe the relation between input and output of the task or sub-task.

6.1. PLAN ASSEMBLY

The question now arises of whether it is possible to identify one inference that can
generate the plan, or whether plan assembly should be considered a non-primitive
task that requires further decomposition. To resolve this question we turn back to
the protocol.

We noted the following characteristics of the way in which the expert orders the
assignment of components:

1. The ordering is not based on individual components, but on component types:
the expert does not talk about specific employees, but about the head of
group, the secretaries, etc. This means that during ptan assembly it is necessary
to classify components (the input of the assembly task) in terms of component
fypes.

358 A. Th. SCHREIBER

list of
types

| componant
prime type

FiGure 3. Inferences for plan assembly.

2. The head of the group is assigned first, because this assignment “restricts the
possibilities of subsequent assignments” (Comment 1b of the protocol). There
is a similarity here with other models of design tasks, such as the model of the
mixer configuration system (Wielemaker & Billault, 1988): the component
which is expected to impose the heaviest constraints on the final solution is
tackled first. The allocation plan represents an implicit ordering of require-
ments; it is not the requirements themselves that are ordered, but the
component types to which they are related.

3. The other component types are ordered on the basis of the level of required
access to and interaction with the head of group (Comments 2-4).

These observations led us to the formulation of three inferences that are needed
to carry out the plan assembly task:

» Classify components as component types.

» Select the component type with the highest associated constraints.

» Sort the other component types relative to the one that imposes the highest
constraints.

These three inferences are described in more detail below. The inference
structure in Figure 3 shows the dependencies between the inferences for plan
assembly. An important point of the specification of inferences is to indicate for
each inference how its functional terms (meta-classes, domain view) relate to
available domain knowledge. This will often reveal that some type of domain
knowledge is lacking and can thus lead to new KE goals. }

Classify

The classify knowledge source uses the domain relation employee-role (see Figure 1)
for classifying a component (an employee instance) as a component type (i.e. a
department role).

knowledge-source classify
input-meta-class
component —employee
output-meta-class
component-iype— department-role

t Here we will only describe inferences that use knowledge described in Figure 1, but it is fair to say
that this is an artifact of a post hoc description.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 359

domain-view
type associations from component to component-type—
employee role(employee, department-role)
description
knowledge-base look-up

The arrows in the description above show how names at the inference level map
onto domain terms. The meta-classes can be seen as the data elements that are
being manipulated by the knowledge source. The domain view describes the static
knowledge that is used in this inference. The ““description” slot gives an indication
of how the output could be generated from the input and the domain view. This
altows the knowledge engineer to make some remarks about possible computational
methods. The actual selection of a computational method (which could turn out to
be a different one) is part of the design process (see Section 7).

Select prime

The select-1 inference is used in the plan-assembly task to find the component type
with the highest requirements. This knowledge source uses a domain relation
boss-of to find the highest node in the component-type hierarchy.t This component
(for which we will use the term “prime”) is assumed to be the most critical one to
assign (Comment 1 of the protocol).

knowledge-source select-1 (select prime)
input-meta-class
component-types—set of department-role
ontput-meta-class
prime— department role
domain-view
hierarchy of component-types—
boss-of(department-role, department-role).
description
find the top node in the hierarchy of component types

Sort

As remarked in Section 3, the other components are sorted on the basis of the
amount of interaction that is required between certain types of components (see
Comments 2—-4 of the protocol).

knowledge-source sort
input-meta-class
prime— department-role
components-types-»set of department-role
oufput-meta-class
component-types— list of department-role
TIn retrospect, this is probably a sub-optimal specification, because it makes unnecessary strong
assurnptions about the nature of the domain knowledge. Tt is conceivable that in other tasks other types

of domain knowledge than hierarchies could be used to select the component with the highest associated
constraints.

360 A. Th. SCHREIBER

domain-view
sort predicate—
value of the attribute *'level'’' of the relation
role-interaction{department-role,
department-role)
description
a component type is placed before another
component type if the level of required interaction
with the prime is higher

Plan assembly tasks
In the task-knowiedge specification for the plan assembly task we have to indicate
how the three inferences can be sequenced to achieve the goal of the task: the
construction of a plan. The simplest solution would be to specify one task structure
for plan assembly. However, the select and sort inferences are so tightly connected
that we decided to view this part as a separate sub-task order. A reason for this
more detailed task decomposition is that one can envisage that in other domains this
task could be realized with one inference.t

We thus end up with three tasks that specify the sequencing of inferencing in plan
assembly: plan assembly and two sub-tasks: (i) a classification task, and (ii) an
ordering task.

The plan-assembly task is specified as follows:

task assemble-plan
input: components
output: plan
control-terms:
component-types: set of components classes
task-structure
assemble-plan{components—plan) =
classify({components— component-types)
order(component-types—plan)

The classify task requires a repeated invocation of the classify knowledge source
plus a data operation (set unification).

task classify

input: components

output: component-types

task-structure:

classify({components— component-types) =
FOREACH component € components DO
classify{component— component-type)
component-types :=component-type Ucomponent-
types

t Although this may sound a bit altruistic, the whole idea of “mode! construction for reusability” is so
central to the KADs approach that it tends to become second nature for people involved in it.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 361

For readability purposes, the names of knowledge sources are italicized in the task
structure.

The order task specifies a sequence of the select and sort inferences and appends
the output of both inferences to the resulting allocation plan,

task order
input: component-types
output: plan
control-terms:
prime: the component-iype with the highest
constraints
other-components: the components minus the prime
component
ordered: the other components sorted with respect to
constraints inrelation to the prime
task-structure
order(component-types—plan) =
select-1(component-types—prime}
other-components : = component-types /prime
sort{other-components + prime— ordered)
plan:=prime, ordered

M

The ““/” symbol represents a subtraction operator on a set; the “,” symbol is
used here to specify the order in a list. The resulting plan consists of an ordered list
of component types.

6.2. ASSIGN RESOURCES

In the assign-resources task, components of one particular type are ailocated to a
resource. Again, we turn to the protocol to study the inferences involved in
assigning resources.

* As was noted in Section 3, if it concerns a multiple assignment (more than one
component to one resource) the expert first groups these components into units
of the right size using a special type of requirement concerning component
interaction (avoiding conflicts and enhancing synergy, see protocol Comments
7-10). The type of assignment (single or shared) is fully determined by the
component type (e.g. a head of a project should have a single room).

» The input for the actual assign task with respect to the components to be
allocated can be of two types (see the remarks in Section 3):

I. One single component (head of group, manager) or component group
{(secretaries).

2. A set of components (heads of projects) or component groups
(researchers).

If the input is a set, the assignment order of its elements should be random, as
the expert indicates in the protocol explicitly that there is no particular reason
for his sequencing of, for example, assignments of heads of projects and pairs of
researchers (Comments 4—6 and 8).

362 A. Th. SCHREIBER

These observations lead us to a first refinement of assign resources by introducing
an additional group step. This refined structure of the assign step in Figure 2 is
shown in Figure 4, which again should be interpreted as a provisional inference
structure.

task assign-resources
input:
component-type: type of component allocated in this
plan step
resources: available resources
output:
allocations
control-terms:
unit: a component or set of components
grouping: set of units
suitable-groupings: groupings satisfying particular
constraints
task-structure
assign-resources(component-type + resources--»
allocations) =
group(component-type—suitable-groupings})
select-random{suitable-groupings— grouping)
REPEAT
select-random{grouping—unit)
assign(component-type +unit + resources—
allocations)
UNTIL grouping =09

The group step is only interesting for components that share resources. For other
component types we assume it is an empty operation. The random selection of units
in the REPEAT loop ensures that, for example, heads of projects are really assigned in
a random order. This also implies that the specification differs here slightly from the
assignment order in the protocol. There, a unit of two researchers is assigned
directly after grouping. As the expert indicates that there is no special reason for
this (except maybe mental hygiene) we have separated in our model the grouping of
units from the actual assignment of units.

It might be useful to note that the introduction of a separate group step implies a
differentiation of allocation requirements into two major types: (i) requirements
concerning interaction of components with respect to one resource (conflicts, etc.),
and (ii) resource-specific requirements (room preferences, etc.). This is in fact a role
differentiation at the level of the model of expertise that can make the resulting
system more efficient (Schreiber, Akkermans & Wielinga, 1991). For example, a
computational technique implementing one of these sub-tasks would need to handle
less requirements and operate on a smaller set of components (because some of
them are already grouped into units).

In the following sections we study the group and the assign step in more detaii.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 363

6.3. GROUP

When components are grouped together for joint assignments to one resource, a
different kind of domain knowledge comes into play, namely knowledge about
possible effects of the joint usage of the resource. The expert tries to minimize
negative effects and support positive ones as much as possible. This grouping of
components into appropriate units (Comments 7-10 in the protocol) appears to be
the only part of the resource allocation process where the expert uses requirements
based on properties of individual employees, e.g. whether they smoke or on which
project they work, etc.

Generating suitable groupings is typically a task where one would specify a different
problem-solving method for a machine than the one the expert employs. The expert
generates in the protocol partial groupings based on the requirements. This partial
grouping is in fact one out of a set of possible partial groupings. Given the limited
size of human short-term memory it is usually impossible to consider all possible
solutions. For a machine however, this storage problem does not exist. On the other
hand, the somewhat ad hoc, intuitive way in which the expert generates a grouping
would be quite difficult to model for machine execution.

Thus, we decided to drop for this subtask the general guideline of modelling the
expert as closely as possible and model the grouping task as consisting of two types
of inferences:

« A mansform inference, which generates all possible groupings.
e A select inference, which selects a subset of groupings that satisfies particular
requirements.

The transform inference is described below:

knowledge-source transform
input-meta-class:
component-type —»department-role
output-meta-class:
possible groupings—set of employee structures
domain-view:
description;
generate all possible groupings of components of this
type

For the select inference (“‘select-2”, to distinguish it from the previous select
inference), one has to decide what the requirements should be for suitable
groupings. The following types of requirements are mentioned by the expert:

» Conflicts: The expert tries to minimize conflicts. Putting a smoker and a
non-smoker together is considered a major conflict (Comment 7} and should have
a high impact. Putting a hacker and a non-hacker together is only 2 minor
conflict that could be allowed if more important reasons exist for preferring
such a grouping.

» Synergy: The expert also tries to maximize synergy. Putting employees together
who work on different projects is considered by the expert to be an important

364 A. Th. SCHREIBER

componant . lect
e g o

(BSOUMCE [— assign

allecation

FiGure 4. First refinement of the assign step of Figure 2 by introducing a group step which generates
possible groupings and a random selection of a unit (a component or set of components to which one
resource will be assigned).

type of synergy (Comment 8). Also, grouping researchers working on similar
subjects is considered synergetic, although to a lesser degree (Comment 10).

The select inference specifies the selection of a subset of groupings given one
particular criterion (some conflict or synergy). Based on the observations above, we
distinguish four types of criteria: minimize major/minor conflicts and maximize
major/minor synergy. This choice would have to be verified in future sessions with
the expert (kg goal).

The dependencies between these two inferences, which constitute a refinement of
the group step in Figure 4, are shown in Figure 5.

knowledge-source select-2 (select suitable groupings)
input-meta-class:
groupings—set of employee siructures
selection-criterion—a conflict- or synergy-type
output-meta-class:
suitable-groupings—set of employee structures

selection
criterion

maximize synergy
minimize conflict

camponeri rouning —~{ grouping

possible suitzbla
groupings grougings

FiGURE 5. Inferences for generating suitable groupings of components.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 365

domain-view:
major-conflict-— smoker-and-non-smoker relation
minor-conflict—hacker-and-non-hacker relation
wajor synergy— on-different-project relation
minor-synergy—works-with relation

description:
generate the subset of all possible groupings
that minimizes some conflict or maximizes some type of
SYRETgy.

This distinction between four different types of criteria can be considered as an
example of inference differentiation (cf. Schreiber et al., 1993: chapter 5): the
select-2 inference can be differentiated into four sub-types, each using a different
criterion.

In the task-knowledge specification of group we have to decide in which order
these four possible instantiations of the select-2 inferences should be executed.
Looking at the protocol, we decided that the order “avoid major conflict, increase
major synergy, increase minor synergy, avoid minor conflict” conforms most to the
way in which the expert solves the grouping problem. Again, this hypothesis would
need to be verified (Ke goal).

task group
input:
component-type: the type of components being grouped
output:
preferred-groupings: the optimal sub-set of groupings
given the selection criteria
control terms:
possible-groupings: all pessible groupings of the
components of this type
task-structure:
group(component-type—suitable-groupings) =
transform(component-type— possible groupings)
select-2(possible-groupings +minimize(major-
conflict) — preferred-groupings)
select-2{preferred-groupings + maximize (major-
synergy)—preferred-groupings)
select-2(preferred-groupings + maximize(minor-
synergy)—preferred-groupings)
select-2(preferred-groupings +minimize (minor-
conflict) —preferred-groupings)

See Section 7 for a sample system trace of the execution of this task.

6.4. ASSIGN

In the assign task resources are allocated to components or groups of components
on the basis of various requirements. We distinguished two types of such

366 A. Th, SCHREIBER

set of

unit resources

(group of) component ayailable resources

@ select-4 e allocation

suitable resources

resource

FIGURE 6. Inferences for resource selection.

requirements:

1. Resource specific requirements: Requirements about a resource independent of
other allocations: required size, required location, etc.

2. Positional requirements: Requirements about a resource that are dependent on
other allocations, e.g. a room is required as close as possible to the head of

group.

These requirements are the same for every component of a particular type.

Thus, we defined two select inferences, select-3 and select-4, each selecting a
subset of resources that respectively satisfy resource-specific and positional require-
ments. The select-4 inference has as an additional input the current set of
allocations.

Figure 6 shows the dependencies between the two select inferences. This figure
represents a further detailing of the assign step in Figure 4.

knowledge-source select-3 (select on resource requirements)
input-meta-class:
component-type— department-role
resources—set of rooms
output-meta-class:
suitable-resources—set of rcoms
domain-view:
resource-requirement-—room-preference relation

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN

description:
select the subset of resources that satisfles
resource-specific requirements

knowledge-source select-4 (select on positional requirements)
input-meta-class:
component-type—department-role
resources—set of rooms
output-meta-class:
suitable-resources—set of rooms
domain-view:

resource-requirement —near-to-preference relation

description:
select the subsetl of resources that satisfles
positional requirements

367

Note that the unit to which a resource will be assigned is input to neither of the
two inferences. This is consistent with the fact that resources are only selected based
on requirements connected to a component type. The main decision that has to be
taken when defining control over these inferences is which one should be executed
before the other (or maybe in paraliel)? In the current task structure select-3 is
executed before the select-4 inference. This implies that we give a higher priority to
resource-specific requirements. If, after execution of both inferences, more than one

resource is considered suitable, one is selected at random.

task assign
input:
component-type:
unit: the component or group of components that to
which a resource is assigned
resources: available resources
allocations: current allocations
output:
resources: available resources
allocations: current allocations
control-terms;—
task-structore:
assign({component-type+unit+allocations+
resources—allocations + resources) =
select-3(component-type + resources—suitahble-
resources)
select-4(component-type + suitable-resources +
allocations—suitable-resources)
select-random({suitable-resources—resource)
allocations :={unit, resource)Uallocations
resources !=resources/resource

A sample system trace of the execution of this task can be found in Section 7.

368 A. Th. SCHREIBER

list of
component R
component companent
ke . type o types
selection lect-1 | component
criterion prma type select

maximize synergy
minimize conflict

suitable ssible componant

: solect-2 rou b POSSH -—

grouping groupings - grouping groupings type
select ! set of

unit resources

P~
{group of) component
available resources

salect-4 allocation

select-3

suitable resources

resource

FiGURE 7. Inference structure for resource allocation in the office-assignment. domain. The figure
summarizes the results of the various decompositions and refinements of the first mode! in Figure 2.

allocate

assemble assign
plan resources

classify order group as:%?gn

claésiﬁ/ select-1 sort transform select-2 select-3 select-4

FIGURE 8. Task decomposition of the office assignment problem. Italic numes denote knowledge sources.
Two trivial select inferences (select-next and select-random) have been left out.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 369

The full inference structure that resulted from the model construction process for
this model of resource allocation is shown in Figure 7. Figure 8 shows the resulting
task decomposition.

7. Resulting system

In this section we describe some aspects of the design and impiementation of a
system that implements the behaviour specified in the model of expertise. In the
design of the system we follow the structure-preserving principle (Schreiber et al.,
1993: chapter 6): all relevant elements of the conceptual model should map onto
clearly identifiable constructs in the system. The advantages of such a design
approach are:

+ It simplifies the implementation of an explanation facility that enables the user
and/or the expert to trace the system’s execution in the vocabulary of the model
of expertise. Although we have not built a graphical interface for this particular
case, we have tried to ensure that all the necessary anchor points for such an
extension are present.

s It provides clear routes for refining and/or extending the system, such as:

* Adding/modifying domain knowledge, e.g. other conflicts or room
requirements.

« Changing the control of task execution.

« Replacing computational techniques.

* Introducing additional tasks and inferences such as for verification and
revision.

No special-purpose tools were used in the development of this system. Also, the
fact that no run-time interaction with external agents such as a user is required
simplified the system development. The chosen environment was the swi-Prolog
system (Wielemaker, 1991}, mainly for pragmatic reasons. The system architecture
is an instantiation of the skeletal architecture advocated by kaps (Schreiber et al.,
1993: chapter 6). Modules were used to support the separation of various elements
of this architecture. The system allows the user to trace system execution optionally
at the task level, displaying activation and termination of tasks, together with the
corresponding input and output, and/or at the inference level, displaying the results
of the execution of inferences. All system output is plain text. No fancy user
interface was developed.t

In the rest of this section, some partial traces of the system are shown to illustrate
how the system solves the problem with the given data sets. The source code of the
application plus a full execution trace for the first Sisyphus problem can be found in
Schretber (1992: appendix B).

7.1. SISYPHUS-91 PROBLEM

Figure 9 shows a task-level trace of the initial activation of the propose task and the
subsequent generation of the ailocation plan. Input to the propose task is the set of
components and resources. In the plan assembly task (see Section 6.1) the

T The total development time of the system was one week.

370 A. Th. SCHREIBER

Activating task "propose allocationa"
input ; components = [Werner L. Marc M.,ingi W.,Juergen L., Andy
L.,Michael T. Harry C.,Uve T, ,Thomas D.,Nonika X.
,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina K.]
input : resources = [C5-113,C05-114,05-115,05-116,C5-117
,C5-119,05-120,C5-121,05-122,C5-123]

Activating task “assemble plan'
input : components = [Werner L. ,Marc N.,Angi ¥.,Juergen L., Andy
L.,Michael T.,Harry C.,Uve T.,Thomas D. ,Nonika
X. ,Ulrike U. ,Hans ¥. ,Eva I.,Joachim I. ,Katharina ¥.]

Activating task “classify”
input : components = [Werner L.,Marc N.,Angi W.,Juergen L., Andy
L.,Nichael T.,Harry C.,Uve T.,Thomas D.,Morika
X. ,Ulrike U. ,Hans W. ,Eva I. Joachim I. Eatharina ¥.]

Task “classify" terminated
output: component types =
[manager,head_of_group.hand_of_projoct,aecrotary,researmhar]

Ahctivating task “order®
input : component types =
[manager,head_of_group.head_of_project,secretary,raﬁeerher]

Task "order" terminated
output: allocation plan =
[head_of_group,secretary,manager,haad_of_project,researnher]

Task "assemble plan" terminated
output; allocation plan =
[head_of_group,secretary,manager head_of_project,researcher]

FIGURE 9. Task-level trace of the activation of the propose task and the results of plan assembly tasks.

components are dynamically classified and subsequently ordered to generate an
allocation plan.

In Figure 10 it is shown how the researchers are grouped into units of two, based
on the criteria set out in the previous section (see Section 6.3). The transform
inference generates 105 possible groupings. Avoiding major conflicts reduces this set
to 15, by grouping the two smokers Andy and Uwe into one unit. Maximizing
synergy by putting people on different projects together reduces this set further to
10 possible groupings. Maximizing synergy by grouping people that work on similar
subjects reduces the set of 10 to two groupings. The last inference (reducing hacking
conflicts) has no effect in this particular case.

The two groupings generated by the program differ slightly from the grouping
generated by the expert in the protocol. This is due to the fact that we assumed that
the “works-with’’ relation in the sample data set represented the notion of working
on similar subjects that the expert talks about. Probably, this was not a correct
assumption and should be noted as a ke goal. However, this type of refinement does

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN N

Activating task “group”
input : plan element = researcher

Invoking inference Transform into possible groupings
input : component_type “researcher” {(a [concept(department_role}])
output: groupings < 105 POSSIBLE GROUPINGS, NOT LISTED >

Invoking inference Select suitable groupings
input : current groupings < SEE ODUTPUT PREVIOUS INFERENCE >
input : selection criterion "criterion(minimise, major_conflict)”
output: subset of groupings < 15 GROUPINGS, NANELY PRECISELY TROSE
IN WHICK THE TWO SMGKERS (ANDY AND UVE) ARE GROUPED TOGETHER >

Invoking inference Select suitable groupings
input : curremt groupings < SEE OUTPUT PREVIOUS INFERENCE >
input : selection criterion “criterion(maximise, major_synergy)”
output: subset of groupings

“[{[Werner L.,Harry C.],[Marc M.,Angi ¥.],[Juergen L.,Michael T },[Andy L.,Uve T.1],
[[werner L.,Harry C.],[Marc M.,Juergen L.],[Angi W.,Michael T 1,(Andy L. ,Uve T.11,
[[Werner L.,Harry C.],[Marc K. ,Michael T.],[Angi ¥., Juergen L.1,[Andy L.,Uve T.]],
[(Werner L.,Juergen L.],[Marc M. ,Harry C.],[Angi V. ,Michael T 1,[Andy L. ,Use T.1],
{{Werner L.,Juergen L.],[Marc M. ,Michael T.],[Angi ¥. Harry € 1,[Andy L.,Use T.11,
[[Werner L.,Marc K.],[Angi W. ,Karry C.],[Juergen L.,Michael T.),[Andy L.,Uve T.11,
[(Werner L. ,Marc W.],[Angi W.,Michael T.],[Juergen L. Harry G.],[Andy L.,Uve T.]],
[[Verner L. ,Michael T.],[Marc M., Angi M.],[Juergen L., Harry c¢.],[Andy L. ,Uve T.]],
[[Werner L.,Michael T.],[Marc M. Harry ¢.],[Angi ¥.,Juergen L.],[Andy L. ,Uve T.I],
{INerner L.,Michael T.],[Marc M., Juergen L.],[Angi V. Harry C.],[Andy L.,Uve T.113"

(a set(structure([instance(employee}]}))

Invoking inference Select suitable groupings
input : current groupings < SEE OUTPUT PREVIOUS INFERENCE >
input : selection criterion “c¢riterion{maximise, minor_synergy)"
output; subset of groupings
“[{[Werner L.,Marc M.],[Angi M.,Nichael T.],[Juergen L.,Harry C.},[Andy L., Uve T.11,
[[¥erner L.,Michael T.],[Marc M.,Angi ¥.1,[Juergen L., Harry ¢.],[Andy L. ,Uve T.1]]"

Invoking inference Select suitable groupings
input : current groupings < SEE DUTPUT PREVIQUS INFERENCE >
input : selection criterion “criterion{minimise, minor_conflict)"
output: subset of groupings
“[[[Nerner L.,Marc N.],[Angi ¥W. Michael T.],[Juergen L. Harry C.],[Andy L., Uve T.
[[Werner L.,Michael T.]1,[Marc M.,Angi W.],[Juergen L., Harry C.],[Andy L.,Use T

Task "group" terminated
output: groupings =

“[[[Werner L.,Marc N.],[Angi ¥.,Michael T.],[Juergen L., Harry C.],[Andy L., Uve T.1],
[[Werner L.,Michael T.],[Marc M.,Angi ¥.],[Juergen L. ,Harry C.],[Andy L., Uve T.111"

Fioure 10. Trace of inferences involving grouping of researchers. Shortened for readability purposes.

372 A. Th. SCHREIBER

Activating task "assign"
input : plan element = manager
input : unit = Eva I.
input : resources = [C5-113,C6-114,C5-115,C5-116,
C5-120,C5-121,05-122,05-123]
input : allocations = [[C5-117 ,Thomas D.],[C5-119,[Monika X. Ulrike U.]1]

Invoking inference Select on resocurce raquirements
input : component_type "manager" (a [concept(department_role)])
input : available resources "[C5-113,C5-114,06-115,C5-116,
C€5-120,05-121,C5-122,C5-123]"
(a set{[instance(room)]))
output: suitable resources "[C5-113,C5-114,C5-115,C5-116]1"
(a set{[instance(room)]))

Invoking inference Select on positional requirements
input : component_type "manager” (a [concept(department_role)])
input : available resources “[C5-113,C5-114,05-115,C6-116]"
(a set([instance(room}}))

input : current positions "[[C5-117,Thowas D.],

[C5-119, [Monika I.,Ulrike U.]1]1"

(a structure{ [instance (room)], list([instance(omployee)])))

output: suitable resources " [C5-116]" (a set{([instance{room}]))

Working memory operation '"selact" on “suitable resources"

with result: “C5-116"
Working memory operation "add [[C5-116,Eva I.]]" on "allccationa'
Working memory operation “subtract C5-116" on “resources'

Task “assign" terminated
output: allocations = [[C5-117,Thomas D.],
{c5~119,[Monika X. ,Ulrike U.1],
[C5-116 ,Eva 1.]]

FiGURE 11. Trace of inferences involving assigning a room to the manager.

not affect the overall structure of the model or the system and can be carried out in
a later knowledge-refinement phase.

In Figure 11 a sample trace is displayed of the execution of the assign task (see
Section 6.4) for the manager. In the example, selecr-3 generates four suitable rooms,
based on the resource requirements (the manager needs a small, single room).
Select-4 then applies the positional requirement of being as close as possible to the
head of group and selects from the candidates room C5-116, the one closest to the
room allocated to the head of group.

Figure 12 shows the solution generated by the propose task in this particular
system run. As a number of choices were made random (two possible rooms for the
head of group, three possible rooms for the heads of projects and four possible
rooms for the researchers; the allocation of the manager and the secretaries is fixed
by the allocation of the head of group) the solution space covered by the program
includes 288 potential solutions (2! x 3! x 4!).

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 373

Task "propose allocations" terminated
output: allocations =
[[[c5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Jcachim I.]1,[C5-114 Katharina X.],[C5-113,Hans ¥.],
[cs-120, {Andy L.,Use T.11,[C5-122,[Marc M.,Angi ¥.11,
[c5-121, [Werner L.,Michael T.11,[C5-123,[Juergen L. Harry €.13]

FIGURE 12. Solution produced by the propose task.

7.2, SISYPHUS-92 PROBLEM

The Sisyphus-92 problem introduces a potential constraint violation. A head of
project is replaced by a researcher who smokes, leading to an odd number of
researchers (nine) and smoking researchers (three), As the problem statement does
not contain information about how the expert handles this violation, we had to
make some assumptions about how the expert would have solved this new problem.
Again, these assumptions would have to be verified (ke goal}.

The introduction of a constraint violation raises an interesting point with respect
to the model we constructed for the 91 problem. One could argue that the propose
task should only propose assignments without any constraint violations. This is not
true for the model described in this paper: the number of violations is just
minimized by the propose task. This is in line with the nature of most of the
constraints that occur in this domain, e.g. enhancing synergy, reducing minor
conflicts, and placing an employee as close as possible to another employee. One
can view these constraints as soft constraints: the aim is to minimize violations of
these constraints, not to reduce such violations to zero. However, there also appear
to be hard constraints that should in principle not be violated, e.g. a smoking
conflict and requirements concerning rooms (size, occupancy).

This hypothesis about a distinction between soft and hard constraints (not
mentioned explicitly in the protocol) would need to be verified with the expert and
would lead to a refinement of the model of the propose task. In particular, the
selection criteria used in the grouping task would need to be labelled explicitly as
soft or hard constraints. Checking a hard constraint such as smoking would have to
produce zero viclations (and not just be minimized), otherwise a revise task should
be invoked. This revise task should be able to propose strategies for handling
violations, e.g. constraint relaxations. The specification of this revise task is outside
the scope of this paper, as it would require more detailed information such as a
protocol.

Summarizing, the changes needed to handle violations of “hard” constraints
require the following changes to the model:

= Introducing an explicit distinction between “‘soft” and “hard” constraints,
* Invoking the revise task when a hard constraint is violated.
* Specification of the revise task.

As it happens, the system we developed on the basis of the 91 problem was able
to solve the "92 problem after one small modification. Four typical fragments of this

374 A. Th. SCHREIBER

Activating task "propose allocations”
input : components = [Werner L.,Marc M., ingi ¥, Juergen L. ,Andy L.,
Michael T.,Harry C.,Use T. ,Thomas D. Monika X.,
Ulrike U.,Hans ¥. Eva I.,Jonchim 1., Christian I.]
input : resources = [C5-113,05-114,05-115,C56-116,C5-117,C05-119,
€5-120,05~121,C5-122 ,C5-123])

Task "group" terminated
cutput: groupings = [[[Werner L.,Marc M.],[Angi W.,Michael T.],
[Juergen L. ,Harry C.],[Uve T.,Christian I.],[Andy L.1],
[[Werner L..,Michael T.],[Marc M. ,Angi ¥.],
[Juergen L. Harry C.],[Uve T.,Christian I.],[Andy L.1]]

Activating task "assign"

input : plan slement = researcher

input : unit = [Andy L.]

input : resources = [C5-113]

input : allocations =
[[c5-117,Thomas D.],[C5-119,[Konika X.,Ulrike U.]],[C5-116,Eva I.1,
[C5-115 ,Hane M.],[C5-114,Joachim I.],[C5-120,[Werner L., Michael T.1],
[C5-123, [Marc M. ,Angi W.]],[C5-12%1,[Juergen L. Harry C.]1,
[c5-122,[Use T.,Christian 1.]]]

Task “propose allocations" terminated
output: allocations =
[[c5-117,Thomas D.],[C5-119,[Monika X, Ulrike U.]),[C5-116,Eva I.],
[C5-115,Hans 9.],[C5-114,Joachim I.],[C5-120, [Werner L.,Michael T.1],
[C5-123, [Karc M. ,Angi W.1],[C6-121,[Juergen L., Harry C.11,
[c5-122,[Uwe T, ,Christian I.]],[C5-113, [Andy L.]]]

FIGURE 13. Some sample trace information produced when solving the second (Sisyphus-92) problem.
The fragments shown point to the major differences from solving the firs: problem,

trace are shown in Figure 13. The group task generates two suitable groupings (from
a set of 945 potential groupings). The groupings are similar to the ones in the 91
problem (see Figure 10), except for the three smokers. Uwe and Christian (the new
researcher) are grouped together (because they both like to hack) and Andy is in a
group of his own. The modification we made to solve this problem is that incomplete
groups (i.e. Andy) are assigned after the complete groups (instead of the random
order of unit selection as specified in Section 6.2). Intuitively, this is not an
unreasonable strategy. The consequence is that Andy gets assigned to the room that
still remains after the other researchers have been allocated, namely the last single
room (see the assign task activation in Figure 13).

However, it is easy to imagine other constraint violations that would require an
explicit revise task, e.g. an odd number of smoking researchers and an even total
number of researchers. Thus, it is fair to say that the refinements mentioned earlier
would have constituted a more fundamental solution to the '92 problem.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 375

8. Discussion

HOW GENERAL AND/OR REUSABLE IS THE MODEL?

A major assumption in KADS is that the description of task and inference knowledge
is sufficiently domain-independent to have the potential of being reused in a similar
task domain. With regard to the model that was constructed for the office-
assignment domain, the following tentative observations can be made:

+ The notion of a plan representing an ordering of requirements seems to be a
quite general one: it re-occurs in many constructive task-domains.

» The differentiation into various types of requirements can be useful. In some
domains, e.g. allocating air planes to gates, the component-interaction require-
ments will not be relevant (only one plane per gate), thus leading to a simplified
version of this part of the inference structure (the grouping inferences do not
have to be included).

» The office-assignment domain contains a number of simplifications that might
not be present in other domains and thus may lead to more complex
models, e.g.:

« No time considerations come into play (no existing allocations, no planning
of future allocations). This could be very important in a domain such as
allocating air planes to gates.

* Preferences of individual components are not considered in the selection of
suitable resources: only preferences of types of components.

» An obvious shortcoming of the model is that it covers only the propose task. In
most domains, an iterative revision process is required. Some aspects of this
revision process were discussed in Section 7. The current model of the propose
task needs to be refined by making explicit distinctions between soft and hard
constraints, and invoking a revision task when hard constraints are being
violated. The nature of the revision task would need to be analysed in more
detail in order to provide adequate strategies for handling various types of
violations.

Concerning the reusability of the domain knowledge, it can be said that the
description of employees, rooms, projects, and department roles has a quite general
flavour. On the other hand, some relations such as room preferences are rather
specific for this task-domain.

COMPARISON WITH OTHER APPROACHES

This exercise has made clear that there is quite some overlap between various
approaches to modelling problem-solving. As shown in this article, problem-solving
methods described by Chandrasekaran (1988, 1990) and Marcus and McDermott
(1989) could be used as input for a Kaps modelling enterprise. We see two major
differences between the Generic Task approach (as described in Chandrasekaran,
1990}t and kaps:

¢ The Generic Task approach makes the underlying problem-solving method

t The description given in this article is much more conceptual and therefore betier comparable to
KADS than other publications.

376 A, Th. SCHREIBER

explicit (e.g. goal decomposition). In kaps this is implicit in the task knowledge
description.

* In the Generic Task approach only the method descriprion is domain-
independent: its application to a task-domain is, unlike kaDs, described in
domain-specific terms (Allemang, 1992). This limits the reusability of the
resulting model.

In the computationally-oriented approaches, the underlying assumptions about
the reasoning techniques supported by the approach tend to bias the problem-
solving model. For example, in a pure constraint-satisfaction approach the idea of
grouping will usually not be considered and will also not be easy te include.

WEAK POINTS OF THE APPROACH

In this application of kaps, some weak points that have already been pointed out
(see Schreiber er al., 1993: chapter 1), become very clear:;

« If no interpretation model is available, the knowledge engineer has to construct
a model almost from scratch.

* The typology of knowledge sources described in Breuker et al. (1987), and used
quite rigorously in this article, does not always provide appropriate distinctions
between inferences. For example, knowledge sources of type select appear in
many places in the model presented and range from trivial selections to
inferences involving complex knowledge structures (select 2—4).

Bob Wiclinga and Werner Karbach provided extensive comments on earlier versions of this
article.

The research reported here was largely carried out in the course of the kaps-11 project, and
was partially funded by contract P5248 (kaps-11) of the espriT programme of the European
Commission. The partners in the project are Cap Gemini Innovation (France), Cap Gemini
Logic (Sweden), the Netherlands Energy Research Foundation ecn (The Netherlands), eriteL
(Spain), 1BM France (France), Lloyd’s Register (United Kingdom), the Swedish Institute of
Computer Science (Sweden), Siemens ac {Germany), Touche Ross mc (United Kingdom),
the University of Amsterdam (The Netherlands) and the Free University of Brussels
(Belgium). This paper reflects the opinions of the author and not necessarily those of the
consortium.

References

ALLEMANG, D. (1992). Modelling a configuration problem with Generic Tasks. In M
Linster, Ed. Sisyphus '91: models of problem solving. GMD Report no. 663, St
Augustin, Germany.

BREUKER, J. A., WIELINGA, B.]., van SoMEREN, M., DE Hooa, R., SCHREIBER, A. T., pE
GrefeF, P., BrepEwEG, B., WisLEMAKER, J., BiLLaurt, J. P., Davoopi, M. &
Havywarp, S. A. (1987). Model driven knowledge acquisition: interpretation models.
ESPRIT Project P1098 Deliverable D1 (task Al), University of Amsterdam and STL
Ltd.

CHANDRASEKARAN, B. (1988). Generic tasks as building blocks for knowledge-based
systems: the diagnosis and routine design examples. The Knowledge Engineering Review,
3(3), 183-210.

CHANDRASEKARAN, B. (1990). Design problem solving: a task analysis. A/ Magazine, 11,
59-71.

Esnecman, L. (1988). MOLE: a knowledge-acquisition tool for cover-and-differentiate
systems. In S. Marcus, Ed. Automating Knowledge Acquisition for Expert Systems, pp.
37-80. Boston: Kluwer.

APPLYING KADS TO THE OFFICE ASSIGNMENT DOMAIN 377

Marcus, S. & McDermotr, . (1989). SALT: a knowledge acquisition language for
propose-and-revise systems. Artificial Intelligence, 39(1), 1-38,

Musen, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition Tools.
Research Notes in Artificial Intelligence. London: Pitman,

Puepe, F. (1990). Problemidsungsmethoden in Expertensystemen. Studienreihe Informatik.
Berlin: Springer-Verlag.

ScHREIBER, A. T. (1992). Pragmatics of the knowledge level. PhD thesis, University of
Amsterdam.

SCHREIBER, A. T., Akkermans, J. M. & WieLinGa, B. J. (1991). On problems with the
knowledge level perspective. In L. Steers & B. Smuth, Eds. AISB-91: Arificial
Intelligence and Simulation of Behaviour, pp. 208-221. London: Springer-Verlag, Also in
J. H. Boose & B. R. Gaines, Eds. Proceedings Banff’00 Knowledge Acquisition
Workshop, pp. 30-1-30-14. University of Calgary: SRDG.

ScHREIBER, A. T., WIELINGA, B. J. & BreUKER, J. A., Eds (1993). KADS: A Principled
Approach to Knowledge-Based System Development. London: Academic Press.

WIELEMAKER, J. (1991). SWI-Prolog 1.5: Reference Manual. University of Amsterdam,
Social Science Informatics, Roetersstraat 15, 10-18 WB Amsterdam, The Netherlands.
E-mail: jan@swi.psy.uva.nl.

WIELEMAKER, J. & BicLaucr, J. P. (1988). A KADS analysis for configuration. ESPRIT
Project P1098, Deliverable E5.1 Uva-F5-PR-001, SWI, University of Amsterdam.
Available from: University of Amsterdam, Social Science Informatics, Roetersstraat 15,
1018 WB, The Netherlands.

WIELINGA, B. ., ScHreBER, A. T. & BREUKER, J. A. (1992). KADS: a modeiling approach
to knowledge engineering. Knowledge Acquisition, 4(1), 5-53. Special issue “The KADS
approach to knowledge engineering”. Reprinted in B. Buchnanan & D. Wiikins, Eds
(1992). Readings in Knowledge Acquisition and Learning, pp. 92-116. San Mateo, CA:
Morgan Kaufman.

