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Chapter 1

Introduction

1.1 Symbolic AT and the Field of Knowledge Engineering

In this age of technological advances, the question whether one can build a “thinking
machine” has become a popular topic, both in scientific circles and in social conversations.
Leibniz was probably one of the first to come up with the idea of mechanising human
thought through a calculus [Russell, 1961; Mars, 1987]. The goal of his concept of a
Characteristica Universalis was to define a generalised version of mathematics which would
enable the resolvement of philosophical debates through computations. More than two
hundred years later, Turing defined the concept of a universal, programmable machine,
and the “computer” (at least in theory) was born. When, after the second world-war, the
first programmable computers became available, researchers started to work on computer
programs that could do something “intelligent”, e.g. translate sentences from one language
into another. This research field has become known as artificial intelligence (A1).

A critical assumption behind much Al research is the hypothesis that it is possible
to simulate intelligent behaviour through formal manipulations of symbols in a computer
program. Smith has summarised this assumption elegantly in his knowledge-representation
hypothesis [Smith, 1985; p. 33]:

“Any mechanically embodied intelligent process will be comprised of struc-
tural ingredients that a) we as external observers naturally take to represent a
propositional account of the knowledge that the overall process exhibits, and b)
independent of such external semantical attribution, play a formal but causal
and essential role in engendering the behaviour that manifests that knowledge.”

This hypothesis, especially in its strong form (“all intelligent behaviour can be simu-
lated”), has given rise to many debates within and outside the field of A1. We agree with
Smith that, although we are not even in a position to commit ourselves fully to the weak
version of the knowledge representation hypothesis, “it deserves our attention”.

One of the areas in Al which builds heavily on the knowledge representation hypothesis
is the field of knowledge-based systems. A knowledge-based system (KBs) is a system that
is capable of carrying out problem-solving tasks, such as diagnosing diseases or configuring



2 Pragmatics of the Knowledge Level

device components.!. A KBs employs a symbolic representation of domain-specific knowl-
edge in carrying out its task (hence the name knowledge-based). Knowledge-based systems
were first developed in the sixties as a reaction to the so-called “general-purpose” or
“weak” problem solving programs such as Gps [Newell & Simon, 1963]. Weak systems em-
ployed one general method such as means-end analysis for solving problems. Such general
methods were however considered by many as inadequate for solving non-toy problems.?
In contrast, a KBS was said to rely on large amounts of domain-specific knowledge and
domain-specific strategies, which would enable it to achieve problem-solving capability.
Given the focus in current KBS research on explicating the general problem solving strat-
egy behind a system, the truth probably lies somewhere in the middle.

The first generation knowledge-based systems employed one relatively simple inference
engine working on a knowledge base in a particular representational format, usually pro-
duction rules. [Clancey, 1983] showed in his analysis of the prototypical system of this
generation, MYCIN, that such a knowledge base hides various important properties of the
reasoning process and of the structure of the knowledge in the application domain. Cer-
tain rules, or parts of rules, fulfill particular roles in the reasoning process which remain
implicit in such a KBS organisation. This implicitness of underlying structures impairs the
acquisition and refinement of knowledge for the KBS as well as the reuse of the system, its
explanatory power and the assessment of its relation with other systems.

It is fair to say, that this problem was not specific for the field of knowledge engineering
(KE, the more or less standard term for the process of KBs development). Similar prob-
lems were being identified in the broader area of knowledge representation. The clearest
evidence of this was brought forward by Brachman and Smith through the results of their
SIGART questionnaire [Brachman & Smith, 1980]. The aim of this questionnaire was to
get data on various knowledge representation approaches in order to perform a compara-
tive study. About the results of their analysis of the huge amount of data received, they
remark:

“Perhaps more than anything else, it has emerged as a testament to an as-
tounding range and variety of opinions held by many different people in many
different places.” [Brachman & Smith, 1980; p. 1]

Everyone seemed to be speaking a different language: a true Babel.

In response to this confusion, Newell coined, in his presidential address to AAAI-80,
the ‘knowledge-level hypothesis”. The key point underlying his argument was that the
confusion arose because Al research was too much focused on detailed representational
issues. What was missing was a description of the rationality behind the use of Al tech-
niques. He pleaded for a shift of emphasis in Al research from the “how” questions to the
“why” questions. The knowledge-level was his proposal for realising a description of an Al
system in terms of its rational behaviour: why does the system (the “agent”) perform this

“action”, independent of its symbolic representation in rules, frames or logic (the “symbol
level”).

!The term “expert systems” is also sometimes used to denote such systems, as problem-solving tasks
are often carried out by experts in particular field, e.g. a doctor, an engineer.

2The recent successes of chess systems has made clear that at least for one type of application of weak
methods this objection does not hold. The statement of Boden that “there is no prospect of a chess
master being beaten by a program in the near future” [Boden, 1977; p. 353] has certainly turned out to
be incorrect.
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During the eighties, this idea of introducing a knowledge-level description was taken on
in knowledge engineering research to solve the problems mentioned earlier. The purpose
of a knowledge-level model of a KBs is to make the organisation of knowledge in the
system explicit. It should provide an implementation-independent description of the role
that various knowledge elements play during the problem-solving process of the system. A
knowledge-level model should be able to explain the rationale behind the way in which the
system carries out a task in a vocabulary understandable for humans. This makes such a
model an important vehicle for communicating about the system both during development
and during system execution.

The central topic of this thesis is to study how Newell’s idea of a knowledge-level can
be put into use in a principled way to support knowledge engineering.

1.2 Context and Theme of this Thesis

The research described in this thesis was carried out in the context of the development
of the KADS® approach to KBS development. KADS has been and is being developed in
a series of ESPRIT projects. The major actors in the development of the original ideas
behind KAaDs were Bob Wielinga and Joost Breuker [Wielinga & Breuker, 1984; Breuker
& Wielinga, 1984; Wielinga & Breuker, 1986].

Fundamental to the KADS approach is the use of “models of expertise” to analyse and
specify the required problem-solving behaviour in a KBS application domain. KADS models
of expertise have a cognitive flavour in the sense that they are aimed at human interpreters.
The vocabulary in which they are expressed is that of experts and/or potential users of
the system. KADS models of expertise are not cognitive models in the true sense of the
word: their purpose lies in supporting a structured engineering process of knowledge-based
systems.

The early Kaps-related work in the first half of the eighties has developed into a rather
broad field of research issues concerning a methodology for KBS development, including
topics such as organisational embedding, life-cycle models, user interaction, formal speci-
fication and executable languages. The core of the approach however still has remained to
be the nature and role of conceptual models of expertise in the knowledge engineering pro-
cess. Although this was not an articulate assumption behind the KADS models of expertise
as presented in [Wielinga & Breuker, 1986], these models can be seen as a reification of
the knowledge-level hypothesis for practical use in knowledge engineering. Their aim is
similar: providing an implementation-independent specification of the required problem-
solving behaviour in the target KBS, which is intelligible for humans.

The general theme of this thesis is a theoretical and practical investigation of KADS
models of expertise as knowledge-level descriptions. We study the nature of the relation
between KADS models and Newell’s knowledge hypothesis. We investigate a number of
important questions, notably:

e What is an adequate language for describing the structure of domain-specific knowl-
edge?

*The interpretation of this acronym has evolved over the years: from “Knowledge Acquisition Docu-
mentation System” via “Knowledge Acquisition Documentation Structuring” to “Knowledge Analysis and
Design Structuring”.
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e What are principles underlying the model construction process?
e How should knowledge-level descriptions be transformed into symbol-level descrip-
tions?

We describe a sample application of KADS. We also compare the KADS approach with
two leading software engineering approaches and describe the use of KADS in a comparative
study between two knowledge-level models developed outside the scope of KADS.

1.3 Structure of this Thesis

The body of this thesis consists of eight chapters. Each chapter represents a self-contained
piece of work. Some chapters constitute papers that have been published elsewhere. Every
chapter addresses particular research topics within the general theme of this thesis. This
section gives an overview of these research topics.

KADS and the knowledge-level hypothesis Ch. 2 contains an investigation of
a number of general issues related to Newell’s knowledge level. This paper was triggered
by Sticklen’s criticism of the knowledge-level hypothesis [Sticklen, 1989]. We relate KADS
models of expertise to Newell’s original hypothesis and to other interpretations of the
knowledge-level. We discuss criticisms such as the predictive power of knowledge-level
models and the inability to represent control. In the process, we try to explicate a number
of assumptions behind KADS such as the distinction between analysis and design and the
computational adequacy of models of expertise.

Fundamentals of KADS models of expertise The purpose of Ch. 3 is to give a
comprehensive and consistent description of the fundamentals of KADS. Over many years,
people have complained about the lack of such a description. We present these funda-
mentals through three cornerstones underlying the KADs approach: (i) the introduction of
various models as a means of coping with the complexity of the knowledge engineering pro-
cess, (ii) the KaDs framework for modelling the required expertise, and (ii) the reusability
of generic model components as templates supporting top-down knowledge acquisition.
We also relate KADS to other knowledge engineering approaches.

Of course, much of the material discussed in this chapter is the product of research of
a group of people, notably the co-authors of this chapter, Wielinga and Breuker. However,
it is probably fair to say that one of the reasons that an overview article such as this had
not been written earlier was that some issues were not worked out in sufficient detail. In
this chapter we describe:

e The introduction of the notion of a domain schema as a structural description of the
domain-specific knowledge.

o An exploration of one of the key parts of the modelling framework: the relation

between domain and inference knowledge.

A refinement of the formulation of task knowledge.

A (brief) overview of knowledge modelling activities.

e The description of a non-toy “running example”.

The paper from which this chapter is derived was the basis for the special issue on
KADS of the Knowledge Acquisition Journal [Schreiber, 1992].
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Models of expertise: related research topics Ch. 4, Ch. 5 and Ch. 6 address
three research topics that have proven to be of vital importance when using models of
expertise in knowledge engineering:

Domain-knowledge modelling Traditionally, KADS was very functionally oriented: the
emphasis was on notions like inference structures, which specify the basic functions
(from a knowledge-level point of view) of the target system. The descriptive vocab-
ulary for the domain-specific data manipulated by inferences consisted of “concepts
and relations”. The goal of Ch. 4 is to develop a more expressive data modelling
framework that meets the specific requirements posed by knowledge engineering.
The idea of the proposed language is to provide the knowledge engineer with a no-
tation that allows generalisations over various knowledge representation techniques.
This is in line with the idea of a knowledge-level perspective, where one does not
want to commit oneself to a particular, “symbol-level”, representation. The use
of the proposed data modelling language, which is partly based on ideas proposed
in semantic database modelling research, is illustrated through its application to a
sample domain.

Model construction An often-heard criticism of the KaDS approach is that it only pro-
vides a descriptive framework. Apart from the set of interpretation models, there
is little support for the actual model-construction process. In Ch. 5 we discuss the
construction of inference structures: a crucial ingredient of KADS models of exper-
tise. We show how an initial inference structure can be gradually refined into an
inference structure that meets the requirements of the application domain at hand.
Model construction can be supported by generic model components of a smaller grain
size than interpretation models. We illustrate the approach with an example showing
how a KADS version of Clancey’s heuristic classification model can be constructed.
We also compare this inference structure with Clancey’s latest observations about
heuristic classification [Clancey, 1992].

In addition, we discuss a number of ambiguities in the graphical representation of
inference structures and propose some extensions to cope with these problems.

From knowledge-level to symbol-level In Ch. 6 the operationalisation problem is dis-
cussed: how does one transform a knowledge-level description into a symbol-level
description that can be implemented on a machine? We discuss the various types
of decisions that have to be made in this design and implementation process. The
notion of structure-preserving design is discussed as the leading principle that should
underly this process. A skeletal architecture for “KADS” systems is presented, which
supports a structure-preserving design. We also discuss various existing support
environments for operationalising knowledge-level models and present an example
environment that we developed.

A sample application Ch. 7 contains a sample application of KADS in a domain
of allocating offices to employees. This application was built in the context of the Sisy-
phus’91 project “Models of Problem Solving”. This project was initiated at the European
Knowledge Acquisition Workshop 1990. The aim of the enterprise was to apply various
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knowledge modelling approaches to the same application domain in order to get a common
understanding of these approaches. This was felt to be a necessary first step in arriving at
generally-shared theories about the nature an role of knowledge-level models in knowledge
engineering.

KADS and conventional software engineering A question that frequently
arises, especially in discussions with people from the software-engineering community,
is how KADs relates to developments in software engineering. The aim of Ch. 8 is to com-
pare the KADS approach with two leading software-engineering methodologies: Modern
Structured Analysis [Yourdon, 1989b] and Object-Oriented Analysis [Rumbaugh et al.,
1991; Coad & Yourdon, 1991]. We discuss both similarities and differences with respect
to three perspectives from which a system can be viewed: the data perspective, the func-
tional perspective and the control perspective. A major common theme that arises, also
for future research, is the issue of reusability.

The future — a first comparative study Currently, all knowledge-level models
are described either in an informal way or through the systems that implement these
models. This type of description often leads to ambiguities and /or misunderstandings. In
Ch. 9 an attempt is made to describe the cover-and-differentiate method for diagnosis in
a more formal way and to compare this method to heuristic classification. We identify
considerable differences between the two methods, although in the original literature cover-
and-differentiate was said to be a specialised form of heuristic classification.

We are not claiming that the model presented is the only correct one. However, the
account given in this chapter can be a starting point for a precise definition of what
methods like cover-and-differentiate actually do. We think this type of comparison can
be a prelude for much further work which should ultimately lead to a shared library of
generic models and model components.

In the last chapter we summarise the conclusions of the research described in this
thesis. We also discuss open questions with respect to KADS as well as in the broader
context of knowledge enginnering research. Some possible future developments are briefly

addressed.



Chapter 2

On Problems with the Knowledge-Level
Perspective

In this chapter some points of criticism on Newell’s Knowledge-level Hypothesis are investigated. Among
those are: the inability to represent control, the potential computational inadequacy, the lack of predic-
tive power and the non-operational character (the problem of ’how to build it’). We discuss Sticklen’s
Knowledge-level Architecture Hypothesis in which he tries to overcome these problems. On the basis of
general arguments as well as specific insights from our KADS knowledge level modelling approach we reject
the points of criticism. We also argue that the extension Sticklen proposes is not necessary and partly also
unwanted.

This chapter was first presented as a paper at the Banff’90 Knowledge Acquisition Workshop and later
invited for presentation at the AISB’91 conference on Simulation of Behaviour. It is co-authored by Hans
Akkermans and Bob Wielinga. Reference: G. Schreiber, H. Akkermans, and B. Wielinga. On problems
with the knowledge-level perspective. In L. Steels and B. Smith, editors, AISB91: Artificial Intelligence
and Stmulation of Behaviour, pages 208-221, London, 1991. Springer Verlag. Also in: Proceedings
Banff’90 Knowledge Acquisition Workshop, J.H. Boose and B.R. Gaines (editors), SRDG Publications,
University of Calgary, pages 30-1 — 30-14.

2.1 Introduction

The introduction of the knowledge-level hypothesis by Newell has attracted considerable
attention and stimulated new lines of research. It claims that there exists a distinct
computer systems level that lies immediately above the symbol or program level. This
knowledge level characterises the behaviour of problem solving agents in terms of their
goals and actions, with knowledge serving as the medium, using a simple principle of
rationality saying that an agent will carry out a certain action if it has knowledge that
one of its goals can be achieved by that action [Newell, 1982].

It was Clancey who first showed the importance of this idea for the theory of knowledge-
based reasoning [Clancey, 1983; Clancey, 1985b]. Since then, various authors have elabo-
rated on the viewpoint that the knowledge level is the right level of abstraction for knowl-
edge acquisition and engineering [Wielinga et al., 1989; Bylander & Chandrasekaran, 1988;
McDermott, 1988; Alexander et al., 1988; Musen et al., 1987; Steels, 1990]. This research
has focused on the conceptual, implementation-independent aspects of knowledge and,



8 Pragmatics of the Knowledge Level

on this basis, has contributed to generic models of problem solving and to more solid
methodologies for KBS development.

Evidently, the knowledge-level hypothesis has been a very fruitful one. On the other
hand, it has also attracted strong criticism. This is well exemplified in a recent paper by
Sticklen and the associated commentaries [Sticklen, 1989]. In brief, from discussions like
these we single out as basic problems related to the knowledge-level hypothesis:

1. Computational inadequacy: Due to the high level conceptual bias of knowledge-level
models, a real danger is their potential computational inadequacy.

2. Non-operational character: knowledge-level models do describe knowledge that is
necessary for problem solving, but give no clue as to how to build computational
systems embodying and exploiting that knowledge.

3. Inability to represent control: knowledge-level models capture knowledge used in
problem solving actions, but they do not provide ways to express the control of
problem solving.

4. Lack of predictive power: knowledge-level models are useful to explain —in retro-
spect the behaviour of certain problem solving agents (such as A1 programs), but are
unable to generate empirically testable predictions about that behaviour.

Interestingly, most of this criticism on the knowledge-level hypothesis appears to be
inspired by what is seen by some as its greatest advantage: moving away from imple-
mentational issues in favour of the conceptual aspects of knowledge. In the present work,
which is basically a position paper, the knowledge-level hypothesis and its problems will be
investigated in some detail. On the basis of general arguments as well as specific insights
from our KADs knowledge-level approach to kKBs development [Wielinga et al., 1989], we
will consider —and reject— the points of criticism raised above.

2.2 The Knowledge-level Hypothesis Debate

2.2.1 The knowledge-level hypothesis The “knowledge-level hypothesis” (KLH)
was put forward by Newell in his presidential address to AAA1-80 [Newell, 1982]. Newell
discusses in this address the notions of knowledge and representation which in his view
are central to Al. Newell signals that most of the work in Al is centred on representation.
Representation refers here to the actual data structures and processes in an (A1) program.
He suggests that the confusions in Al research on representation may (partly) be due
to the limited attention the research community has given to the study of the nature of
knowledge. The Knowledge-level Hypothesis is aimed at providing a platform for studying
knowledge independent of its representation in a programming language. Newell phrases
the KLH as follows:

“There exists a distinct computer systems level, lying immediately above the
symbol level, which is characterised by knowledge as the medium and the
principle of rationality as the law of behaviour.”
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Representations (data structures and processes) are part of the the symbol level,
whereas knowledge is the prime ingredient (the medium) at the knowledge level. Newell
sketches the structure of the knowledge level as an agent that has a physical body (con-
sisting of a set of actions), a body of knowledge, and a set of goals (goals are bodies of
knowledge about the state of the environment). The principle of rationality that governs
the behaviour of the agent is formulated as follows:

If an agent has knowledge that one of its actions will lead to one of its goals,
then the agent will select this action.

The central issue now becomes: what is the nature of the knowledge the agent has?
Newell characterises knowledge as a“competence-like notion, being a potential for gener-
ating action” and as “entirely functionally in terms of what it does, not structurally in
terms of physical objects”. A representation is defined as a “symbol system that encodes
a body of knowledge”.

As an example of the usefulness of a distinction between knowledge level and symbol
level, Newell points to the work of Schank on conceptual dependency structures [Schank,
1975]. He argues that the main contribution of this work is at the knowledge level —
namely by providing a quite general way of describing knowledge of the world. Although
Al researchers felt that this work was incomplete without an implementation, the actual
program added little to the theoretical work: it was just a large Al program with the usual
ad hoc constructions.

2.2.2 Knowledge-level modelling in knowledge acquisition One of the areas
where the knowledge-level hypothesis has received considerable attention is the field of
knowledge acquisition. Experience with the first generation of knowledge-based systems
(MYCIN and its derivatives) showed that the transfer approach to knowledge acquisition
was simply inadequate. In the transfer approach the knowledge engineer tries to extract
knowledge from a domain expert in the form of the representation in the system (e.g.
as production rules). The problems with this approach are manifold: the mapping from
elicited expertise-data onto the required representation is difficult and often not possible;
systems with a large knowledge base become difficult to maintain; explanation facilities are
poor; etc. The main reason for this is that the gap between the observed problem solving
behaviour and the target application is just too wide. What is needed is an intermediate
description of the expertise in a task domain at a more abstract level. The knowledge
level provides precisely this intermediate level of description. The introduction of this
intermediate model implies a different approach to knowledge acquisition. In contrast to
the transfer approach, expert data are not transferred directly into machine symbols, but
serve as input for a modelling process.

Broadly speaking, two approaches can be identified to the use of the idea of a
knowledge-level description in knowledge acquisition, In the first approach the starting
point is an implementation of (parts of) a problem solver. Here, knowledge-level notions
are introduced by providing abstract, implementation-free, descriptions of the knowledge
elements required by the problem solver. Examples of this approach are the Generic Task
approach [Bylander & Chandrasekaran, 1988] and the work of McDermott et al. on MOLE,
SALT and other systems [Marcus, 1988]. In the second approach, exemplified in the KADS
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methodology [Wielinga & Breuker, 1986], the knowledge-level descriptions are part of a
conceptual model of a task domain. The conceptual model serves as a specification of the
(knowledge) requirements for a particular knowledge-based application. The conceptual
model is not directly linked with the actual implementation.

2.2.3 Criticism of the knowledge-level hypothesis The introduction of the KLH
has led to criticism both of the KLH itself and also of the application of knowledge-
level descriptions in the development of knowledge-based systems. In a recent article,
Sticklen [Sticklen, 1989] phrases these points of criticism in the form of an extension of
the Knowledge-level Hypothesis: the “Knowledge-level Architecture Hypothesis”. We will
go through his argument in some detail, as his discussion is in a sense typical for critics
of the KLH.

First, Sticklen acknowledges that the notion of a knowledge-level description is a useful
one. He points to the work of Clancey on Heuristic Classification [Clancey, 1985b] as a
prototypical example of a knowledge-level description of a problem solving agent (process).
In his article, Sticklen apparently views the “horse shoe” inference structure of heuristic
classification as a complete knowledge-level description. He then concludes that this type
of description is unable to yield verifiable predictions of the problem solving behaviour
of an agent and that thus the knowledge-level hypothesis is incomplete. This conclusion
is based on the assumption that a scientific theory has two necessary components: (i)
the theory must account for known phenomena and (ii) the theory must make (verifiable)
predictions about phenomena that will be observed in the future. He argues that the
lack of predictive power of knowledge-level descriptions is due the fact that there is no
way in Newell’s knowledge level to specify problem solving control. In his Knowledge-level
Architecture Hypothesis he proposes to extend the KLH with the possibility of decomposing
an agent (task) into sub-agents (sub-tasks) and allow specification of ordering among sub-
agents. This extension seems harmless enough. Newell himself is not very clear whether
decomposition of agents is allowed. A requirement for the decomposition is that the
resulting sub-agents are ’knowledgeable’, i.e. that they can be described in knowledge-
level terms. Sticklen is however not very clear on how this can be ensured.

Given a decomposition of an agent into sub-agents, Sticklen defines the corresponding
knowledge-level architecture through two ingredients: (i) a specification of the communi-
cation paths between sub-agents, and (ii) the specification of the message protocols for
inter-agent communication.

Sticklen claims that a knowledge-level architecture description provides a

“blueprint for how to build a problem solver that may be used as a simulator.”!

The simulator provides the required predictive part of the theory, The role of the simulator
can be compared with the role of numeric simulations in physics.

In his article, Sticklen tries to cope with some —highly interrelated— points of criticism
of the knowledge-level approach,. He mentions two points explicitly: the inability to
represent control and the lack of predictive power. Two other points of criticism are:

o Computational inadequacy When a knowledge-level description is transformed into

Ttalicisation by the authors
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a symbol level description, what kind of guarantees does one have that the resulting
system is computationally adequate?

e Non-operational character A knowledge-level model gives no clues about how to
build an operational system, i.e. it does not solve the ’design problem’.

These last two points are also covered by the knowledge-level architecture hypothesis
through the blueprint for building a simulator (i.e. a knowledge-based application).

In the rest of this chapter we discuss the various points of criticism. We will argue
that the extension that Sticklen proposes is not necessary and partly also unwanted.

2.3 Representing Control in Knowledge-level Models

Sticklen’s Knowledge-level Architecture Hypothesis encompasses an extension of the
knowledge level with respect to the description of problem solving control. In our view
knowledge about task (agent) decompositions and dependencies is indeed just another
type of knowledge with its own specific characteristics that should —and can— be de-
scribed in a knowledge-level model. The description in [Clancey, 1985a] of the diagnostic
strategy developed for NEOMYCIN is a good example of what we would call a knowledge-
level description of problem solving control. Clancey calls this a “competence model” of
diagnostic strategy, which already indicates that the description has the knowledge-level
flavour Newell is aiming for in his KLH.

In our opinion, the question whether this type of (competence-like) control knowledge
is or is not present in the Knowledge-level Hypothesis, as originally stated by Newell,
is not very important or interesting. From our experience it is clear that the above-
mentioned type of control knowledge is a necessary and important ingredient of a practical
knowledge-level theory of problem solving. In addition to the task decompositions and
inter-dependencies (the task knowledge in the kaADS model, see Ch. 3) we would also add
meta-knowledge about a problem solving agent as a separate kind of control knowledge
(somewhat confusingly termed “strategic knowledge” in KADs). This strategic or tactical
knowledge is an important ingredient for building more flexible knowledge-based systems.

The problem of ensuring that the decomposition results in ’knowledgeable’ sub-agents
can be handled by providing a knowledge-level typology of canonical inferences (the low-
est level of sub-agents), thereby ensuring that such agents can indeed be described in
knowledge level terms. Examples of canonical inferences are the three steps in the Heuris-
tic Classification inference structure (abstraction, association and refinement) [Clancey,
1985a] and the set of knowledge sources defined in KaDS (see Table 3.2). Clearly, much
work still needs to be done in this area to arrive at a coherent and more or less complete
typology.

What worries us in the Knowledge-level Architecture idea is that it should provide a
blueprint for building a simulator. Whereas we think that it is very well possible to define
structured ways of building a knowledge-based system from a knowledge-level specification
(see Sec. 2.6), we do not believe, that a knowledge-level model should —and can— contain
all information necessary for building the implementation. In fact, by nature it should
not! In the process of implementing a system it will always be necessary to add specific
information. The design process is constrained by the knowledge level specification, but
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a large number of design decisions concern issues that are not relevant at the knowledge
level.

We think that the confusion arises from the way in which the word “control” is used.
There is a difference between what we would call respectively knowledge-level control and
symbol level control. The description of the diagnostic strategy of NEOMYCIN in [Clancey,
1985a] is a clear example of knowledge-level control. This type of knowledge concerns
task decompositions of and orderings between knowledgeable agents and possibly also
meta-knowledge about agents. Symbol level control is concerned with the control issues
that arise when a particular representation or Al technique is selected to realise a problem
solving agent. A similar distinction between these two types of control is made by Gruber
[Gruber, 1989; p. 5].

Although symbol level control is not an issue at the knowledge level, it does pose several
problems that have to have solved in the implementation of a particular application. One
only has to look at the vast amount of “symbol level” Al research to conclude that these
problems are by no means trivial. Thus, specification of knowledge-level control does not
provide a blueprint for building a simulator.

2.4 Epistemological and Computational Adequacy

Knowledge-level models give a high level description of the knowledge as it is utilised in
problem-solving reasoning. Although terminology is different, a common view appears to
be emerging in the literature based on the idea that the knowledge level is constituted
by different types and components of knowledge, and that these forms of knowledge play
different roles in the reasoning process and have inherently different structuring principles.
In addition, the knowledge-level approach attempts to demonstrate that many of these
knowledge types and components have a generic character, i.e., they are applicable to a
broad class of tasks and/or domains. In this sense, generic knowledge components can be
viewed as intermediate in the continuum from weak to strong methods.

The advantage of knowledge-level models lies in yielding a high level and intuitive
explanation of reasoning behaviour. Moreover, generic models at the knowledge level
are important vehicles for knowledge acquisition, because they provide the knowledge
engineer with reusable interpretation ‘templates’ that guide the analysis and organisation
of elicitation data.

As a consequence of the high-level conceptual nature, a major objection to the use of
knowledge-level models in the KBs development process is their potential computational
inadequacy. Since knowledge-level models do not specify the operational control regime in
full detail they are apt to potential combinatorial explosive behaviour. The generic task
approach by Chandrasekaran et al. takes the view that the knowledge-level description
and the operational problem-solving method as employed in the computational system
cannot be separated. In contrast, the choice of computational techniques to realise a
certain knowledge-level function is seen in KADS as part of the design activity in knowledge
engineering (further discussed in Sec. 2.6). An important criticism of the KADs-type
of conceptual models is therefore that —although they are very useful from a practical
epistemological viewpoint— they do not guarantee computational tractability.
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2.4.1 The knowledge level: role limitations In this very broad and general way
of speaking, the criticism above is correct: knowledge-level models do not make state-
ments about computational adequacy as such. However, we claim that the structure of
knowledge-level models as outlined previously provides important safeguards against the
computational inadequacy. The combinatorial complexity at the computational level is
caused in our view by the unrestricted applicability of and access to knowledge as present
in the knowledge base. The underlying principle of knowledge-level modelling is imposing
structure through knowledge differentiation. This is achieved by distinguishing within the
body of knowledge involved different types and components that play specialised roles in
the totality of the problem-solving process.

An example is the cover-and-differentiate method [Eshelman et al., 1988] for diagnosis
which takes the following steps:

1. Determine events (hypotheses) that potentially explain symptoms.

2. Identify information that can differentiate between candidate explanations by ruling
out, providing support for candidates, providing preferences.

3. Get this differentiating information and apply it.
4. If new symptoms become available, go to step 1.

In this example, several types of knowledge are specified in an informal way. First,
the domain should provide concepts like: event, symptom, explanation link, preference,
rule-out relations etc. Second, a number of basic inference types (similar to KaDs knowl-
edge sources, see Ch. 3) are defined: generating a hypothesis, matching a hypothesis to
the available data, selection or ordering, compute preferences. In addition there is con-
trol knowledge that indicates that all possible candidates are generated given a set of
symptoms, and that differentiating information is obtained in a backward manner. These
aspects of knowledge would be categorised as task knowledge in KADS.

The differentiating requirements and constraints as laid down in the knowledge model
express the specific role that the considered knowledge plays in the problem-solving pro-
cess. This limits the use that can be made of that knowledge. For instance, a logical
implication sentence of a certain type can be specified to be usable only for matching
inferences, and not for other types of inference steps (like, say, a selection). KADS notions
such as knowledge sources, metaclasses and task structures (see Ch. 3) generally yield the
possibility of selecting specific rules or theories needed to produce a certain inference. In
this way the knowledge-level model provides role-limiting constraints [McDermott, 1988]
to the use of knowledge.

2.4.2 The computational level: access limitations Thus, an essential epistemo-
logical feature of knowledge-level models is that they specify role limitations of knowledge.
The corresponding notion at the computational level is that of access limitations?. The
knowledge that is specified in a KADS conceptual model cannot be used in arbitrary ways:
it has to fulfill certain typing requirements and can only be applied in accordance with the

2Cf. Newell’s slogan: representation = knowledge + access
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constraints specified by the model. Given that knowledge components can only be selec-
tively used due to specified role-limiting constraints, the consequence will be a restricted
access to the computational representation of those components in a knowledge-based
system. Assuming that (as said) the computational complexity results from unrestricted
applicability of and access to knowledge, the structure of a knowledge model has a pro-
found effect on the computational adequacy. If the knowledge model sufficiently refines
the various knowledge types and explicitly indicates what inferences access what domain
structures, the computational complexity will be greatly reduced.

Our position is supported by experiences from Al. Here, a common method to achieve
computational tractability is to introduce structural differentiations that at the knowledge
level can be characterised as adding new role specialisations and limitations of knowledge.
As a matter of fact, this attitude is quite clearly exemplified in the work on generic tasks.
Also heuristic classification is a good specimen: if direct association between data and
solutions results in a computationally inadequate model, a possible method to obtain a
more tractable model is the introduction of additional inference steps, wviz., abstraction
and refinement. The associated knowledge can now be specified to be accessible only in a
restricted part of the ‘horse-shoe’ inference structure, whereas this is impossible in a simple
direct-association model. Yet another interesting example is provided by the work of Patil
on medical diagnosis [Patil, 1988], showing that complicated forms of diagnosis can be
gradually built up by starting from a simple generate-and-test method and subsequently
introducing new elements of knowledge differentiation, so as to preserve the computational
adequacy with increasing task complexity.

In conclusion, we suggest that epistemological role limitations as described by a
knowledge-level model are connected to computational access limitations. Computational
adequacy cannot be strictly guaranteed, but the knowledge-level approach does provide
significant handles on the computational tractability by means of the role and access
limitations ensuing from knowledge differentiation.

2.5 Do Knowledge-level Models Yield Predictions?

Sticklen puts forward as a central objection to the knowledge-level hypothesis in Newell’s
form its lack of predictive power. In his view, knowledge-level models are capable of
explanatory analysis of the reasoning behaviour of intelligent systems in retrospect, but
the do not generate empirically verifiable predictions. He discusses this in the context of
the broad question whether Al can be considered to be a science when it does not contain
a predictive component.

First of all, Sticklen’s equation of science with predictive power needs some qualifica-
tion. On this score, we basically agree with the critical commentaries on his position. Re-
stricting ourselves to physics —Sticklen’s favourite example of an “established science”—
it is clear that explanatory and predictive power constitute much more subtle ingredients
of science than he suggests. Especially in branches of physics that are close to engineering
we encounter phenomenological models that have strong predictive power but no explana-
tory status. This is the case if such models numerically express important regularities
of experimental data without referring to more fundamental laws of physics (this may
be achieved by, simply speaking, a linear regression analysis of a certain large amount
of data that happens to be successful in the general case). Conversely, there are models
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that are based upon basic physical principles (and so are felt to be relevant in providing a
physically intuitive picture of a process) but refer to phenomena that are far beyond any
experimental test (such as processes on time scales that are orders-of-magnitude shorter
than can be measured)®. In general, physical theory is an iceberg of which only a tiny
part is visible for empirical verification. An important aspect is that physical theories
only yield predictions at a certain level and within a certain regime. For instance, macro-
physical theories such as hydrodynamics do make predictions about, say, fluid pressure
and waves, but not about microphysical entities like atomic interaction potentials within
water molecules. The latter notions do not even exist at the macro-physical level, whereas
in the microphysical theory there is no place for concepts like fluid, waves and pressure.
Thus, each level of physical description generates its own type of predictions.

This parallel carries over to modelling for knowledge-based systems. A knowledge-level
model describes what types of reasoning steps an agent that is being modelled is expected
to take in performing a certain task. In addition it makes certain claims about the struc-
ture of the domain-specific knowledge involved, and it specifies the strategic elements of
the reasoning. For example, the cover-and-differentiate knowledge model outlined ear-
lier tells us that certain hypotheses will be discarded in a rule-out inference step. How
such an inference will operationally manifest itself depends on the system under investi-
gation. An Al program may print out the removal of a hypothesis from the list of current
candidates, while a human expert may utter a natural language sentence implying that
the hypothesis is no longer considered. Although the operational form may differ, in
both cases the ruling-out of a hypothesis is in principle empirically verifiable. Similarly,
the heuristic-classification model would predict that much of the reasoning effort would
be concentrated in data reduction and not in hypothesis handling, as is the case in the
cover-and-differentiate method.

Thus, a knowledge-level model may be applied to both human and artificial problem
solvers. In either case, however, it is hard to see why knowledge models as we have sketched
them possess no predictive power, as seems to be Sticklen’s complaint. But it has to be
acknowledged that the corresponding predictions are of a certain kind only, namely, on
the level of the reasoning steps —which type, under what knowledge conditions— that we
expect an agent to perform. No predictions are made concerning the detailed, operational
or symbol-level of observation. As corroborated by much of the literature concerning
the philosophy of science, testing a theory requires an interpretation of the observations
that we make concerning the real world. Evidently, the regime of prediction (and, thus,
of validity) of knowledge-level models is limited — in this case to the type of and the
conditions for inference steps to be carried out by an intelligent agent. Nevertheless, as
pointed out, a limited regime or level at which predictions can be made is standard not
only in AT but also in physics. Consequently, we disagree with Sticklen’s criticism on the
predictive power of knowledge level models.

®Our examples are based upon personal experience in mainstream nuclear physics and engineering. If we
accept as a simple operational definition of what may count as science: the publication of work in refereed
international journals on a regular basis (the latter to rule out incidental mistakes of reviewers), all these
examples must be accepted as science. We can provide the interested reader with pertinent references to
the literature.
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2.6 System Building on the Basis of Knowledge-level Models

Knowledge-level models do not contain all information necessary for the implementation of
a system. In the KADS approach to developing knowledge-based systems, a separate design
model is introduced [Schreiber et al., 1988] (see Ch. 3). In this design model appropriate
Al techniques and representations are selected to realise the problem solving behaviour
specified in the knowledge-level model. The design model is thus a specification of the
symbol level notions such as data structures and processes. The design model is also the
place where additional, symbol level, control (cf. Sec. 2.3) is specified.
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FIGURE 2.1: Role of the conceptual (knowledge-level) model and of the design (symbol level) model in
the development of knowledge-based systems

Fig. 2.1 provides a graphical representation of the different roles that the knowledge-
level model and the design model in our view play in the development process of a
knowledge-based system. The knowledge-level model is constructed by an observer of
problem solving phenomena (e.g. human expertise). The observer (knowledge analyst) is
aided in this task by an interpretational framework, that should consist of two parts: (i) a
vocabulary for describing various knowledge types, such as the categorisations in the KADS
conceptual model, and (ii) generic knowledge components. These generic components are
partial instantiations of knowledge reoccurring in a class of tasks and/or domains. Heuris-
tic classification, cover-and-differentiate and the interpretation models in KaDS [Breuker
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et al., 1987] are examples of such generic components.

The design model is constructed by transforming the knowledge-level descriptions into
symbol-level descriptions through the selection of appropriate Al techniques and represen-
tations, that realise the specified problem solving behaviour. The design model provides
the basis for implementing the physical system. Although the designer is in principle free
to develop any design model that meets the requirements of the knowledge-level model,
we are strongly in favour of a structure-preserving design. With this we mean that there is
a structural correspondence between knowledge-level elements and symbol level elements.
Structural correspondence paves also the way for explaining the computation of a pro-
gram at various levels of abstraction. Thus, design should basically be a process of adding
symbol level information, such as operational control, to the knowledge-level model (see

Ch. 6).

2.7 Conclusions

In this chapter we have investigated some points of criticism on Newell’s Knowledge-level
Hypothesis: the inability to represent control, the potential computational inadequacy,
the lack of predictive power and the non-operational character (the problem of ’how to
build it’).

We have pointed at a possible confusion between two types of control. We have indi-
cated that in our view there is a need to model in a practical knowledge theory of problem
solving a particular type of control knowledge with a strong knowledge-level flavour as for
example decompositions of knowledgeable agents and meta-knowledge about agents. If this
type of knowledge-level control was not part of Newell’s original hypothesis, we feel that
it should be extended in this respect. We disagree with an extension such as Sticklen’s
Knowledge-level Architecture Hypothesis, as it requires a type of control specification
that inherently belongs to the symbol level. We have argued that the role-limitations in
knowledge-level descriptions give rise to access limitations at the symbol level. Together
they provide important safe-guards against potential computational inadequacy. We have
also explained that knowledge-level models as we propose them allow limited forms of
prediction — namely at the level of the type of and the conditions for inference steps car-
ried out by an intelligent agent. We have shown that this is not different from the role
of formal theories in predicting physical phenomena. Finally, we have argued that in the
process of system building there is a place for a separate design model. We view design
as a process of adding symbol level information to a knowledge-level model. Notational
devices, catalogues, and shellifications can support the design and implementation, but by
nature these activities are open-ended, i.e. the solution space is large.

Although we feel that the original Knowledge-level Hypothesis still stands, much work
still needs to be done to “make it work”: to arrive at a practical knowledge-level theory of
problem solving. Looking at the various approaches to knowledge-level modelling it is clear
that the terminology used to describe the knowledge level is confusing and ambiguous. In
our opinion there is a clear need for a formal framework for describing knowledge-level
models. We fully agree with Newell that the major role of logic in A1 should be to support
the analysis of the knowledge level [Newell, 1982; pp. 121-122]. In [Akkermans et al., 1992]
a first effort is made to devise a logical framework for knowledge-level analysis. Although
this work can only be seen as a first start, we feel that this is one important research
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direction for improving the state of the art in knowledge acquisition.

Acknowledgement Frank van Harmelen provided useful comments on an earlier
version of this chapter.



Chapter 3

KADS: A Modelling Approach to KBS

Development

This chapter discusses the KADS approach to knowledge engineering. In KADS, the development of a
knowledge-based system (KBS) is viewed as a modelling activity. A KBS is not a container filled with
knowledge extracted from an expert, but an operational model that exhibits some desired behaviour that
can be observed in terms of real-world phenomena. Three basic principles underlying the KADS approach
are discussed, namely (i) the introduction of partial models as a means to cope with the complexity of the
knowledge engineering process, (ii) the KADS four-layer framework for modelling the required expertise,
(ill) the reusability of generic model components as templates supporting top-down knowledge acquisition,
The actual activities that a knowledge engineer has to undertake are briefly discussed. We compare the
KADS approach to related approaches and discuss experiences and future developments. The approach is
illustrated throughout the chapter with examples in the domain of troubleshooting audio equipment.

This chapter represents a shortened and slightly revised version of an article published in the Knowledge
Acquisition Journal. It is co-authored by Bob Wielinga and Joost Breuker. Reference: B. J. Wielinga,
A. Th. Schreiber, and J. A. Breuker. KADS: A modelling approach to knowledge engineering. Knowledge
Acquisition, 4(1):5-53, 1992. Special issue “The KADS approach to knowledge engineering”.

3.1 Introduction

This chapter gives an overview of results of a European research project, in Europe com-
monly known as the KADS project (ESPRIT-1 P1098). This project aimed at the develop-
ment of a comprehensive, commercially viable methodology for knowledge-based system
(KkBS) construction. When the KADS project was conceived, sometime in 1983, little in-
terest in methodological issues existed in the AT community. The prevailing paradigm for
building knowledge-based systems was rapid prototyping using special purpose hard- and
software, such as LISP machines, expert system shells etc. Since then, many organisa-
tions have become aware of the fact that KBs development from an organisational point
of view does not differ much from the development of other types of information systems.
Aspects of KBS development such as information analysis, application selection, project
management, user requirement capture, modular design, reusability etc, are similar to
those encountered in conventional system development. Problems that frequently occur
in conventional information system development projects are amplified in the case of KBS
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development. The wider capabilities of KBS technology allow more complex applications,
which have a stronger impact on organisational structure than most conventional sys-
tems and often require a more sophisticated user-system interaction than is the case with
conventional systems. Additionally, KBS development poses a number of problems of its
own.

An often cited problem in KBS construction is the knowledge acquisition bottleneck. 1t
turns out to be very difficult to extract the knowledge that an expert has about how to
perform a certain task efficiently in such a way that the knowledge can be formalised in
a computer system. The actual realisation of a KBs system often poses problems as well.
The reasoning methods that are used in KBS’s are not always fully understood. Although
the a1 literature abounds in methods and techniques for modelling reasoning processes,
their description is not uniform and unambiguous. So, the need for a sound methodology
for KBS development has become recognised over the last few years.

In this chapter we will discuss some principles that comprise the framework on which
the KaDS methodology is founded and describe its main ingredients.

3.2 Views on Knowledge Acquisition

During the knowledge acquisition process the knowledge that a knowledge-based system
(KBS) needs in order to perform a task, is defined in such a way that a computer pro-
gram can represent and adequately use that knowledge. Knowledge acquisition involves
in our view at least the following activities: eliciting the knowledge in an informal — usu-
ally verbal — form, interpreting the elicited data using some conceptual framework, and
Sformalising the conceptualisations in such way that the program can use the knowledge.
In this chapter we will mainly focus on the interpretation and formalisation activities in
knowledge acquisition. Elicitation techniques have been the subject of a number of re-
cent papers and their role in the knowledge acquisition process is now reasonably well
understood [Neale, 1988; Breuker et al., 1987; Diaper, 1989; Meyer & Booker, 1991].

Traditionally the knowledge acquisition process was viewed as a process of extracting
knowledge from a human expert and transferring the extracted knowledge into the KBs.
In practice this often means that the expert is asked what rules are applicable in a certain
problem situation and the knowledge engineer translates the natural language formulation
of these rules into the appropriate format. Several authors [Hayward et al., 1987; Morik,
1989] have pointed out that this transfer-view of knowledge acquisition is only applicable
in very few cases. The expert, the knowledge engineer and the KBs should share a common
view on the problem solving process and a common vocabulary in order to make knowledge
transfer a viable way of knowledge acquisition. If the expert looks at the problem or
the domain in a different way than the knowledge engineer, asking for rules or similar
knowledge structures and translating them into the knowledge representation formalism
of the system, does not work.

A different view on knowledge acquisition is that of a modelling activity. A KBS is not
a container filled with knowledge extracted from an expert, but an operational model that
exhibits some desired behaviour observed or specified in terms of real-world phenomena.
The use of models is a means of coping with the complexity of the development process.

Constructing a KBS is seen as building a computational model of desired behaviour.
This desired behaviour can coincide with some behaviour as exhibited by an expert. If one
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wants to construct a KBS that performs medical diagnosis, the behaviour of a physician
in asking questions and explaining the problem of a patient may be a good starting point
for a description of the intended problem-solving behaviour of the KBS. However, a KBS is
hardly ever the functional and behavioural equivalent of an expert. There are a number
of reasons for this. Firstly, the introduction of information technology often involves new
distributions of functions and roles of agents. The KBS may perform functions which
are not part of the experts repertory. Secondly, the underlying reasoning process of the
expert can often not be made fully explicit. Knowledge, principles and methods may
be documented in a domain, but these are aimed at a human interpreter and are not
descriptions of how to solve problems in a mechanical way. Thirdly, there is an inherent
difference between the capabilities of machines and humans. For example, in an experiment
in a domain of configuring moulds [Barthelemy et al., 1988] a decision was made to generate
all possible solutions instead of the small set generated by experts. The decision was guided
by the fact that for a machine it presents no problem to store a large number of hypotheses
in short-term memory, whereas for humans this is impossible.

So, in the modelling view knowledge acquisition essentially is a constructive process
in which the knowledge engineer can use all sorts of data about the behaviour of the
expert, but in which the ultimate modelling decisions have to be made by the knowledge
engineer in a constructive way. In this sense knowledge engineering is similar to other
design tasks: the real world only provides certain constraints on what the artefact should
provide in terms of functionality, the designer will have to aggregate the bits and pieces
into a coherent system.

In KADS we have adopted the modelling perspective on knowledge acquisition. The
KADS approach can be characterised through a number of principles that underlie the
process to building knowledge-based systems, namely:

e The introduction of multiple models as a means to cope with the complexity of the
knowledge engineering process.

e The KADs four-layer framework for modelling the required expertise.

e The reusability of generic model components as templates supporting top-down
knowledge acquisition.

e The process of differentiating simple models into more complex ones.

e The importance of structure-preserving transformation of models of expertise into
design and implementation.

The first three principles are discussed in this chapter, respectively in Sec. 3.3, Sec. 3.4
and Sec. 3.5. The fourth principle is discussed in more detail in Ch. 5; the fifth principle
in Ch. 6.

Although a description of the use of KADS on practical KBS projects is outside the scope
of this chapter, we look briefly at the actual knowledge engineering process (Sec. 3.6). We
also compare the KADS approach to other approaches ( Sec. 3.7). Finally we discuss
experiences and future developments (Sec. 3.8 and Sec. 3.9).

The approach is illustrated throughout this chapter with examples, most of them in
the domain of diagnosing and correcting malfunctions of an audio system.
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3.3 Principle 1: Multiple Models

The construction of a knowledge-based system is a complex process. It can be viewed as
a search through a large space of knowledge-engineering methods, techniques and tools.
Numerous choices have to be made with regard to elicitation, conceptualisation and for-
malisation. Knowledge engineers are thus faced with a jungle of possibilities and find it
difficult to navigate through this space.

The idea behind the first principle of KADS is that the knowledge-engineering space
of choices and tools can to some extent be controlled by the introduction of a number
of models. A model reflects, through abstraction of detail, selected characteristics of
the empirical system in the real world that it stands for [DeMarco, 1982]. Each model
emphasises certain aspects of the system to be built and abstracts from others. Models
provide a decomposition of knowledge-engineering tasks: while building one model, the
knowledge engineer can temporarily neglect certain other aspects. The complexity of the
knowledge-engineering process is thus reduced through a divide-and-conquer strategy.

In this section we discuss a number of models, namely (i) the organisational model, (ii)
the application model, (iii) the task model, (iv) the model of cooperation, (v) the model
of expertise, (vi) the conceptual model, and (vii) the design model.

We use the term knowledge engineeringin a broad sense to refer to the overall process of
KBs construction (i.e. the construction of all these models and the artefact) and the term
knowledge acquisition in a more restricted sense to refer to those parts of this construction
process that are concerned with the information about the actual problem solving process.
The scope of the present chapter is limited to the knowledge acquisition aspects. Other
knowledge engineering aspects are only briefly addressed.

3.3.1 Organisational model, application model and task model In KaDS we
distinguish three separate steps in defining the goals of KBS construction, namely:

1. Defining the problem that the KBs should solve in the organisation.

2. Defining the function of the system with respect to future users (which can be either
humans or possibly other systems).

3. Defining the actual tasks that the KBS will have to perform.

In this section we discuss three models that address parts of this three-step process. The
first two are discussed briefly as these are outside the scope of this chapter.

Organisational model An organisational model provides an analysis of the socio-
organisational environment in which the KBs will have to function. It includes a description
of the functions, tasks and bottlenecks in the organisation. In addition, it describes (pre-
dicts) how the introduction of a KBS will influence the organisation and the people working
in it. This last activity can be viewed as a type of technology assessment [de Hoog et al.,
1990]. We have experienced [de Hoog, 1989; van der Molen & Kruizinga, 1990] that it is
dangerous to ignore the impact of the interaction between the construction of a KBS and
the resulting changes in the organisation. Neglecting this aspect may lead to a system that
is not accepted by its prospective users. It is also important to realise that the process of
KBs construction itself can, by its nature (for instance, through extensive interviewing),
change the organisation in such a way that it becomes a moving target [van der Molen &
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Kruizinga, 1990]. The result may be that the final system is aimed at solving a problem
that does not exist any more in the organisation. We are convinced that the organisational
viewpoint is important throughout the KBs construction process.

Application model An application model defines what problem the system should
solve in the organisation and what the function of the system will be in this organisation.
For example, the daily operation and fault handling of an audio system can pose serious
problems for people who are not familiar with or just not interested in more than the
superficial ins-and-outs of such a system. A potential solution to this problem could be
the development of a knowledge-based system. The function of this system would be
to ensure that the owner of the audio system is supported in the process of correcting
operational malfunctions of the audio system.

In addition to the function of the KBs and the problem that it is supposed to solve, the
application model specifies the external constraints that are relevant for the development
of the application. Examples of such constraints are the required speed and/or efficiency
of the KBS and the use of particular hardware or software.

Task model A task model specifies how the function of the system (as specified in
the application model) is achieved through a number of tasks that the system will perform.
Establishing this relation between function and task is not always as straightforward as
it may seem. For example, consider a problem such as the medical care of patients with
acute infections of the bloodstream. One approach to solve this problem is to perform the
following tasks: (i) determine the identity of the organism that causes the infection and
(ii) select on the basis of that diagnosis the optimal combination of drugs to administer
to the patient. In real life hospital practice however, the recovery of the patient is the
primary concern. So, if identification of the organism proves difficult, e.g. because no
laboratory data are available, a therapy will be selected on other grounds. In fact, some
doctors show little interest in the precise identity of the organism causing an infection
as long as the therapy works. Stated in more general terms: given a goal that a system
should achieve, there may be several alternative ways in which that goal can be achieved.
Which alternative is appropriate in a given application depends on characteristics of that
application, on availability of knowledge and data, and on requirements imposed by the
user or by external factors.

With respect to the content of the task model, we distinguish three facets: (i) task
decomposition, (ii) task distribution, and (iii) task environment:

Task decomposition A task is identified that would achieve the required functionality.
This task is decomposed in sub-tasks. A technique such as rational task analysis
is often used to achieve such a decomposition. We call the composite top-task a
“real-life task”, as it often represents the actual task that an expert solves in the
application domain. The sub-tasks are the starting point for further exploration,
such as the modelling of expertise and cooperation. A simple decomposition of a
real-life task in the audio domain is shown in Fig. 3.1.

Each separate task is described through an input/output specification, where the
output represents the goal that is achieved with the task and the input is the in-
formation that is used in achieving this goal. What constitutes the goal of a task
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FIGURE 3.1: Task decomposition for the audio example

is not always self-evident. Even for a seemingly well understood task such as diag-
nosis, it is not always clear what a diagnosis of a faulty system means. A diagnosis
could be the identification of a subsystem (a component of an audio system) that
malfunctions, or it could be a full causal model of how a malfunction came about.
Similarly the result of a design task could be a detailed description of the structure
of a system (e.g. a device for monitoring patients in an intensive care unit) or it
could be a description of the functionality, structure and use of the device.

Task distribution The task distribution is the assignment of tasks to agents. Example
agents are the KBS, the user or some other system. The last two agents are called
external agents. Given the task decomposition the knowledge engineer has to decide
what subtasks to assign to the system and what tasks to the user. These decisions
constitute essentially cognitive engineering problems [Roth & Woods, 1989]: they
should be made on the basis of an analysis of the user requirements and expecta-
tions, the knowledge and skills that the user has, and the potential capabilities and
limitations of the system.

Task environment The nature of the task-domain itself usually enforces a number of
constraints on how the task can be performed. We call these constraints the task
environment. For example, the task environment of a support system for handling
malfunctions in an audio system could consist of the following constraints:

e The KBS is not a physical part of the audio system.

e It has no sensors to make observations (and thus depends on the user to do
this).

e It has no robot arm to perform reconfigurations and/or repairs (and thus again
depends on the user to do this),

e The KBs users will be novices, who are not expected to be able to understand
technical terms or to examine the interiors of the audio system.

The constraints posed by the task environment influence both the scope and the
nature of the models of expertise and cooperation (see further).
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The task model and its role in specifying system-user interaction is discussed in more
detail in [de Greef & Breuker, 1992]

3.3.2 Model of cooperation The task model consists of a decomposition of the real-
life task into a number of primitive tasks and a distribution of tasks over agents. The
model of cooperation contains a specification of the functionality of those sub-tasks in
the task model that require a cooperative effort. These tasks can for instance be data
acquisition tasks activated during problem solving or various types of explanation tasks.
Such tasks are called transfer tasks, as they involve transferring a piece of information
from the system to an external agent or vice versa.

There is thus a clear dependency between the model of cooperation and the model of
expertise. Some of the sub-tasks will be achieved by the system, others may be realised
by the user. For example, in a diagnostic task in the audio example, the system may
suggest certain tests to be performed by the user, while the user will actually perform the
tests and will report the observed results back to the system. Alternatively, the user may
want to volunteer a solution to the diagnostic problem while the system will criticise that
solution by comparing it with its own solutions.

The result is a model of cooperative problem solving in which the user and the system
together achieve a goal in a way that satisfies the various constraints posed by the task
environment, the user and the state of the art of KBs technology. The modelling of
cooperation is outside the scope of this chapter, but is discussed in more detail in [de Greef
& Breuker, 1992; de Greef et al., 1988a; de Greef & Breuker, 1989].

3.3.3 Model of expertise Building a model of expertise is a central activity in the
process of KBS construction. It distinguishes KBS development from conventional system
development. Its goal is to specify the problem solving expertise required to perform the
problems solving tasks assigned to the system.

One can take two different perspectives on modelling the expertise required from a
system. A first perspective — one that is often taken in Al —is to focus on the computational
techniques and the representational structures (e.g. rules, frames) that will provide the
basis of the implemented system. A second perspective focuses on the behaviour that
the system should display and on the types of knowledge that are involved in generating
such behaviour, abstracting from the details of how the reasoning is actually realised in
the implementation. These two perspectives correspond to the distinction Newell makes
between respectively the symbol level and the knowledge level [Newell, 1982].

We take the second perspective and view the model of expertise as being a knowledge-
level model. The model of expertise specifies the desired problem solving behaviour for
a target KBS through an extensive categorisation of the knowledge required to generate
this behaviour. The model thus fulfills the role of a functional specification of the problem
solving part of the artefact. As stated previously, it is not a cognitive model of the human
expert. Although the construction of the model of expertise is usually guided by an
analysis of expert behaviour, it is biased to what the target system should and can do.

In modelling expertise we abstract from those sub-tasks that specify some form of
cooperation with the user. For example, in the audio domain we could identify two tasks
that require such interactions: performing a test and carrying out a reconfiguration. In
the model of expertise, such interaction or transfer tasks are specified more or less as a
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black box (see Sec. 3.4.3). The detailed study of the nature of these transfer tasks is the
subject of the modelling of cooperation.

As the model of expertise plays a central role in KBS development, its details are
discussed extensively in Sec. 3.4.

3.3.4 Conceptual model = model of expertise + model of cooperation To-
gether, the model of expertise and the model of cooperation provide a specification of the
behaviour of the artefact to be built. The model that results from merging these two mod-
els is similar to what is called a conceptual model in database development. Conceptual
models are abstract descriptions of the objects and operations that a system should know
about, formulated in such a way that they capture the intuitions that humans have of
this behaviour. The language in which conceptual models are expressed is not the formal
language of computational constructs and techniques, but is the language that relates real
world phenomena to the cognitive framework of the observer. In this sense conceptual
models are subjective, they are relative to the cognitive vocabulary and framework of the
human observer. Within KADS we have adopted the term “conceptual model” to denote
a combined, implementation-independent, model of both expertise and cooperation.

3.3.5 Design model The description of the computational and representational tech-
niques that the artefact should use to realise the specified behaviour is not part of the
conceptual model. These techniques are specified as separate design decisionsin a design
model. In building a design model, the knowledge engineer takes external requirements
such as speed, hardware and software into account. Although there are dependencies be-
tween conceptual model specifications on the one hand and design decisions on the other
hand, we have experienced that building a conceptual model model without having to
worry about system requirements makes life easier for the knowledge engineer.

The separation between conceptual modelling on the one hand and a separate design
step on the other hand has been identified as both the strength and the weakness of the
KADS approach [Karbach et al., 1990].

The main advantage lies in the fact that the knowledge engineer is not biased during
conceptual modelling by the restrictions of a computational framework. KADS provides
a more or less universal framework for modelling expertise (see the next section) and
although computational constraints play a role in the construction of such models (cf.
Ch. 5) experience! has shown that this separation enables knowledge engineers to come
up with more comprehensive specifications of the desired behaviour of the artefact. The
disadvantage lies in the fact that the knowledge engineer, after having built a conceptual
model, is still faced with the problem of how to implement this specification. In Ch. 6 we
discuss some principles that can guide the knowledge engineer in this design process.

Fig. 2.1 (see previous chapter) summarises the different roles which the conceptual
model and the design model play in the knowledge engineering process. An observer
(knowledge engineer) constructs a conceptual, knowledge-level, model of the artefact by
abstracting from the behaviour of experts. This abstraction process is aided by the use of
an interpretational framework, such as generic models of classes of tasks or task-domains.
The conceptual model is real-world oriented in the sense that it is phrased in real-world

1See Sec. 3.8 for an overview of applications developed with the KADS approach
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terminology and can thus be used as a communication vehicle between knowledge engineer
and expert. The conceptual model does not take detailed constraints with regard to the
artefact into account. The design model on the other hand is a model that is phrased in
the terminology of the artefact: it describes how the conceptual model is realised with
particular computational and representational techniques.

Fig. 3.2 shows the dependencies between the models discussed in this section. Con-
nections indicate that information from one model is used in the construction of another
model. The actual activities in the construction process do not necessarily have to follow
the direction from organisation model to system. In fact, several life-cycle models have
been developed, each defining various phases and activities in building these models. The
first life-cycle model developed in KaDs [Barthelemy et al., 1987] was of the water-fall
type. At the end of the KADS project, a new life-cycle was defined [Taylor et al., 1989]
based on the concept of a spiral model [Boehm, 1988].

[
organizational application
model model

task
model

model of model of
expertise cooperation

conceptual
model

design
model

FIGURE 3.2: Principle 1: Models provide a decomposition of the knowledge-engineering task

The nature of knowledge engineering thus becomes a process that bridges the gap
between required behaviour and a system that exhibits that behaviour through the creation
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of a set of models. Summarising, we can say that the KADS modelling view of knowledge
acquisition gives rise to a methodology that involves the construction of a variety of models
in the course of the knowledge engineering process. Each model represents a particular
view on the KBsS. They allow the knowledge engineer to cope with the complexity of the
knowledge engineering process through a “divide & conquer” strategy.

The remainder of this chapter focuses mainly on the model of expertise, as it plays
such a central role in KBS development.

3.4 Principle 2: Modelling Expertise

The major challenge for any modelling approach to KBs construction is to find an ade-
quate answer to the question of how to model expertise. It is this aspect of the system
that distinguishes KBS development from the development of conventional systems. As
discussed previously, we require of the resulting model of expertise that it is independent
of a particular implementation. In this section a framework for modelling expertise is
outlined. Slightly different versions of this KADS approach to modelling expertise (usually
called the “four-layer model”) have been presented in [Wielinga & Breuker, 1986; Hayward
et al., 1987; Schreiber et al., 1988; Breuker & Wielinga, 1989]

Two basic premises underly the ideas presented here. First, we assume that it is
possible and useful to distinguish between several generic types of knowledge according
to different roles that knowledge can play in reasoning processes. Second, we assume
that these types of knowledge can be organised in several layers, which have only limited
interaction. A first distinction that is often made is the one between domain knowledge
and control knowledge. Here we will take such a separation of knowledge in two layers one
step further, and will argue for a refined distinction of different types of control knowledge
at three levels.

The categories in which the expertise knowledge can be analysed and described are
based on epistemological distinctions: they contain different types of knowledge. We
distinguish between:

1. Static knowledge describing a declarative theory of the application domain (domain
knowledge).

2. Knowledge of different types of inferences that can be made in this theory (first type
of control knowledge).

3. Knowledge representing elementary tasks (second type of control knowledge).

4. Strategic knowledge (third type of control knowledge)

Each of these categories of knowledge is described at a separate level. The separation
reflects different ways in which the knowledge can be viewed and used. In the following
sections each of the four categories of knowledge distinguished in KADS is discussed in
more detail.

The distinction between different types of knowledge is not new. Several authors have
reported ideas which pertain to the separation of domain and control knowledge, and
have proposed ways to increase the flexibility of control in expert systems. The work of
Davis [Davis, 1980] introduced explicit control knowledge as a means to control inference
processes in a flexible way. In the NEOMYCIN system [Clancey, 1985a] different functions
of knowledge are explicated by separating domain knowledge and control knowledge and
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by introducing an explicit description of the strategies that the system uses. Pople (1982)
[Pople, 1982] has stressed the problem of the right task formulation. He considers it to
be a fundamental challenge for A1 research to model the control aspects of the reasoning
process of expert diagnosticians which determines the optimal configuration of tasks to
perform in order to solve a problem.

3.4.1 Domain knowledge The domain knowledge embodies the conceptualisation of
a domain for a particular application in the form of a domain theory. The primitives that
we use to describe a domain theory are based on the epistemological primitives proposed by
[Brachman & Schmolze, 1985]: concepts, properties, two types of relations, and structures:

Concept Concepls are the central objects in the domain knowledge. A concept is iden-
tified through its name (e.g. amplifier).

Property/Value Concepts can have properties. Properties are defined through their
name and a description of the values that the property can take. For example,
amplifier has a property power with as possible values on/off.

Relation between concepts A first type of relation is the relation between concepts,
for example amplifier is-a component. The most common relations of this type are
the sub-class relation and the part-of relation. Several variants of these two relations
exist, each with its own semantics.

Relation between property expressions A second type of relation is the relation be-
tween expressions about property values. An expression is a statement about the
value(s) of a property of a concept, e.g. amplifier:power = on.? Examples of this
type of relation are causal relations and time relations. An example of a tuple of a
causal relation in the audio domain could be:

amplifier:power-button = pressed CAUSES amplifier:power = on

Structure A structure is used to represent a complex object: an object consisting of a
number of objects/concepts and relations. For example, the audio system as a whole
can be viewed as a structure, consisting of several components and relations (part-of,
wire connections) between these components.?

The choice of this set of primitives is in a sense arbitrary and probably somewhat
biased by the types of problems that have been tackled with KaDs. The problem is to find
a subset that provides the knowledge-engineer with sufficient expressive power. One could
consider including additional special-purpose primitives such as mathematical formulae.
There is clearly a link here with research in the field of semantic database modelling (see
for an overview [Hull & King, 1987]).

The primitives are used to specify what we call a domain schema for a particular
application. A domain schema is a description of the structure of the statements in the

"

2We use the shorthand <concept>:<property> for “the <property> of <concept>
SThe term “structure” as used here should not be confused with the “structural descriptions” in KL-
ONE.
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domain theory. It is roughly comparable to the notion of a signature in logic.* For
example, in a domain schema we could specify that the domain theory contains part-of
relations between component concepts without worrying about the actual tuples of this
relation. We prefer to use the term “schema” rather than “ontology” to stress the fact
that the domain theory is the product of knowledge engineering and thus not necessarily
describes an inherent structure in the domain (as the word “ontology” would suggest).

The domain schema specifies the main decisions that the knowledge engineer makes
with respect to the conceptualisation [Genesereth & Nilsson, 1987; Nilsson, 1991] of the
domain. For example, when a domain schema for a diagnostic domain is constructed, a
decision has to be made whether “correct” or “fault” models (or both) are part of the
domain theory. Parts of a domain schema often reappear in similar domains and could be
reused (see Sec. 3.5 for a more detailed discussion of reusability). The domain schema also
provides convenient handles for describing the way in which inference knowledge uses the
domain theory. Issues related to the interaction between domain knowledge and inference
knowledge are discussed in the next section. In Ch. 4 a language for describing domain
schemata is presented.

An example domain schema of a simple domain theory for diagnosing faults in an audio
system is shown in Table 3.1.> Two types of concepts appear in this theory: components
and tests. Both components and tests can have properties: respectively a state-value and
a value. Two relations are defined between concepts of type “component”: is-a and sub-
component-of. In addition, two relations between property expressions are defined: (i) a
causal relation between state values of components, and (ii) an indicates relation between
test values and state values.

Fig. 3.3 shows some domain knowledge in the audio domain. The domain knowledge
description follows the structure defined in the domain schema of Table 3.1.

Domain knowledge can be viewed as a declarative theory of the domain. In fact,
adding a simple deductive capability would enable a system in theory (but, given the
limitations of theorem-proving techniques, not in practice) to solve all problems solvable
by the theory. The domain knowledge is considered to be relatively task neutral, i.e.
represented in a form that is independent of its use by particular problem solving actions.
There is ample evidence [Wielinga & Bredeweg, 1988] that experts are able to use their
domain knowledge in a variety of ways, e.g. for problem solving, explanation, teaching
etc. Separating domain knowledge embodying the theory of the domain from its use in
a problem solving process, is a first step towards flexible use and reusability of domain
knowledge.

3.4.2 Inference knowledge At the first layer of control knowledge we abstract from
the domain theory and describe the inferences that we want to make in this theory. We
call this layer the inference layer. An inference specified at the inference level is assumed
to be primitive in the sense that it is fully defined through its name, an input/output

*The relation between property expressions corresponds to an axiom schema; structures correspond to
a sub-theory.

®The description of the domain schema given here is rather informal. For example, nothing is said
about cardinality (e.g. can a property have one or more values at some point in time). Techniques exist
for describing these schemata in a more precise and formal way, e.g. [Davis & Bonnel, 1990; Hull & King,
1987].
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| Primitive Name | Description
Concept component The elements of the audio system
Relation component Sub-type hierarchy of components
between IS-A of the audio system
concepts component
Relation component Part-of hierarchy of components
between SUB-COMPONENT-OF | of the audio system
concepts component
Property component:state-value Components have properties describing the state
that components are in at some moment in time.
Relation component:state-value Causal relations that specify how normal state-values
between CAUSES of components are causally related to each other.
expressions component:state-value
Concept test Test that can be performed to establish
a state of an audio system.
Property test:value Possible outcomes of a test.
Relation test:value A relation describing which internal state
between INDICATES is indicated by a particular test outcome.
expressions component:state-value

TABLE 3.1: A domain schema for diagnosing faults in an audio-system

specification and a reference to the domain knowledge that it uses. The actual way in
which the inference is carried out is assumed to be irrelevant for the purposes of modelling
expertise. From the viewpoint of the model of expertise no control can be exercised on
the internal behaviour of the inference. One could look upon the inference as applying a
simple theorem prover.

Note that the inference is only assumed to be primitive with respect to the model of
expertise. It is very well possible that such a primitive inference is realised in the actual
system through a complex computational technique.

In the KADS model of expertise we use the following terms to denote the various aspects
of a primitive inference:

Knowledge source The entity that carries out an action in a primitive inference step
is called a knowledge source®. A knowledge source performs an action that operates
on some input data and has the capability of producing a new piece of information
(“knowledge”) as its output. During this process it uses domain knowledge. The
name of the knowledge source is supposed to be indicative of the type of action that
it carries out.

Meta-class A knowledge source operates on data elements and produces a new data
element. We describe those data elements as meta-classes. A meta-class description
serves a dual purpose:

i) it acts as a placeholder for domain objects, describing the role that these objects

i) it act laceholder for d in objects, describing the role that th bject
play in the problem solving process, and

(ii) it points to the type(s) of the domain objects that can play this role.

®The term “knowledge source” was inspired by Clancey’s [Clancey, 1983] use of this term as a process
that generates an elementary piece of information. Its intended meaning corresponds only roughly to the
meaning of the term in blackboard architectures.
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Domain objects can be linked to more that one meta-class. For example, a particular
component of an audio system could play the role of a hypothesis at one point in time
and the role of solution at some other instant. The name “meta-class” is inspired
by the fact that it provides a “meta” description of objects in a domain “class”.”
An input data element of a knowledge source is referred to as an input meta-class;
the output as an output meta-class. Each meta-class can be input and/or output of

more than one knowledge source.

Domain view The domain view specifies how particular parts of the domain theory can
be used as a “body of knowledge” by the knowledge source.

input output
meta-class knowledge source meta-class

system )
model hypothesis

|

!

; decomposition
| knowledge
1
|
|

|
domain view | Inference knowledge
| -
|
v Domain knowledge
v amplifier \
audio system SUB-COMPONENT-OF amplifier

audio-system

FIGURE 3.4: A primitive inference performing an decomposition action.

Fig. 3.4 describes a primitive inference in the audio domain with example references
to domain knowledge. At the inference level a decomposition inference is specified. The
action that is performed in this inference is the decomposition of a composite model of the
audio system into sub-models. System model and hypothesis are examples of meta-classes.
They describe the role that domain objects like audio-system and amplifier can play
in the problem solving process. The decompose knowledge source achieves its goal, the
generation of a new hypothesis, through the application of decomposition knowledge. The
domain view of this inference specifies that tuples of the SUB-COMPONENT-OF relation in the
domain theory can be used as decomposition knowledge. Fig. 3.4 shows one applicable
tuple of this relation.

A somewhat more formal specification of the decompose inference is given below. The
arrow specifies how inference knowledge maps onto domain knowledge.

knowledge-source decompose
input-meta-class:
system-model — component
output-meta-class:
hypothesis — component
domain-view:
decomposition(system-model, hypothesis) — sub-component-of(component, component)

Tt should not be confused with the meaning of this term in object-oriented systems.
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Note that this specification only refers to elements of the schema of the domain theory.
Both system model and hypothesis are place holders of objects of type “component” and
describe the role these objects play in the inference process. In this particular example
the domain view refers to just one type of knowledge in the domain theory, namely the
SUB-COMPONENT-OF relation. In principle however, there could be several of these mappings.®

There are distinct advantages of separating the domain theory from the way it is viewed
and used by the inferences:

o The separation allows multiple use of essentially the same domain knowledge. Imag-
ine for example a knowledge source aggregate, that takes as input a set of components
and aggregates them into one composite component. This knowledge source could
use the same SUB-COMPONENT-OF relation, but view it differently, namely as aggrega-
tion knowledge. Such an inference could very well occur in a system that performs
configurations of audio systems.

e Domain knowledge that is used in more that one inference is specified only once. In
this way, knowledge redundancy is prevented.

o It provides a dual way to name® domain knowledge: both use-independent and use-
specific. Knowledge engineers tend to give domain knowledge elements names that
already reflect their intended use in inferencing and keep changing the names when
their usage changes. We would argue that both types of names can be useful and
should be known to the system, for example for explanation purposes.

e The scope of the domain theory is often broader than what is required for problem
solving. For example, explanatory tasks (in KADs defined in the model of coop-
eration) often require deeper knowledge than is used during the reasoning process
itself.

This is not to say that we claim that a domain theory can in general be defined com-
pletely independent of its use in the problem solving process. The scope and the structure
of the domain knowledge has to meet the requirements posed by the total set of infer-
ences. In many applications there are interactions between the process of conceptualising
a domain and specifying the problem solving process. We are convinced however, that it
is useful to document them at least separately.

As stated previously, the primitive inference steps form the building blocks for an
application problem solver. They define the basic inference actions that the system can
perform and the roles the domain objects can play. The combined set of primitive infer-
ences specifies the basic inference capability of the target system. The set of inference
steps can be represented graphically in an inference structure. The inference structure
thus specifies the problem solving competence of the target system.

Fig. 3.5 presents such an inference structure for the audio domain. The inferences
specify a top-down and systematic approach to find a sub-model of the audio system that
behaves inconsistently. The following inferences appear in the inference structure:

8We omit here the details of specifying the mapping between a domain view and a domain theory. See
for a more detailed discussion [Schreiber et al., 1989b].

We would argue that the whole activity of knowledge acquisition is in fact for a large part a matter of
giving (meaningful) names.
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FIGURE 3.5: An inference structure for diagnosing faults in an audio system. Rectangles represent meta-
classes; ovals represent knowledge sources. Arrows are used to indicate input-output dependencies.

e A selection of a a (sub-part) of the audio system (system model) on the basis of a

complaint.

A decomposition of some part of the system into a number of sub-components that

play the role of hypothesis.

e A prediction of a norm-value for a hypothesis. The norm is a value of a test, that is
consistent with the normal state of the hypothesis.

e A specification of an observable, for which a value is to be obtained (the finding).

e A comparison of the observed finding and the predicted norm.

The inference structure defines the vocabulary and dependencies for control'®, but not
the control itself. This latter type of knowledge is specified as task knowledge.

3.4.3 Task knowledge The third category contains knowledge about how elementary
inferences can be combined to achieve a certain goal. The prime knowledge type in this
category is the task. Tasks can achieve a particular goal. The relations between tasks
and goals are in principle many-to-many. Task knowledge is usually characterised by a
vocabulary of control terms, for instance indicating that a finding has been processed or
a hypothesis has been verified.

1%We use the term control here to refer to the process of controlling the execution of knowledge sources.
We are not referring to more detailed, symbol-level forms of control such as search control in the application
of a computational technique. See [Schreiber et al., 1991a] for a more elaborate discussion on these different
types of control.
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Tasks represent fixed strategies for achieving problem solving goals. Several researchers
[Clancey, 1985a; Gruber, 1989] have pointed out that task knowledge is an important
element of expertise. The competence model of the diagnostic strategy of NEOMYCIN
[Clancey, 1985a] is an example of what we call task knowledge. Clancey describes the sub-
tasks of this strategy via meta-rules. The main difference approach between his approach
and our approach is that he refers directly in these meta-rules to the domain knowledge.
In KADS, tasks only refer to inferences and not explicitly to domain knowledge.

We use the following constructs to describe task knowledge:

Task A task is a composite problem solving action. It implies a decomposition into
sub-tasks. The application of the task to a particular (sub-)problem results in the
achievement of a goal.

Control terms The control vocabulary used. A control term is nothing more than a
convenient label for a set of meta-class elements. The label represents a term used
in the control of problem solving, e.g. “differential” or “focus”. Each control term is
defined through the specification of a mapping of this term onto sets of meta-class
elements (e.g. the differential is the set of all active hypotheses).

Task structure A decomposition into sub-tasks and a specification of the control depen-
dencies between these sub-tasks.!'!
sub-tasks:

The decomposition can involve three types of

1. Primitive problem solving tasks: inferences specified in the inference layer.

2. Composite problem solving tasks: a task specified in the task layer. In principle,
this could be a recursive invocation of the same task.

3. Transfer tasks: tasks that require interaction with an external agent, usually
the user.

The dependencies between the sub-tasks are described as a structured-English pro-
cedure such as used in conventional software engineering [DeMarco, 1978], with
selection and iteration operators.

The conditions in these procedures always refer to control terms and/or meta-class
elements, e.g. “if the differential is not empty then ...”.

There is interaction between the task knowledge in the model of expertise on the one
hand and the model of cooperation on the other hand with respect to the specification of
the transfer tasks. Transfer tasks are more or less specified as a black box in the model
of expertise. We distinguish four types of transfer tasks (for more details, see [de Greef &
Breuker, 1992]):

1. Obtain: the system requests a piece of information from an external agent. The
system has the initiative.

2. Present: the system presents a piece of information to an external agent. The system
has the initiative.

1'We agree with [Steels, 1990] that “control structure” is a more appropriate term for this type of
structure. We stick here to the term “task structure” mainly for historical reasons.
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3. Receive: the system gets a piece of information from an external agent. The external
agent has the initiative.

4. Provide: the system provides an external agent with a piece of information. The
external agent has the initiative.

An example task-knowledge specification for our audio domain is shown below. It
consists of three tasks. The first task is systematic-diagnosis. The goal of this task is to
find a sub-system with inconsistent behaviour at the lowest level of aggregation. The task
works under the single-fault assumption. On the basis of a complaint, an applicable system
model is selected. This selection task corresponds to the knowledge source select specified
in the inference layer. Subsequently, hypotheses in the differential are generated through
the generate-hypotheses sub-task. In the sub-task test-hypotheses these hypotheses are
then tested to find an inconsistent sub-system. This hypothesis then becomes the focus for
further exploration. The generate-and-test process is repeated, until no new hypotheses
are generated (i.e. the differential is empty).

task systematic-diagnosis
goal:
find the smallest component with inconsistent behaviour, if one.
input:
complaint
output:
inconsistent-sub-system: sub-part of the system with
inconsistent behaviour
control-terms:
differential: set of currently active hypotheses
task-structure:
systematic-diagnosis(complaint — inconsistent-sub-system) =
select(complaint — system-model)
generate-hypotheses(system-model — differential)
REPEAT
test-hypotheses(differential — inconsistent-sub-system)
generate-hypotheses(inconsistent-sub-system — differential)
UNTIL differential = §

For readability purposes, the names of knowledge sources are italicised in the task
structure. The arrows in the task structure describe the relation between input and output
of the sub-task. Note that all arguments of tasks and conditions are either explicitly
declared (differential) or are meta-class names.

The task generate-hypotheses is a very simple task. It just executes the decompose
knowledge source until it produces no more solutions.

task generate-hypotheses
goal:
generate new set of hypotheses through decomposition
input:
system model
output:
hypothesis-set: set of newly generated hypotheses
control-terms:
hypothesis: device component
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task-structure:
generate(system-model — hypothesis-set) =
REPEAT
decompose(system-model — hypothesis)
hypothesis-set := hypothesis U hypothesis-set
UNTIL no more solutions of decompose

The task test-hypotheses tests the hypotheses in the differential sequentially until an
inconsistency is found (difference = true). Testing is done through a kind of experimental
validation: a norm value is predicted and this value is compared with what is actually
observed. Obtain(observable, finding) is an example of a transfer task, that starts an
interaction with the user to obtain a test value. How the transfer task is carried out,
should be specified in the model of cooperation.

task test-hypotheses
goal:
test whether a hypothesis in the differential behaves inconsistently
input:
differential
output:
hypothesis: element of the differential with inconsistent behaviour
control-terms: -
task-structure:
test(differential — hypothesis) =
DO FOR EACH hypothesis € differential
specify(hypothesis — norm)
specify(hypothesis — observable)
obtain(observable — finding)
compare(norm + finding — difference)
UNTIL difference = true

If one abstracts from the control relations between sub-tasks and assumes a fixed task
decomposition, the set of task structures can be represented graphically as a tree. The
tree for systematic diagnosis is shown in Fig. 3.6. Such a decomposition of a task assigned
to the system is in fact a further refinement of the decomposition specified in the task
model (see Sec. 3.3).

3.4.4 Strategic knowledge The fourth category of knowledge is the strategic
knowledge.'? Strategic knowledge determines what goals are relevant to solve a partic-
ular problem. How each goal is achieved is determined by the task knowledge. Strategic
knowledge will also have to deal with situations where the afore-mentioned knowledge
categories fail to produce a partial solution. For example, the problem-solving process
may reach an impasse because information is not available or because contradictory infor-
mation arises. In such cases the strategic reasoning should suggest new lines of approach
or attempt to introduce new information e.g., through assumptions (cf. [Jansweijer, 1988;
Jansweijer et al., 1989]).

Strategic knowledge concerns, among other things, the dynamic planning of task ex-
ecution. However, most systems developed with the KADS approach used only fixed task

12Gruber uses the term “strategic knowledge” in a different way [Gruber, 1989]. His strategic knowledge
is in many aspects similar to the task knowledge in KADS.
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systematic
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FIGURE 3.6: Task tree of systematic diagnosis. The leaves of such a tree are either knowledge sources or
transfer tasks.

decompositions and had little or no strategic knowledge. In our opinion, this does not
mean that strategic knowledge is unimportant or superfluous. When knowledge engineers
have to construct more complex and flexible knowledge-based systems than presently is
usually the case, we think a much more detailed exploration of strategic knowledge will be
necessary. We have recently started to work on an ESPRIT project named REFLECT where
the central topic is the exploration of strategic knowledge. Apart from dynamic planning,
strategic knowledge can also enable a system to answer questions such as “Can I solve
this problem?” [Vof§ et al., 1990]. For the moment however, the study of the nature of
strategic knowledge remains mainly a research topic.

3.4.5 Synopsis of the model of expertise The four knowledge categories (domain,
inference, task and strategic knowledge) can be viewed as four levels with meta-like rela-
tions in the sense that each successive level interprets the description at the lower level.
In Fig. 3.7 these four levels and their interrelations are summarised.

The four-layer framework is a structured but informal framework. This means that
the specifications are sometimes not as precise as one might want them to be and thus
may be interpreted in more than one way. This has led to research aimed at defining
a formal framework for representing models of expertise [van Harmelen & Balder, 1992;
Wetter, 1990] The price paid for a greater amount of precision in formal specifications is
however a reduction in conceptual clarity. In our view, there is a place for both informal
and formal representations in the knowledge engineering process. The use of both informal
and formal model representations is a major topic of research in the KADS-I1I project.

The four-layer framework for knowledge modelling has been successfully used as a
basis for structured acquisition and description of knowledge at an intermediate level
between the expertise data obtained from experts, text books, etcetera and the knowledge
representation in an implemented system [de Greef & Breuker, 1985]. From a knowledge-
level viewpoint, the present four-layer model captures knowledge categories that are quite
similar to those encountered in other models in the literature. However, differences in
opinion exist about where to situate particular types of knowledge. This point will be
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FIGURE 3.7: Synopsis of the KADS Four-Layer Model

discussed in more detail in Sec. 3.7.

3.5 Principle 3: Reusable Model Elements

There are several ways in which models of expertise can be used to support the knowledge
acquisition process. A potentially powerful approach is to reuse (structures of) model
elements. When one models a particular application, it is usually already intuitively clear
that large parts of the model are not specific for this application, but reoccur in other
domains and/or tasks. KADs (as do most other approaches to knowledge modelling) makes
use of this observation by providing a knowledge engineer with predefined sets of model
elements. These libraries can be of great help to the knowledge engineer. They provide
her with ready-made building blocks and prevent her from “re-inventing the wheel” each
time a new system has to be built. In fact, we believe that these libraries are a conditio
sine qua non for improving the state of the art in knowledge engineering.

In this section, two ways of reusing elements of the model of expertise are discussed: (i)
typologies of primitive inference actions (knowledge sources) and (ii) interpretation models.
In principle however, the reusability principle holds for all models in the KBS construction
process.

3.5.1 Typologies of knowledge sources In [Breuker et al., 1987] we have defined
a tentative typology of primitive problem solving actions (knowledge sources) which has
been the basis of a considerable amount of models. The typology is based on the possible
operations one can perform on the epistemological primitives defined in KL-ONE [Brachman
& Schmolze, 1985]. This set of primitives consists of:

e concept
e attribute (of concept)



Chapter 3. KADS: A Modelling Approach to KBS Development 41

value (of attribute)
instance (of concept)
set (of concepts)
structure (of concepts)

In the typology of inferences we view these primitives not as data-structures but as
epistemological categories. Their actual representation in a system may be quite different
(e.g. in terms of logical predicates rather than KL-ONE like constructs).

‘ Operation type ‘ Knowledge source ‘ Arguments ‘
Generate instantiate concept — instance
concept/instance classify instance — concept

generalise set of instances — concept
abstract concept — concept
specify concept — concept
select set — concept
Change concept assign-value attribute — attribute-value
compute structure — attribute-value
Differentiating compare value 4+ value — value
Values/structures match structure + structure — structure
Structure manipulation | assemble set of instances — structure
decompose structure — set of instances
transform structure — structure

TABLE 3.2: A Typology of Knowledge Sources

Table 3.2 gives an overview of the typology of knowledge sources used in KaDS. The
inferences are grouped on the basis of the type of operation that is carried out by the knowl-
edge source: generate concept/instance, change concept, differentiate values/structures and
manipulate structures. A detailed description of the inferences mentioned in Table 3.2 is
given in [Breuker & Wielinga, 1989].

Although this typology has been a useful aid in many analyses of expertise, it has a
number of important limitations:

e The selected set in Table 3.2 is in a sense arbitrary. For example, we could have
added other operations on sets such as join, union, or merge.

e The ontology on which the typology is based is of a very general nature and hence
weak. The operations are defined more or less independent of tasks and /or domains.
Often, it is difficult for the knowledge engineer to identify how an inference in a
particular application task must be interpreted.

e A more serious limitation is that some inferences cannot be adequately classified
because they require another ontological framework. For example, operations on
causal relations such as abduction and differentiation cannot be represented in a
natural way.

We consider the study of more adequate taxonomies of inferences to be a major research
issue. Potentially, taxonomies are very powerful aids for the knowledge engineer. In a
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new research project (KADS-11) we are exploring the possibility of describing taxonomies
that are specific for classes of application domains such as technical diagnosis. These
taxonomies will be based on a much more task-specific ontology.

It is interesting to see that from a different angle the “Firefighter” project [Klinker
et al., 1991] is aiming at similar results. An important goal of this project is to look at
what they call mechanisms that are used in various applications, detect commonalities
between these mechanisms, and construct a library of mechanisms that can be reused in
other applications. These mechanisms appear to have the same grain size as the knowledge
sources in KADS. The main difference is that mechanisms have a computational flavour.

3.5.2 Interpretation models Typologies of elements of a model of expertise, such as
a typology of knowledge sources, represent a first step into the direction of reusability. A
further step would be to supply partial models of expertise such as models without all the
detailed domain knowledge filled in. Such partial models can be used by the knowledge
engineer as a template for a new domain and thus support top-down knowledge acquisition.
In KADS such models are called interpretation models, because they guide the interpretation
of verbal data obtained from the expert.

The KADS interpretation models are models of expertise with an empty domain layer.
Interpretation models describe typical inference knowledge and task knowledge for a par-
ticular task. As these descriptions are phrased in domain-independent terminology, they
are prime candidates for reuse in other domains. For example, the inference and task
description of the audio domain could very well be applied to another domain where some
device is being diagnosed. In [Breuker et al., 1987] interpretation models for a large num-
ber of tasks are presented. One of these is the model for systematic diagnosis as presented
here.

Example interpretation model Another model in this library is that of the moni-
toring task. This model has been used in applications ranging from process control [Schri-
jnen & Wagenaar, 1988] to software project management [de Jong et al., 1988] It is also
interesting because it illustrates how different tasks can apply the same set of inferences
in different ways.

The inference structure of the interpretation model for the monitoring task (shown in
Fig. 3.8) depicts the following inferences:

The selection of a system parameter.

The instantiation of the normal value of the parameter (the norm).

The selection of a corresponding observable.

A comparison of observed and expected values leading to a difference description.

A classification of the difference into a discrepancy class, e.g. minor or major dis-
turbance. Often, data from previous monitoring cycles are used in this inference.

Two typical tasks (fixed strategies) were identified for monitoring. One could view
them as two different ways of “going through” the inference structure of Fig. 3.8.

The first task, model driven monitoring, describes a monitoring approach where the
system has the initiative. This type of task is usually executed at regular points in time.
The system actively acquires new data for some selected set of parameters and then checks
whether the observed values differ from the expected ones.
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FIGURE 3.8: Inference structure of the interpretation model for monitoring

task model-driven monitoring
goal:
execute a monitoring cycle in which the system actively acquires new data
input: -
output:
discrepancy
control-terms:
active-parameters:set of parameters
task-structure:
monitor(discrepancy) =
select(system-model, active-parameters)
DO FOR EACH parameter € active-parameters
specify(parameter — norm)
select(parameter — observable)
obtain(observable — finding)
compare(norm + finding — difference)
classify(difference + historical-data — discrepancy)

The second task, data-driven monitoring, is initiated through incoming data. It con-
tains a receive statement representing a transfer task in which an external agent (a human
user or another system) has the initiative(see Sec. 3.4.3). The values received are checked
against expected values for the observables concerned. Resulting differences are subse-
quently classified in discrepancy classes.

task data-driven-monitoring
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goal:
execute a monitoring cycle when a new value of an observable
is received by the system
input: -
output:
discrepancy
task-structure:
monitor(discrepancy) =

receive(observable-set — finding)

DO FOR EACH observable € observable-set
select(observable + system-model — parameter)
specify(parameter — norm)
compare(norm + finding — difference)
classify(difference + historical-data — discrepancy)

Selecting an interpretation model from the library The library of interpreta-
tion models consists of a number of models that can be used to describe the reasoning
process in various applications. The knowledge engineer is guided in deciding which in-
terpretation model to choose for a particular application through a decision tree. Part of
this tree is shown in Fig. 3.9. indexinterpretation model library, model selection

The decision tree is based on a taxonomy of task types. This taxonomy is a modified
and extended version of the Clancey’s description of problem types [Clancey, 1985b] which
in turn was derived from [Hayes-Roth et al., 1983; p. 14]. The decision points in this
tree concern features of the solution space, the problem space and the required domain
knowledge types.

The first decision point concerns the availability of information about the structure of
the system involved in a task. The term “system” refers here to the central entity in the
application domain, e.g. the audio system in the audio domain, the patient in a medical
domain, the device in a technical domain, etc. Other decision points concern for example
the type of solution (state, category, types of categories, etc.) and the nature of the domain
knowledge (fault-model or correct-model of the system). The leaves of the decision tree are
associated with one or more interpretation models that specify typical inference and task
knowledge for modelling this task. For example, the interpretation model for monitoring
presented earlier is associated with the monitoring task in Fig. 3.9. This model is chosen if
(i) the structure of the system is given, (ii) the solution is a category and (iii) this solution
category is not a fault category nor a decision class, but a simple discrepancy between
observed and expected behaviour.

It should be noted that in many real-life applications the task is a compound one: it
consists of several basic tasks. For example, in the model of expertise for the audio domain,
we focused only on the diagnostic sub-task. In actual practice the repair /remedy task
also needs to be addressed. This may result in a combination of (parts of) two or more
interpretation models. An example of this process of combining is described in [Hayward,
1987].

A number of researchers have developed knowledge acquisition tools that are based on
the notion of a generic model of the problem solving task. For example, ROGET [Bennet,
1985], MOLE [Eshelman et al., 1988] and BURN [Klinker et al., 1991] are all systems that
drive the knowledge acquisition dialogue with an expert through a strong model of the
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FIGURE 3.9: Partial decision tree of interpretation models

problem solving process. This model prescribes what domain knowledge is needed to build
an actual expert system. In oPAL [Musen et al., 1987] this approach is taken one step
further. The conceptual model in OPAL is not just a model of the problem solving process
(i.e. the upper three layers in the KADs framework) but also contains templates of the
domain knowledge needed. As a consequence OPAL can present the expert with detailed
forms that he or she can fill in with the details of an application domain. Although this
approach is very powerful indeed, it has limitations in scope and applicability.

3.6 The Knowledge Acquisition Process

The description of the various models can be seen as the product of KBS construction,
With respect to the process of KBS construction, KADS provides two ways of support:
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(i) a description of phases, activities, and techniques for knowledge engineering, and (ii)
computerised support tools. Both are briefly discussed in this section.

3.6.1 Phases, activities and techniques A phase represents a typical stage in the
knowledge engineering process. A phase is related to a number of activities, that are usu-
ally carried out in this phase. One particular activity can occur in more than one phase.
For example, “data collection” can occur in many different phases. The activities are the
central entities in the process view on knowledge engineering. An activity is a piece of
work that has to be carried out by the knowledge engineer. An activity produces a result.
This result constitutes either directly a part of one or more models or it represents some
intermediate product, that is used by other activities. An activity applies one or more
techniques. For example, a “time estimation” activity can be carried out with an extrapo-
lation technique. Life cycle models predefine particular phases, activities, techniques and
products and also their interrelations. Life cycle models for KADS have been described in
[Barthelemy et al., 1987; Taylor et al., 1989] We limit the discussion here to those activ-
ities that are related to building a first model of expertise. We distinguish two phases in
building such a first model of expertise: knowledge identification and knowledge modelling.

Knowledge identification is more or less a preparation phase before the actual con-
struction of the model of expertise can begin. Relevant activities for this phase are shown
in Fig. 3.10 together with applicable products and techniques. The results include a task
model and also intermediate products that are used by activities in other phases, especially
the knowledge modelling phase. Example activities are glossary and lexicon construction.
A glossary and a lexicon provide a way of documenting the application domain without
committing to any formal conceptualisation.

Products Activities Techniques

Expertise data +<—— Data collection ~----------- -4 > Structured interview, ....

Task analysis -=z-- ST -+ Rational task analysis
Task model < N =% Work-flow analysis
==7__- - - 4 Protocol segmentation

Task feature analysis -=- - P

Lexicon <———————— Lexicon construction ~~___-""__» Frame edititing

Glossary «<—— Glossary construction - =277 7T Lexical analysis techniques
) Concept identification - == - - - -~ —~—% Repertory grid

Draft domain theory < Relation identification - ==~ - Tt Card sort

FIGURE 3.10: Knowledge identification activities and related products and techniques

In the knowledge modelling phase the knowledge engineer constructs a model of ex-
pertise. Fig. 3.11 summarises the main activities relevant for knowledge modelling. A
crucial one is the selection of an interpretation model. This activity is supported through
the decision tree discussed in Sec. 3.5. The model validation and model differentiation
activities often make use of protocol analysis techniques. Model validation can also be
supported by transformation of the model into a functional prototype. This prototype
can be seen as a simulator of the problem solving aspects of the artefact. The KADS-1I
project is currently working on a tool to support this type of prototyping. Other activities
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deal with the definition of the domain conceptualisation. In KADS we usually assume that
in the resulting model the domain theory can be a partial one , but with a fully defined
domain schema. Refinement and debugging of the domain theory is performed in a later
phase, possibly with the use of automised techniques.

Products Activities Techniques
Expertise data +— Data collection - --------- - Think-aloud protocaols, ...
Interpretation model __ __ - - -» Decision tree
selection ___-» Frame editing
Domain schema __--Z2____ » Data modelling techniques
definition S
strategy o ] “~_ ___» Tree diagramming
Building domain _ __ - -7 .
task structures ~ =7~~~ Laddering
a )
inference Model assembly -- - _ _ Segment grouping
connecting the IM with "~ ~ % Generic sub-task substitution
domain the domain theory " ¢ Sub-task expansion
k\ Model validation -==- - ;/—:/» > Functional prototyping
\ \/;/\ _ )
‘\ ) o .~ ___-% Protocol analysis
Model of expertise Model differentiation “ ~ protocol segmentation,

protocol coding, matching,
segment naming,

Bottom-up model | _______ + Goal regression
construction SI-o 9 :

~_ "™ Forward scenario simulation

~

A Participant observation

FIGURE 3.11: Knowledge modelling activities and related products and techniques

3.6.2 Tools Within the KADS project the Shelley workbench was developed to support
activities in the KBs life cycle. Shelley contains an integrated set of computerised support
tools. The user of the workbench is the knowledge engineer. Example support tools in
Shelley for the knowledge modelling phase are:

o A domain text editor: a tool that allows management and analysis of protocols or
other texts, for example through the creation of text fragments of a particular type.
These fragments can subsequently be linked to other objects, such as elements of
the model of expertise.

o A concept editor to create concepts and corresponding attributes.
e An interpretation model library from which models can be selected.

e An inference structure editor that supports the construction of the inference layer of
the model of expertise.

Fig. 3.12 shows an example of the use of Shelley in the audio domain. The knowledge
engineer has selected the interpretation model of systematic diagnosis from the library and
inserted it into the inference structure editor. A think-aloud protocol is being analysed.
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FIGURE 3.12: Example session with the Shelley workbench

The link of a particular fragment of the protocol to a meta-class in the inference structure
editor is shown.

The Shelley workbench is described in more detail in [Anjewierden et al., 1992]

3.7 Relation to Other Approaches

We make no claim that all ideas underlying KADS are new. On the contrary, work of other
researchers has heavily influenced the work on KADS. In this section we discuss a number
of these approaches and relate them to the KADS approach.

Brachman proposed five levels for describing knowledge [Brachman, 1979]: the linguis-
tic, the conceptual, the epistemological, the logical and the implementational level. Brach-
man and also Clancey [Clancey, 1983] showed that the epistemological level of Brachman
is the “missing” level in the description of knowledge-based systems. We interpret Newell’s
knowledge level as a combined description of Brachman’s conceptual and epistemological
level. In the KADS model of expertise the domain knowledge roughly corresponds to the
conceptual level and the three other categories to the epistemological level. The KADS
design description (Newell’s symbol level) corresponds to the logical level.

The work of Clancey has had a large impact on KaDs. [Clancey, 1985b] introduced the
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notion of an inference structure in the description of the model of heuristic classification
(HC). In the work on NEOMYCIN [Clancey, 1985a] a similar type of task decomposition is
found as is used in the task layer in KADS. The main difference is that there is no explicit
relation between the tasks in NEOMYCIN and the inferences in the HC model. These tasks
refer directly to the domain knowledge, whereas the tasks in KADS reference the domain
knowledge only indirectly via primitive inferences.

In the approach taken at Ohio State University [Bylander & Chandrasekaran, 1988;
Chandrasekaran, 1988] the implementation environment consists of so called “generic
tasks”. A generic task (GT) is a combination of a problem (e.g. classification) and a
problem solving method (e.g. hierarchical classification) with particular knowledge and
inference requirements. GT’s can perform quite general information-processing tasks. The
assumption is that by combining a relatively small set of GT’s one can solve a large number
of problems. The problem solving methods in the GT approach have a somewhat smaller
grain size than the interpretation models in KADS.

In the approach taken at DEC [McDermott, 1988; Marcus & McDermott, 1989; Eshel-
man et al., 1988] a number of systems were built that provide an operationalisation of a
particular problem solving method, such as * ‘propose & revise” and “cover & differenti-
ate”. The terminology used to describe these methods is such that during knowledge acqui-
sition the expert can be prompted for domain knowledge in a high-level, method-specific,
language, e.g. “What are symptoms that the system should be able to explain?”’. The
problem solving methods have a similar grain size as the KaDS interpretation models.
More recently [Klinker et al., 1991], the emphasis in this approach has shifted to the
construction of an integrated environment in which the knowledge engineer can configure
such single-task knowledge acquisition systems from a set of predefined mechanisms. As
remarked in Sec. 3.5.1, the research on a typology of mechanisms is very close to aims in
KADS.

In the PROTEGE [Musen, 1989] approach the problem is addressed that experts find it
difficult to enter knowledge in a method-specific format. In this approach two steps are
distinguished in building oNcocCIN-like systems: the knowledge engineer uses PROTEGE to
specify the required domain knowledge in method-specific terms; PROTEGE then generates
a knowledge acquisition tool called p-OPAL that enables the expert to enter knowledge
in domain-specific terms. This dual way of naming domain knowledge is similar to the
approach advocated in KaDS. The PROTEGE system presupposes a single-task model,
based on the skeletal planning method of oNcocIN [Shortliffe et al., 1981]

All models used in these last three approaches are hard-wired to particular compu-
tational constructs. As stated earlier, compared to the KADS approach this is both an
advantage and a disadvantage.

The “Components of Expertise” (CoE) approach [Steels, 1990] is in many aspects sim-
ilar to KADS. The main differences with KADs are the dynamic view on task decomposition
based on task features and the absence of an explicit description of inference knowledge
such as meta-classes. A dedicated computational framework has been developed for CoE
models [Vanwelkenhuysen & Rademakers, 1990]. Research aiming at a synthesis of KADS
and CoE is in progress within the KADS-II project.

The “Ontological Analysis” approach [Alexander et al., 1988] describes knowledge
in three categories: (i) the static ontology describing the primitive objects, properties
and relations, (ii) the dynamic ontology describing the state space of the problem solver
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and the actions that can make transitions in this space, and (iii) the epistemic ontology
describing methods that control the use of knowledge of the first two categories. These
three categories resemble closely the domain, inference and task knowledge in KADS. The
formalisms used in Ontological Analysis are based on algebraic specification languages.

Although terminology is different, a common view appears to emerge based on the idea
that different types of knowledge constitute the knowledge level and that these different
types of knowledge play different roles in the reasoning process and have inherently dif-
ferent structuring principles. One salient characteristic is that all approaches distinguish
between structural domain knowledge and control knowledge. In addition, various kinds
of control knowledge are distinguished, like global control of how to go about the task
as a whole, and local control knowledge specifying how and/or when to carry out certain
individual actions.

There are also relations between KADS and conventional software engineering ap-
proaches. The introduction of multiple models was inspired by work of [DeMarco, 1982]
As pointed out in Sec. 3.4.1, issues concerning modelling of domain knowledge are quite
closely related to research in semantic database modelling. Software engineering tech-
niques are used in KADS, e.g. a form of data-flow diagrams (for inference structures) and
structured English (for task structures). Life-cycle models using a water-fall approach
[Barthelemy et al., 1987] and a spiral model approach [Taylor et al., 1989] have been de-
fined in KADS. The relations with conventional software engineering are discussed in more

detail in Ch. 8.

3.8 Experiences

The KADs approach has been (and is being) used in some 40 to 50 KBS projects. Not all
these projects used “pure” KADS. The core activities of Bolesian Systems, a Dutch com-
pany, are teaching and applying an earlier version of KADS under the name SKE (Struc-
tured Knowledge Engineering). Other companies, such as Arthur Andersen Consulting
and commercial partners in the KADS-1 project, have incorporated KADS into their own
methodology.

Within the KaDS-1 project the approach has been tested in a number of experiments in
domains such as commercial wine making [Wielinga & Breuker, 1984], statistical consul-
tancy [de Greef & Breuker, 1985; de Greef et al., 1988b], the integration qualitative rea-
soning approaches [Bredeweg & Wielinga, 1988], network management [Krickhahn et al.,
1988; Readdie & Innes, 1987], mould configuration [Barthélemy et al., 1988], mixer config-
uration [Wielemaker & Billault, 1988], technical diagnosis [Wright et al., 1988], insurance
[Brunet & Toussaint, 1990], and credit card fraud detection [Porter, 1992; Killin, 1992],
Other applications include re-engineering of oNcocIN [Linster & Musen, 1992], process
control [Schrijnen & Wagenaar, 1988], chemical equipment [Schachter & Wermser, 1988],
room planning [Karbach et al., 1989], social security [de Hoog, 1989], software project
management [de Jong et al., 1988], diagnosis of movement disorders [Winkels et al., 1989],
and paint selection [van der Spek et al., 1990]. The last two systems and the credit card
system have been in operational use for some time.

A recent publication for the commercial AT community [Harmon, 1991] commented that
“before KaDSs, most of the methodologies were vague prescriptions rather than systematic
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step-by-step models for large scale systems development efforts”. On the basis of the
success of KADs-1I, the CEC has decided to fund a second ESPRIT project (KADs-11) with
the aim to arrive at a de facto European standard for KBs development.

This is not to say that we think that the KADs approach has no deficiencies: on the
contrary. It is clear that a group of KADS users finds certain aspects of KADS attractive,
but it is also recognised that there are many weaknesses in current KADS. The first KADS
user meeting [Ueberreiter & Vof}, 1991] in which some forty, mainly German, KADS users
participated, provided a good overview of the strong and weak points of KADS. Among
the strong points are:

e The distinction between various models, especially the distinction between the model
of expertise and the design.

e The framework for modelling expertise. Especially the inference structures are men-
tioned by many people as an intuitively appealing way of describing the reasoning
process and as a communication vehicle with domain experts.

e The library of interpretation models. Although this library is far from complete, it
has still provided useful starting points for many applications.

The list of weaknesses is considerably longer . A selection:

e The vocabulary in the four-layer framework for describing domain knowledge and
task knowledge is not expressive enough.

e The typology of knowledge sources is too general. The precise meaning of the knowl-
edge sources is ambiguous.

e The library of interpretation models is incomplete and needs serious revision. For
example, coverage of synthetic tasks is marginal.

e KADS does not provide enough support for operationalising conceptual models.

e KADS gives you a vocabulary, but it provides little support for the modelling process.

In short, the experiences show that the KADS approach has some interesting and at-
tractive features, but that it still needs a lot of work before it can really be considered a
“comprehensive methodology”. In addition, controlled validation studies are necessary to
show that KADS actually provides advantages compared to other approaches. The work
of [Linster & Musen, 1992] can be seen as a step in this direction.

3.9 Future Developments & Conclusions

In this chapter, we have taken the position that knowledge acquisition is to a large extent
a constructive activity: models of several aspects of the task and domain have to be build
before implementing a knowledge based system.

Looking at the future of knowledge acquisition from this point of view raises the
obvious question of how Al and knowledge based systems themselves can support the
various modelling processes. Recent developments in the area of knowledge acquisition
tools provide some directions in how this could be done.

Given the modelling approach to knowledge acquisition it is of vital importance that
a knowledge engineer has some language in which the various models can be formulated.
Such a language is not only important for the knowledge acquisition process itself, but
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also for communicating models and comparing models for different tasks. A comparative
analysis of the problem-solving methods embodied in KBS’s will advance the knowledge
acquisition activity from an art to a proper engineering discipline. Although there is
currently little consensus on what the ingredients and vocabulary of such a modelling
language should be, the various ideas appear to converge. The result of the synthesis of
the KaDS and the CoE approach, which is currently being pursued and in which ideas
from other approaches are also taken into account, may be a starting point for such a
language. In our view, it is worthwhile to investigate the different types of knowledge and
their relationships also from a more formal point of view. Attempts are being made in
this direction (see [van Harmelen & Balder, 1992]). Such a formal account of knowledge
models clarifies at least some of the notions that have been used in a rather informal way
so far.

If a common language for defining conceptual models of problem solving processes
became accepted, it would be of great interest to study the large collection of problem
solving models that currently exist. A consolidation and integration of the models in the
KADS interpretation model library [Breuker et al., 1987], the generic problem solving mod-
els of Chandrasekaran and co-workers [Chandrasekaran, 1988], the models underlying the
various model-driven knowledge acquisition tools [McDermott, 1988], and various other
models in the literature, could provide the knowledge engineering community with a in-
valuable tool for knowledge acquisition. Also, such a collection of generic models could
be the basis of powerful knowledge acquisition tools that communicate both with experts
and with knowledge engineers.

Looking beyond the traditional knowledge engineering paradigm where the knowledge
engineer does most of the work, we envisage an important role for knowledge about models
in knowledge acquisition tools that integrate traditional knowledge acquisition techniques
and automated learning techniques. One of the major problems in this area is that of
integrating knowledge of various sources. A system that has knowledge about the kinds
of knowledge that it needs to acquire can exercise much more focused control on the
acquisition process and hence solve at least part of the integration problems.



Chapter 4

A KADS Domain Description Language

KADS has been critisised for the fact that it does not provide adequate support for modelling the structure
of domain knowledge. Existing approaches to data modelling are only partly able to fill this gap. KBS
development appears to impose a number of additional requirements on data modelling. Two important
ones are (i) the need for expressions as an explicit data-modelling notion, and (ii) the need for a range of
relation types. In this chapter we present a domain description language (DDL) based on ER modelling and
KL-ONE, that provides a number of extensions making the language better suited for KBS data modelling.
The language is defined in BNF grammar rules and illustrated with examples. In addition, a graphical
representation for the data model is proposed.

This chapter will be published in a collection of articles on KADS. Reference: Schreiber, A. T. (1993).
A KADS domain description language. In Schreiber, A. T., Wielinga, B. J., & Breuker, J. A.  editors,
KADS: A Principled Approach to Knowledge-Based System Development. Academic Press, London.

4.1 Introduction

It has been argued that one of the weak points of the KADS methodology is that it provides
little to no support for the modelling of domain knowledge. Generally speaking, the KADS
documents state that the domain layer consists of “concepts and relations”. In most
experiments within the KADs-1 project P1098 the domain layer description consisted of
a glossary of concepts with attribute descriptions and a number of is-a and/or part-of
hierarchies. Originally, KADS advocated the use of KL-ONE as the sole formalism for
domain layer modelling. Experiences in several P1098 experiments [de Greef et al., 1987;
Wielemaker & Billault, 1988] have however indicated that the KL-ONE primitives are not
powerful enough for modelling all relevant structural properties of the domain knowledge.

The KADS domain layer can be viewed as a domain knowledge base containing the
data/knowledge types in the domain. The activity of building a domain layer model is in
many ways similar to data modelling in conventional software engineering. Efforts have
been made to apply information analysis techniques to domain-knowledge modelling. In
the next section we summarise three important existing approaches to data modelling
and analyse their restrictions. As will be pointed out in Sec. 4.3, the primitives of these
techniques are not powerful enough to describe all relevant structural properties which one
wants to describe in an application domain. The nature of domain knowledge encountered
in knowledge-based applications seems to pose additional requirements on the expressivity
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of data modelling techniques. In Sec. 4.3 we formulate a number of these KBs-specific
requirements for “data modelling”.! Based on this analysis we propose in Sec. 4.4 a
Domain Description Language (pDL) for describing the KADs domain layer. This DDL
contains a number of extensions of the known data modelling languages. We illustrate the
use of the DDL with examples in various domains. A full DDL specification of the domain
knowledge in the Sisyphus domain (see Ch. 7) can be found in Appendix A.

The purpose of the DDL is to provide a generalisation of various available knowledge
representation formalisms. This is in line with the knowledge-level idea: when building a
knowledge-level model of an application one should not commit oneself already to a partic-
ular representation. In the design stage, the knowledge engineer needs to decide how the
DDL descriptions are to be mapped onto or transformed into symbol-level representations.
In Sec. 4.5 we discuss the relation between the DDL and some KR formalisms. In addition,
we discuss some issues concerning the semantics of the DDL.

4.2 Existing Approaches to Data/Knowledge Modelling

In this section we look at the merits and restrictions of the following three approaches to
data/knowledge modelling:

1. Entity-Relationship (ER) Modelling
2. KL-ONE
3. Extensions to ER Modelling: Semantic Database Modelling

4.2.1 Entity-relationship model The Entity Relationship Model [Chen, 1976] has
its roots in database design. The Entity Relationship Model provides? an organisation of
information in entities, relationships, attributes, and values:

1. An entity in the model is the representation of some object in our mind. In the
original version of the ER model, entities are classified into entity sets by means of
an associated predicate (and this not by sub-type hierarchies). Entity sets are not
necessarily mutually disjoint.

2. A relationship in the model is an association between entities. Entities have a role,
which describes their function in the relationship (compare this with the use of role
in KL-ONE). This role can be explicit (the role is given a name) or implicit (the
role is determined by the order in the relationship). Relationships belong to a set of
relationships (i.e. grouped in classes).

3. The other two important concepts used in the Entity Relationship Model are the
attribute and the wvalue. An attribute is a function, that associates an entity or a
relationship (!) with a value. Values are basic objects like a number, a colour or a
name. Values belong to one or more value sets.

'Tt could seem more appropriate to use the term “knowledge modelling”, but this is commonly used in
a broader sense, namely to cover all knowledge types and not just the domain knowledge.
2Chen describes four levels on which data are modeled. The focus is here on Chen’s level two.
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Limitations of the ER model The ER-model is widely accepted as a powerful tool
for data modelling. For modelling complex relations like rules and classification hierarchies,
the ER-model has a limited set of modelling constructs (see [Koster, 1990]).

4.2.2 KL-ONE KL-ONE constitutes a representation language for the description
of “structural” domain knowledge. For a good overview of KL-ONE see [Brachman &
Schmolze, 1985] The major characteristics of KL-ONE are:

1. KL-ONE separates is-a relations from other types of relations. The is-a relation is
used to build inheritance lattices of entities (in KL-ONE: concepts).

2. All other relations (both entity <> entity and entity <> attribute) are represented as
roles of an entity.

3. Sub-concepts can limit the values and/or the cardinality of an inherited role (role
restriction). Also, a role can be split into two or more sub-roles (role differentiation).

4. KL-ONE distinguishes between concepts and instances. Concepts represent in fact
universally quantified axioms concerning a set of instances. A generic classifier can
be used to make inferences about instances of concepts using the knowledge provided
by the sub-type hierarchy.

5. Structural descriptions are used to describe relations between roles.

Limitations of KL-ONE A limitation of KL-ONE is that relations other than is-
a relations are described in an indirect way by specifying a role within an entity. For
instance, the fact hat an employee works for exactly one department is expressed as follows
(simplified for clarity).

entity employee
role works-in
value-restriction:
department
cardinality
1,1

To represent the reverse relation a role employee has to be created in the department
entity. It is possible to circumvent this problem by creating an entity employee-department-
relation. This is even necessary, if you want to define a role-attribute, that is dependent on
this relation. But introduction of these relations as concepts in a KL-ONE network reduces
clarity.

Also, no distinction is made in KL-ONE between roles that symbolise a relation with
another entity and attribute roles, i.e. roles, that have some kind of atomic value (integer,
string).
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4.2.3 Extensions of ER modelling in semantic database modelling The ER-
model has given rise to a large number of descendents adding various other constructs. We
discuss the extensions proposed in the field of semantic database modelling. In semantic
data modelling research (for a good overview see [Hull & King, 1987]) the aim is to move
beyond the level of the traditional data modeling techniques (the hierarchical, the network
and the relational approach). Semantic data models discern (unlike, for example, the basic
ER model) between different types of relations. Among the types of relations encountered
frequently in these models are Is-a relations, set relations and aggregations.

The following set of primitives is viewed by [Hull & King, 1987] as the core of the
various semantic data models;

Atomic types Atomic types represent the class of non-aggregate objects. Atomic types
can have attributes.

Constructed Types From the atomic types other types can be constructed with the use
of two types of operations: aggregation and grouping.

e Through aggregation a composite object can be constructed from other objects
in the database. These objects can themselves be either atomic or constructed.
An example could be an address, which is constructed from a street, a number,
a city, and a postal code.

e Grouping is used to construct a type which constitutes a set of objects of another
type, e.g. the set of addresses.

Attributes An attribute is viewed as a function between types. Some models make an
explicit distinction between single- and multi-valued attributes. In other models
attributes can only be single-valued. In this case the grouping relation should be
used to construct the multi-valued type. In KL-ONE attributes (roles) represent by
default a set of values (i.e. are multi-valued). Here, cardinality constraints are used
to specify single-valued attributes. Note that attributes with multiple arguments
can be constructed with the aggregation relation (e.g. a function from person to

address).

Is-a Relations Is-a relations indicate that an object associated with the sub-class can
also be associated with the super class. In most models Is-a relations are used to
allow for inheritance of properties (attributes) from super class to sub-class. Is-a
relations specify a directed graph in which undirected cycles may occur (multiple
inheritance). Some models distinguish two types of Is-a relations: a specialisation
and a generalisation.

e A specialisation of Csype, into one or more classes C'gyp defines, possibly over-
lapping, roles that an object of the super type can play: e.g. a person can be
a father, a scientist, and a bridge player.?.

? Another example solves an intrigning identity problem that kept bothering me for a long time in prep
school, namely that of the Holy Trinity: the super type God can play the role of both the Father, the Son,
and the Holy Ghost, as my catholic school teacher explained to me many years ago (GS).
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e A generalisation defines that a general term (the super class) can be used to
refer to objects belonging to the sub-classes: e.g. the sub-classes car and plane
have the super class vehicle as a generalisation. The sub-sets are assumed to
be disjoint.

Limitations of Semantic Database Modelling In comparison to ER modelling,
semantic database modelling offers a number of additional primitives which could prove
to be useful for data modelling in A1. The main limitation lies in the fact that it is still
difficult (as will be pointed out in the next section) in these modelling languages to model
relations such as cause/effect, time.

4.3 Requirements for a Domain Description Language

Knowledge-based applications impose a number of additional requirements on a data mod-
elling language when compared to conventional systems. A knowledge base may contain
various types of knowledge structures: a causal network, taxonomical relations, “rules”,
etc. Most conventional systems also have some knowledge structures such as salary scales
or product prices, but these are usually of a much simpler nature than the structures
encountered in a KBS.

In this section we discuss two types of difficulties which frequently occur when mod-
elling the knowledge base, namely (i) the modelling of expressions, and (ii) the distinction
between relations between concepts (in the KL-ONE sense) on the one hand and relations
between instances on the other hand.

Modelling expressions Taxonomies can often be handled well with existing data
modeling techniques, e.g. those offered by KL-ONE or semantic database modelling. (see
previous section). Knowledge structures like causal networks and “rules” are a much more
difficult subject. A simple example might help to clarify this point.

Suppose we have the following set of rules, each of which denotes an abstraction relation
between rough data and a more general feature:

IF temperature(patient) > 38.0
THEN fever(patient) = true

IF diastolic-blood-pressure(patient) > 90
THEN blood-pressure(patient) = high

IF heart-rate-per-minute(patient) > 100
THEN heart-rate = high

It will be clear that there is a general structure behind these rules which we would
like to capture in our data model, when building an application. It allow us to limit
the knowledge engineering effort to a specification of this general structure, and leave the
actual “filling in” of this structure until a later refinement phase, possibly with the help
of automated techniques.

However, it turns out to be quite difficult to use an existing data modelling tech-
nique to model such a structure. The major problem that arises is the fact that ex-
isting data modelling techniques offer no adequate means for modelling expressions like
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temperature > 38.0 in a general way. Often, a knowledge engineer tries to overcome this
problem by introducing artificial concepts with very long name labels such as:

temperature-higher-than-38.0

This long-label approach hides however important structural properties of the domain
and is thus sub-optimal. What seems to be needed is the explicit introduction of the
notion of expression in our modelling language, so that we would be able to say something

like:

A qualitative abstraction relation is a relation between an expression about
a quantitative attribute and an ezpression about a qualitative attribute (a
“feature”).

Another frequently occurring example in which expressions play a role are cause/effect
relations. Below some simple example causal relations in a medical (heart disease) domain
are listed:

% The percentage of coronary-artery obliteration is the degree
% to which the diameter of the feeding artery of the heart has
% been reduced, e.g. because of atherosclerosis.

coronary-artery-obliteration = 70% CAUSES angina-pectoris = true
coronary-artery-obliteration = 100% CAUSES myocardial-infarction = true

Again, we would like to describe in our data model, that a causal relation is a relation
between states and that states are in fact expressions about particular system attributes.

Relations between concepts vs. relations between instances Another char-
acteristic of KBs data models is that in these models it occurs much more often that one
wants to record statements about concepts (classes, entity sets) and not just about in-
stances of these concepts. Some example relation tuples from the room-planning domain
(see Ch. 7) might help to clarify this distinction:

room-1 NEXT-TO room-3
room-2 NEXT-TO room-4

head-of-project REQUIRES size(room) = small
head-of-project REQUIRES occupancy(room) = single
head-of-group REQUIRES size(room) = large
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The first set of tuples represent relations between instances (actual rooms). Such
relations are typically part of the input data for a KBs. The second set of tuples is in fact
a set of universally quantified statements about all instances of a particular concept. For
example, the statements about “head of project” could be read as: “all heads of projects
need to get some small, single room”.

To model the structure of such statements as the above-mentioned requirements, re-
quires a distinction between relations between concept instances and relations between
concepts.

4.4 Definition of the Domain Description Language

In this section we define a domain modelling language which is based on well-known
constructs from existing data-modelling techniques plus some additional constructs that
allow one to overcome the specific problems encountered in KBS development. The lan-
guage supports a highly structured, but informal description of the structure of the domain
knowledge.

4.4.1 Constructs in the DDL  We use the ER-model as the basis of our DDL with a
number of extensions provided by semantic data modelling and KL-ONE. The ER model
has proved useful in practice and appears to provide a natural and understandable way of
modelling domain concepts and relations. In addition, we want to introduce a number of
other constructs necessary specifically for KBS applications. It should be noted that most
of these additions are in fact specialised ER relations. The main reason for introducing
them is to support the domain modelling activity in a natural way.
Proposed additions are:

Sub-type hierarchies Sub-type hierarchies occur in every domain and provide useful
abstractions. For the moment we only include in the definitions of these hierarchies
the notion of differentiation and restriction as defined in KL-ONE. We omit for the
moment refinements from semantic database modelling such as specialisation and
generalisation. These may be introduced in a later stage, if the need arises.

Grouping The grouping construct is useful. It allows us to explicitly name sets of things,
e.g. the set of conditions in an abstraction relation.

Aggregation The aggregation construct is useful to model the frequently occurring struc-
tural relations in a domain. For example, an audio system is structure consisting of
various components with various types of interrelations (e.g causal relations).

Expression Statements like “blood pressure higher than 90”7 can be modelled by allowing
an explicit declaration of expressions when defining relation arguments. This should
enable modelling the examples sketched in the previous section.

Relations between various types of constructs The DDL should allow modelling re-
lations between various types of constructs, not just instances.

This leads to the following three groups of modelling constructs in the DDL.
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Intensional objects Intensional objects are used describe the structure of the prime
ingredients of the data model. Intensional objects usually represent universally quantified
statements about a class of (extensional) objects. We distinguish four types of intentional
objects:

Concept Used here as a synonym for an entity set or class. The term concept is used
because it is more common in cognitive science.

Set The set is the grouping construct. A set contains objects of one particular type, e.g.
instance, concepts, tuples,, structures, sets.

Relation Relations of various types: between concepts, between instances, between ex-
pressions, between sets, etc.

Structure A structure is an aggregate with a number of parts. These parts can be of
any type: concepts, instances, relations, other structures, sets, expressions.

A concept is in the terminology of semantic database modelling an atomic type; struc-
ture and set are constructed types.

Extensional objects Extensional objects are object of which the type structure is
defined by intensional objects. We distinguish two types of extensional objects:

Instance An element of the entity set denoted by a concept or a particular set or struc-
ture.

Tuple An element of a relation. E.g a row in a relation table.

Auxiliary constructs The third group of constructs is used in the definition of
intensional objects. We distinguish four of such auxiliary constructs:

Expression Simple expressions consisting of three parts: an operand, a logical operator
and a property of some construct.

Sub-type-of Sub-type hierarchies of concepts, relations, structures, and sets.

Property Properties are functions defined on various types of constructs: concepts, re-
lations, structures, sets. The range of the function is a value of a (predefined)
value-set.

Value and value-set Value sets are the ranges of property values (attribute functions in
ER modelling). Some value sets like value-sets string, natural-number, integer, real
and boolean are assumed to be predefined.

In the following sections the language for writing down these constructs is defined using
BNF grammar rules and is illustrated with examples in the audio domain. The notation
used in these grammar rules is given in Table 4.4.1. In addition, we propose a notation
for a graphical representation of DDL definitions.

In the rest of this chapter we will use the term “object” in a very wide sense, referring
to both extensional and intensional objects, unless explicitly stated otherwise.
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‘ Construct ‘ Interpretation ‘
m=%+[] | Symbols that are part of the BNF formalism
Ol
X =Y. The syntax of X is defined by Y
[X] Zero or one occurrence of X
Xx Zero or more occurrences of X
X+ One or more occurrences of X
X|Y One of X or Y (exclusive-or)
(X) Grouping construct for specifying scope of oper-
atorse.g. (X | Y )or ( X )*

symbol Predefined terminal symbol of the language
symbol User-defined terminal symbol of the language
symbol Non-terminal symbols

TABLE 4.1: Synopsis of the notation used in BNF grammar rules

4.4.2 Concept The notion of “concept” is a central construct in the DDL. It is used
to represent a class of objects in the real or mental world of the domain studied. The
term “concept” corresponds roughly to the term ° ‘entity” in ER-modelling and “class’ in
object-oriented approaches.

Every concept has a name, a unique string which can serve as an identifier of the con-
cept, possible super concepts (multiple inheritance is allowed), and a number of properties.
Note that a property is a (possibly multi-valued) function into a value set. A number of
value-sets are assumed to be pre-defined, such as strings, integers, natural numbers, real
numbers and booleans. A newly defined value-set can be a range of integers or reals
or an enumeration of strings, When inheriting properties, the KL-ONE notions of value
restriction, cardinality restriction, and differentiation are supported by the DDL.

should be

Relations of a concept with other other concepts, with structures, etc.
modeled separately with DDL relation definitions (see further).

concept-def concept concept-name;
[sub-type-of: concept-name (, concept-name)x;]
[properties].

properties properties: [property-def (, property-def)«].

property-def property-name: value-set-defs
[cardinality-def]
[differentiation-def;].

value-set-def number | integer | natural |

string | boolean | universal |

number-range(number, number) |

integer-range(integer, integer) |

{string-value (, string-value)* }_
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cardinality-def ::= cardinality: [min nat] [max (nat | infinite)];.

differentiation-def ::= differentiation of property-name(concept-name).

Some example concepts from the audio domain are given below. We support the KL-
ONE notion of value restriction implicitly by allowing redefinition of the value set or the
cardinality of a property in sub-concepts.

concept component;
properties:
state: universal;

concept amplifier;
sub-type-of: component;
properties:
state: {ok, not-ok};
cardinality: min 0 max 1;

concept signal-transmitter;
subtype-of: component;
properties:
signal: {present, absent};
differentiation of state(component);

concept input-port;
sub-type-of: signal-transmitter;

concept output-port,
sub-type-of: signal-transmitter;

concept volume-system;
subtype-of: component;
properties:
state: {on, off};

concept power-system;
subtype-of: component;
properties
state: {on, off};

The example concept definitions above specify a sub-type hierarchy of components.
This hierarchy is represented graphically in Fig. 4.1. The hierarchy contains also some
additional components that appear in examples further on.

4.4.3 Set A set is a composite object. A set has zero or more members. A set can
usually be modelled (implicitly) with cardinality constraints on a relation. Often however,
the knowledge engineer will want to introduce a set as an explicit notion and thus be able
to give it a name and a status (e.g. property values) of its own.

The members of a particular set should be of the same type. This member-type can
be any object, including a set. Both properties and sub-types can be defined on sets.
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set-def 1= set set-name;
[sub-type-of: set-name;]

element-type: object-ref;
[cardinality-def]

[properties].
object-ref ::= object-name | instance(object-name).
object-name = concept-name | set-name | structure-name.

An example set in the audio domain is the set of input systems of a particular audio
system, e.g. two tape decks, a compact disc, and a tuner.

set wnput-systems;
element-type: instance(input-system);

Note that the elements of the set are in this case not components, but instances of
components (e.g. tape-deck-1, tape-deck-2, cd-1, tuner-1). This set could be used to store
information about the configuration of the audio system being diagnosed. Fig. 4.2 gives a
graphical representation of this set definition.

input : input
systems system

Notation set elttement
for sets: object ype

Notation

¢ concept
for instances:

FIGURE 4.2: Graphical representation of the definition of a set. This set is a set of instances of the specified
element-type. An alternative would be a set of sub-concepts of this element-type.

4.4.4 Relation The relation is an central construct in modelling a domain. In the
DDL we allow various forms of (binary) relations to cater for the specific requirements
imposed by knowledge-based systems. The relation construct is used to link any type of
objects to each other, including concepts, instances, sets and structures. As was pointed
out in Sec. 4.3, we allow explicit distinctions between relations between concepts and
relations between instances.* For example, it is should be possible to define in the audio
domain both relations between sub-concepts of component. e.g. to specify prototypical

*In ER modelling most relations (except for the sub-type relation) are defined to hold between instances.
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configurations of an audio set, as well as relations between component instances, in order
to represent a specific configuration.

Apart from defining relations between objects, the DDL also allows relation arguments
that represent expressions about objects. The notion of expressions as a domain modelling
construct in the specification of relations is introduced because, as pointed out before, these
occur often in “domain rules”. One of the major points of the domain modelling enterprise
is to describe the structure of these domain rules. This type of domain description is
currently lacking in many KBS development projects. The expression construct provides a
suitable way of modelling the structure of domain knowledge in which simple expressions
such as age(patient) > 65 and temperature(patient) = high appear. The general form of
expressions is < operand >< operator >< value > where the operand is a property of an
object, the operator is one of =, #,<, <, >,>,€,C, C, D, D, and value is a sub-set of the
value-set of the function.

The grammar rules below specify the DDL for defining relations. A DDL relation is
always a binary relation. The relation is directional in the sense that the relation name
should be chosen in such a way that it can be read as “argument-1 relation name argument-
2”. An inverse name is optional. A relation can inherit information from a super-type. The
most interesting part of the DDL definition of relations is the definition of its arguments.
We provide three possible types of arguments: (i) a single object (e.g. concept, instance,
structure), (ii) an expression about an object, and (iii) sets of objects or expressions.
Expressions can be restricted to particular properties of an object. If no properties are
specified, it is assumed that the expression may concern any property of the object.

Relations can themselves also have properties. The classic example of such an property
is the wedding date of two married people. Also, it is possible to define standard semantic
properties of the relation (transitive, symmetric, etc.), known tuples of the relation, and/or
some additional constraints or interpretations connected to the relation (the azioms field®).

relation-def ::= relation relation-name;
[sub-type-of: relatgon-name;]
[inverse: relation-name;]
argument-1: argumentjdef
argument-2;: argument-def
[properties]
[semantics: semantic-property (, semantic-property)x;]
[tuples: text;] ) )
[axioms: text;].

argument-def = (argument | set(argument) ) ;
[role: role-name;]

[cardinality-def].

argument = object-ref | expression-argument.

®The fact that this field is defined as text in the DDL is not as inconsistent as it looks. The idea is that
the knowledge engineer often has additional semantic information about a relation which she should be
encouraged to write down as unambiguously as possible, preferably in logic but not necessarily.
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expression-argument = expression(object-ref) |
expression(property-name of object-ref).

semantic-property = symmetric | transitive | reflexive.

Below we give some example relation definitions. The first example concerns a aggre-
gation relation between component types (as opposed to instances). This relation could
be used to store knowledge about the prototypical structure of an audio system in the
knowledge base. Some examples tuples of this relation are listed as well.

relation has-sub-part;
inverse: part-of;
argument-1: component;
role: aggregate;
cardinality: min 1; max 1;
argument-2: component;
role: part;
cardinality: min 0; max infinite;
semantics: transitive;
tuples:
amplifier HAS-SUB-PART input-port
amplifier HAS-SUB-PART output-port
amplifier HAS-SUB-PART volume-system
amplifier HAS-SUB-PART power-system;

The second example defines a causal relation as a relation between state properties
of components. The first argument constitutes a set of expressions representing the con-
ditions for the causal transition. The intended interpretation of the first argument is
described in the azioms field. One example tuple of the causal relation is listed, involving
components defined in earlier in this chapter.

relation causes;
inverse: caused-by;
argument-1: set(expression(state of component));
role: cause;
argument-2: expression(state of component);
role: effect;
tuples:
signal(input-port) = present
state( power-system) = on
state(volume-system) = on
CAUSES
signal(output-port) = present;
axioms:
first argument should be interpreted as a conjunction;

Both example relation definitions are graphically represented in Fig. 4.3,
A last example shows how the qualitative-abstraction rules presented earlier can be
modeled:

relation qualitative-abstraction
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art
component aggregate has_sub_part4p> component
1-1 O-inf
component component
. cause effect .
expression ——————causes ———® expression
i first role . role  second
Notation ) U relation-name —— t
for relations: argument . ginaiity cardinality @rgumen
Notation for _ expression L » object restriction of
single expressions [attribute(s)] expression to
particular
attribute(s)
Notation for R e e e —T is optional
set of expressions [attribute(s)]

FIGURE 4.3: Graphical representation of two example relations in the audio domain.

inverse: specification
argument-1: set(expression(quantitative-data))
role: conditions;
argument-2: expression(feature)
role: conclusion
axioms:
first argument should be interpreted as a conjunction;

4.4.5 Structure A structure is a composite object. It has a number of parts which
contain one or more single objects or sets of objects (concepts, instances, tuples, sets,
other structures)

Like the other objects, structures have a unique name and a possible super structure.
Parts are inherited and overruled in a similar fashion as roles in relations. Structures can

also have properties.

structure-def ::= structure structure-name;
[sub-type-of: structur_e-name;]
parts: part-def+ -
[properties]
[axioms: text;].
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part-def ::= part-name;: part-element-def-+.

part-element-def = ( single-element-def | set-element-def );.
single-element-def ::= object-ref | tuple-ref.

set-element-def 1= ( set(object-ref) | set(tuple-ref) )

[cardinality-def].
tuple-ref = tuple(relation-name).

An example of a structure is a causal network in the audio domain, that consists of
two parts: (i) nodes containing the components involved in the network, and (ii) causal
relations containing tuples of the relation causes.

structure causal-network;
parts:
nodes: set(component);
causal-relations: set(tuple(causes)));

This structure is graphically represented in Fig. 4.4.

Another example could be a structure for modelling the input data for audio system
diagnosis:

structure input-data
parts:
complaint: instance(observable)
initial-data: set(instance(observable))

This structure can contain a number of instances of observables, where one is regarded
as the actual complaint and the others are additional data available at the start of the
diagnostic process.

4.4.6 Graphical representation In Fig. 4.5 the graphical representation introduced
for the DDL is summarised. Although there is some loss of information in the pictures
constructed in this fashion, these type of pictures tend to be an important communication
vehicle throughout the knowledge engineering process.

Fig. 4.6 shows how the domain schema for the audio domain as presented Sec. 3.4.1
can be represented graphically. In this thesis additional examples are given of the use of
the DDL, especially for the Sisyphus application (Ch. 7, Appendix A). An earlier version
of this DDL has also been used to model a domain concerning submarine detection through
acoustic analysis [Schoenmakers, 1992]. The DDL has also formed the basis for the domain
modelling language being developed in the KADS-II project.
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nodes causal
relations

component < causes >
Notation for structure |~ _ structure
. object part
structures:

Notation for <
relation tuples:

relation-name >

FIGURE 4.4: Graphical representation of DDL structures.

4.5 Discussion

Clancey remarks in his most recent analysis of NEOMYCIN [Clancey, 1992] that a key point
in knowledge engineering (in his particular case: structuring the set of meta rules) is the
process of making finer-grained distinctions in the domain knowledge. One could view
this as a process of detailing the role differentiation of pieces of domain knowledge. He
uses the relational representation language MRS underlying NEOMYCIN to describe these
distinctions. We would argue this is typically a situation were one would like to use a more
general tool to describe these distinctions. This enhances the reusability of the theory that
is uncovered by Clancey in his analysis.

The DDL is precisely built for this purpose. As remarked before, the DDL presented
in this chapter is part of the modelling framework and is not meant to serve as another
knowledge representation formalism. Its aim is to provide a generalisation over such
formalisms in such a way that one can specify aspects of the domain knowledge without
committing oneself to a particular symbolic representation. In this section, we briefly
address this generalisation aspect and also discuss some points concerning the semantics
of the DDL.
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FIGURE 4.5: Legend of the graphical representation of a domain description
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component sub-component-of component
state-value: state-value:
universal . . universal
) expression —— causes > expression
A state-value state-value

test

expression ~—— indicates expression ™| test-value:
state-value test-value universal

FIGURE 4.6: Graphical DDL representation of the major part of the domain schema presented in Table 3.1.
The sub-type relations between components were shown in Fig. 4.1.

Relation between DDL and some KR formalisms

KL-ONE The DDL contains most constructs offered by KL-ONE, albeit in a somewhat
scruffy form: concepts, instances, (multiple) inheritance, roles (either through properties
or through relations), role restrictions (both value restrictions and cardinality restrictions)
and role differentiations.

A mapping from a DDL description to a KL-ONE representation would lead to a first, at
some points incomplete, version of a definitional hierarchy. The main additional decisions
that one would need to take is whether all relations in which a concept is involved should
indeed be mapped onto KL-ONE roles. Values of roles are used by the classifier of concept
instances and it often turns out that some relations are irrelevant for classification pur-
poses. For example, in classifying car types such as sedans, hatch backs, etc, an owner
relation of the concept car is irrelevant. We have noticed, also from personal experience
in the StatCons domain, that using KL-ONE representations already during analysis often
leads to commitments to the symbolic representations: e.g. in the car example, the owner
role is defined as an optional one (because classification fails otherwise), even if every car
has some (unknown) owner.

KEE KEE offers an organisation of production rules in a hierarchy of rule sets. This
relates quite well to the DDL representation of relations between expressions, which in fact
define a similar organisation. However, in a mapping onto KEE the schematic description of
the structure of the rules in particular set gets lost, because KEE does not offer facilities for
this type of structural description. E.g. when implementing the audio domain-knowledge
in KEE, one would create rule sets for both the cause and the indicates relation, but the
information about the internal structure of these type of rules would be lost.

A cumbersome aspect of KEE is that it does not make an explicit distinction between
concepts and instances: both map onto KEE units.

Semantics of the DDL

An important question still remains open, namely what do this DDL descriptions mean:
i.e. what are their semantics? A full definition of the semantics of the DDL is clearly out
of the scope of the present work. A few remarks are however necessary.
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Firstly, many constructs in the DDL are derived from data modelling research in which
the semantics of these constructs have been studied in detail. The semantics of the KL-ONE
constructs has been a major research topic in Al over the past decade. Also, in semantic
database modelling the semantics of various types of sub-types relations, aggregations,
groupings, etc. have been described extensively, e.g. [Abiteboul & Hull, 1987; Davis &
Bonnel, 1990].

The main blind spot with respect to semantics concerns the various additional types
of relations introduced in the DDL, especially those between concepts and between ex-
pressions. We have give some informal descriptions about how such relations should be
interpreted. E.g the requires relation in Sec. 4.4.4 between a department role concept and
an expression about a room property should be interpreted as a universally quantified
statement about all objects that are denoted by these concepts. Sowa’s “conceptual struc-
tures” [Sowa, 1984] provide a logical formalisation that can be used for specifying this
type of semantics. The disadvantage is that such representations require much more de-
tail and are less schematic. It is doubtful whether a complete, detailed domain-knowledge
specification is useful in the analysis stage, where the focus can sometimes change rapidly.

In the context of KaDS, the role of domain-knowledge semantics is also slightly different
than is the case traditionally. As all inferences that are made with the domain knowledge
are specified through knowledge sources, one could take the point of view that the intended
semantics of domain-knowledge is externally attributed to it through these inferences. We
touch here upon a very delicate topic, which has given rise to many debates, especially in
the study of formal languages for KADS models. It is possible that the the statement in
Sec. 3.4.1 that “adding a simple deductive capability would enable the system ...to solve
all problems solvable by the theory” may need some qualification.



Chapter 5

Model Construction

In this chapter the focus is on the construction of inference structures. First, some extensions of the
graphical notation of inference structures are proposed to overcome a number of ambiguities in these
diagrams. We then discuss a top-down model construction process in which an inference structure is
successively refined. This description is based on observations made by Patil (1988). Decision criteria that
influence the construction process are discussed. The result is a KADS inference structure for heuristic
classification, which we relate to observations Clancey (1992) makes about this model. In the discussion,
we suggest that such a top-down construction process can be supported by a library of generic model
components of a smaller grain size than interpretation models. We discuss some examples of these generic
components.

This chapter will be published in a collection of articles on KADS. It is co-authored by Bob Wielinga.
Reference: Schreiber, A. T & Wielinga, B. J, (1993). Model construction, In Schreiber, A. T., Wielinga,
B. J., & Breuker, J. A., editors, KADS: A Principled Approach to Knowledge-Based System Development.
Academic Press, London.

5.1 Introduction

Generic components of the model of expertise can be used to support top-down knowledge
acquisition. In Ch. 3, interpretation models were discussed that provide such template
models. In this chapter we explore the construction of inference structures and the role of
generic model components in more detail.

We start in the next section with a discussion on ambiguities that may arise in the cur-
rent (graphical) representation of inference structures, We propose an extended notation
to disambiguate the representation of inference structures. In Sec. 5.3 we discuss some
aspects of the model-construction process in general: operations, methods, criteria.

In Sec. 5.4 we discuss adaptations of the inference structure of an existing interpretation
model. We describe two example adaptations of the interpretation model for systematic di-
agnosis. In Sec. 5.5 we describe a top-down model-construction process in which one starts
off with a relatively simple hypothetico-deductive model for diagnosis, and subsequently
refines this model step by step. This work is based on an analysis of medical diagnosis by
[Patil, 1988]. In addition, we discuss some points concerning the KADS inference structure
for heuristic classification, which resulted from the top-down model construction process
and relate this to Clancey’s observations about this model [Clancey, 1992].
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In Sec. 5.7 the observation is made that inference structures in fact consist of a number
of reoccurring template model components of a smaller grain size than interpretation
models. We identify some examples of such model components and discuss their role in
knowledge engineering.

5.2 Disambiguating the Graphical Representation of Inference Struc-
tures

Inference structures are among the most frequently-used ingredients of KADS. In almost
any presentation of an application of KADS, the description of the inference structure
plays a dominant role. Inference structures are, however, informal diagrams. There does
not exist a full set of composition rules for specifying inference structures. The following
list presents a set of composition rules which most KaDS developers and users agree upon.

A knowledge source can have any number of inputs, including zero.

The set of inputs of a knowledge source is interpreted as a conjunction.

A knowledge source has only one output.

The name given to a knowledge source should be a member of the typology defined
in [Breuker et al., 1987].

o If more than one knowledge source of the same type appears in an inference structure,
these should be numbered in order to avoid confusion (e.g. select-1 and select-2).

This list is incomplete, as the many discussions about representation of inference struc-
tures in papers and during KADS user meetings [Ueberreiter & Vof}, 1991; Bauer & Kar-
bach, 1992] show. In this section we investigate a number of frequent sources of ambiguity
in inference structures and propose some additional graphical notations to amend these
problems. These extensions are used in the diagrams in the rest of this chapter.

5.2.1 Transfer tasks Traditionally, inference structures were supposed to contain
only “real” inferences: derivations by the system of new “knowledge”. This meant that
transfer tasks, such as obtaining the value of an observable, could not be included in an
inference structure. This can obscure parts of an inference structure. An example can be
found in the inference structure for systematic diagnosis (Fig. 3.5). The specify inference
in the lower-left part of this figure (repeated for convenience in Fig. 5.1a) takes as input a
hypothesis and an observable and produces as output a finding. In the corresponding task
structure (see page 38) it can be seen that this inference is in fact a concatenation of a
knowledge source and a transfer-task invocation:

specify(hypothesis — observable),
obtain(observable — finding)

In the model of expertise, transfer tasks are treated as black-box functions (see
Sec. 3.4.3). Knowledge sources and transfer tasks together form the lowest level of func-
tional decomposition in the model of expertise. One could say that transfer tasks are
basic functions that do not apply domain knowledge to make inferences. Thus, it seems
appropriate to include transfer tasks in an inference structure. A dashed-ellipse notation
is used to distinguish transfer tasks from knowledge sources. Fig. 5.1b shows the extended
representation of the original figure using this notation.
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FIGURE 5.1: Two representations of a specifyinference in systematic diagnosis. At the left (a) the transfer
task is implicit. At the right (b), an explicit obtain step is introduced.

5.2.2 Meta-class element vs. set Another issue that has arisen with respect to
inference structures concerns the nature of meta-classes. As pointed out in Sec. 3.4.2, a
meta-class constitutes a functional name (a role name) for a set of domain objects that
can play this role. Some knowledge sources operate on or produce one particular object,
others work on a set of these objects. This can lead to ambiguities in inference structures,
for example if one inference produces one object and another inference works on a set of
these objects, possibly generated by some repeated invocation of the first inference. An
example of this kind is described in Fig. 5.2a.

The intended interpretation of this figure is that the abstract inference can generate
from a set of findings a more abstract finding, and that the selectinference selects a specific
finding from the full set. Such a specific finding could, for example, be used in triggering
a hypothesis.

KADS users have tried to overcome this problem with elements and sets in various
ways:

e By specifying all inferences as working on sets instead of elements. E.g
abstract(findings — findings).
e By introducing additional set operations such as join into the inference structure.

Both solutions are sub-optimal. The first one hides the fact whether the inference
inherently operates on a set or rather on a single element of the set. The second one
introduces additional complexity and makes inference structures less readable. We propose
to use a slight variation in the connection between a meta-class and a knowledge source to
indicate cardinality: a thin line represents a single meta-class element; a thick line a set
of meta-class elements. An example of this notation is shown in Fig. 5.2b. This notation
avoids the disadvantages of the solutions mentioned above.
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specific
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FIGURE 5.2: Two partial inference structures. In part (a) the fact that the input for both abstract and
select is a set of findings, is not represented. In part (b) the thick-line notation is used to indicate a set of
some meta-class element.

5.2.3 Meta-class names Another problem arises from the names given to meta-
classes. There are two types of names that one can give to a meta-class:

1. A general role name of elements involved in carrying out a task. In diagnosis, such
categories could be observable, finding, and hypothesis. These names can probably
best be viewed as abstract data types.

2. A specialised role name for elements in an inference. These names constitute a spe-
cialisation of the general categories: e.g. test observable, discriminating observable.
Specialised names describe roles that are specific for the particular inference process

depicted in an inference structure.!

Specialised names such as test observable are useful and make the inference structure
easier to interpret. On the other hand, some inferences may operate on the general category
(e.g. observable). One would like to be able to specify both general and specialised role
names and still be able to clearly show the dependencies between inferences. A potential
solution is to allow the knowledge engineer to write the specialised role names on the arrow
connecting a knowledge-source and a meta-class. An example of this notation is shown in
Fig. 5.3.

5.2.4 Domain knowledge used by knowledge sources Inference structures only
show the dynamic data that are being manipulated by a knowledge source (the meta-
classes). Sometimes, it is useful to show also what type of domain knowledge the knowl-
edge source uses to derive the output from the input (cf. [Linster, 1992]). This domain
knowledge is specified in the domain view (cf. Sec. 3.4.1).

One could argue that this is an unwanted extension of the inference structure, as
knowledge sources are in fact domain-independent generalisations of the application of

Tn KADS-II terms one would say that the specialised names are introduced by the methods applied to
achieve the task.
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test
observable

< observable discriminating
observable

FIGURE 5.3: Introducing general and specialised meta-class names in an inference structure. An object
of meta-class observable can be generated by two inferences, that each give a specialised name to this
meta-class (test observable and discriminating observable). Every observable object can serve as an input
for the third knowledge source. This last point would be difficult to represent if the specialised name had
been written directly into (two separate) boxes.

domain knowledge. However, it can be useful at some points during knowledge engineering
to make the nature of the domain knowledge explicit, although this destroys the domain-
independence of an inference structure. We use a dashed arrow to indicate the domain
knowledge used by a knowledge source. An example of this notation is given in Fig. 5.5
in the next section.

5.3 Model-Construction Process

In this section we discuss briefly three aspects of the model-construction process:

e The types of (knowledge-engineering) operations on inference structures.

e Some knowledge-engineering methods that can be used in constructing and adapting
an inference structure.

e The types of criteria that are used in making decisions during model construction.

These three aspects can be summarised respectively as the “what, how and why” of model
construction.

5.3.1 Types of operations on inference structures indexinference structure, op-
erations on
In general, five types of modifications can be made to a prototypical inference structure:

Renaming Sometimes, the metaclass and knowledge source names used in the inference
structure are too general. In that case, the knowledge engineer might want to use
another term to give a more precise specification of the role of a knowledge element
in the inference process.

Refinements In some cases, an inference in the inference structure is too coarse-grained
to describe the inference process required in the application domain. In that case,
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a refinement of this inference in the inference structure is appropriate. Such a re-
finement provides additional terminology (in terms of knowledge sources and/or
meta-classes).

Additions/Augmentations If inferences are required that can not be specified as a
refinement of the current inference structure, additional inferences might need to be
added to the inference structure.

Simplifications A simplification is the reverse process of a refinement. This should be
done if a set of inferences is too fine-grained for the purposes of the application.

Deletions A deletion is the reverse of an addition. Sometimes, a part of an inference
structure of an interpretation model is not relevant for a particular application. In
that case, this part of the inference structure should be left out.

Figure 5.4 summarises these different types of operations on inference structures.

5.3.2 Model-construction methods Two knowledge engineering methods are of-
ten applied in the construction of inference structures: (i) task decomposition, and (ii)
knowledge differentiation.

Task decomposition Sometimes, the analysis will reveal that some inference in a
(provisional) inference structure constitutes a task which can be decomposed in a number
of parts. This leads to a more detailed inference structure with additional vocabulary.
What was originally conceived as an inference, often reappears as a task in the task
knowledge.

Task decomposition is a part-of decomposition, in which a task and its sub-parts do
not need to have anything in common, except for a mapping between the input/output of
the top-task and its parts. Task decomposition typically involves a refinement operation
on the inference structure (see above).

Knowledge differentiation Knowledge differentiation is the process of introduc-
ing new knowledge roles during the modelling process. Finer-grained distinctions are
introduced in the inference structure. The difference with task decomposition is that
in knowledge differentiation the basic structure of the model stays the same. Knowl-
edge differentiation can involve various types of operations: renaming meta-classes and/or
knowledge sources, adding a new meta-class and knowledge sources that operate on that
meta-class, or refinements.

One particular form of knowledge differentiation is inference differentiation. In infer-
ence differentiation, an inference is differentiated into a set of sub-inferences. Inference
differentiation involves, just like task decomposition, a refinement operation on an infer-
ence structure, but there is an inherent difference between the two. In inference differen-
tiation, the differentiated inferences share the features defined for the general inference.
It is probably best viewed as a sub-type relation (see Fig. 5.12).
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FIGURE 5.4: Examples of five types of modification operations on an inference structure

5.3.3 Decision criteria Model construction is guided by three types of characteristics
of the application domain:

e The nature of the knowledge in an application domain (e.g. “are causal models
available?”).

e The constraints posed by the task environment (see Sec. 3.3): e.g. the required
certainty of a solution.

e Computational constraints: is it possible to find computational techniques that re-
alise the specified behaviour?

These characteristics can be used as decision criteria and specify the rationale for
decisions in the model construction process. In the “Components of Expertise” frame-
work [Steels, 1990] these characteristics are called “task features” and the three categories
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epistemic, pragmatic and computational task features respectively.?

In the next section we discuss the adaptation of the inference structure of the inter-
pretation model for systematic diagnosis. In Sec. 5.5 we discuss a top-down model con-
struction process. After each operation on an inference structure, the type of operation,
the method and the type of criteria used will be summarised in a tabular form.

5.4 Tuning the Inference Structure for Systematic Diagnosis

The use of template descriptions such as interpretation models provides a powerful tool
for knowledge acquisition. However, applying such a template to a particular domain will
often reveal that the model does not completely fit the data on human expertise. Most
interpretation models embody only a minimal set of inferences necessary for solving a
problem with this method. The model needs to be adapted.

The model of systematic diagnosis discussed in Ch. 3 can be adapted in various ways.
We discuss two adaptations relevant for the audio domain.

5.4.1 Dynamic system-model assembly The plain model of systematic diagnosis
(of which the inference structure is shown in Fig. 3.5) presupposes that the applicable
system model is selected using knowledge about fixed decompositions of the system being
diagnosed. However, the configuration of an audio system is usually not fixed (i.e. a
constraint of the task environment). System elements such as a CD-player, a second
tape-deck, head phones or additional speakers may or may not be present. This potential
problem can be handled by replacing the simple select inference with a more complicated
assemble inference (Fig. 5.5). This operation involves adding an extra meta-class (initial
data) and renaming the knowledge source (select becomes assemble)

In this assemble step additional data (initial data in Fig. 5.5) about the audio system
are used to construct an applicable system model. An epistemic requirement for this
differentiation is that additional domain knowledge can be made available, namely:

e A definition of potential system elements of an audio system, possibly hierarchically
organised (cf. the sub-models in Fig. 5.5).

e Configuration rules for assembling an actual model from the possible system ele-
ments.

This modification of the plain inference structure of systematic diagnosis thus leads to a
slightly more complex model with additional domain knowledge requirements.

| Dynamic system-model assembly |

Operation | Addition (of a meta-class) + renaming
Method Knowledge differentiation
Criteria Task environment

In the Components approach the task features are used for dynamic run-time task-decomposition in an
actual system. In KADS, model construction is primarily seen as a knowledge engineering activity, which
could be (but does not need to be) reflected in the design of the KBS (in other words, it could result in
fixed task decompositions).
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FIGURE 5.5: Adapting the model of systematic diagnosis: system model assemblyinstead of selection. The
dashed arrow is used to denote the nature of the domain knowledge used by the assemble inference. The
dotted arrow indicates a connection with other parts of the inference structure.

5.4.2 Multiple system decompositions A second, more complicated, adaptation
concerns the introduction of multiple system wviews. Often, there are various ways of
decomposing a device. Each decomposition represents a different view on the system.
Well-known views are functional and physical decompositions. The faulty component can
only be found if the right view is selected. The rationale for the adaptation is thus based
on an epistemic criterion: the system to be diagnosed cannot be decomposed in one single
way.

Allowing multiple views implies an additional decision in the inference process concern-
ing view selection. Davis suggests that initial view selection should be done on the basis
of characteristics of the problem (the complaint) using domain heuristics [Davis, 1984].
Fig. 5.6 shows the adapted part of the inference structure for handling multiple views.
This adaptation involves adding a view selection inference to the inference structure in
Fig. 5.5. In this case the epistemic requirement on additional decomposition knowledge is
even stronger than for the previous adaptation: for each view sub-models and configura-
tion rules should be present in the domain theory. In addition, heuristics about how to
select a view need to be made available.

Introducing multiple views also involves additional task structure complexity. If one
view fails to provide a solution, another view needs to be selected and the process is
repeated.

| View selection |

Operation | Addition
Method Knowledge differentiation
Criteria Epistemic

5.5 Top-down Construction

In this section we focus on the top-down construction of inference structures that support
a hypothetico-deductive strategy for solving a diagnostic problem. The description is
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FIGURE 5.6: Adapting the model of systematic diagnosis: introducing multiple system models representing
different views.

based on an analysis by Patil. He gives a historic account of the evolvement of medical Al
systems for diagnosis [Patil, 1988]. He shows how one can start with a simple model of
diagnosis, such as generate-and-test, and start a gradual refinement process of this model
on the basis of application characteristics, such as the ones discussed earlier. This section
constitutes an interpretation of Patil’s analysis within the context of constructing KADS
inference structures.

5.5.1 Vocabulary in diagnosis Before describing various models for diagnosis, it is
useful to define a number of terms that are used in describing the diagnostic task:

Diagnosis A diagnosis is a solution of a diagnostic problem-solving process. There appear
to be two different types of diagnoses, namely:

e A diagnosis as the causal explanation of the occurrence of some system state.
In this case the diagnosis is either the ultimate cause or a full causal pathway.

o A diagnosis as a label for an internal state or a set of internal system states. It
also occurs that a diagnosis is a label for some unknown internal state, e.g. in
poorly understood syndromes in medicine.

Fig. 5.7 shows an example of the two types of diagnosis: atherosclerosis and angina
pectoris. Atherosclerosis can represent the actual cause of findings observed in a pa-
tient. Angina pectoris is a label for an internal state, namely myocardial ischaemia
(insufficient blood supply for the heart muscle). What should be considered as a
potential diagnosis typically depends on the context in which the diagnostic task is
being carried out. For example, angina pectoris is a relevant diagnosis in a medi-
cal emergency situation; atherosclerosis is a diagnosis that is useful in deciding on
corrective action in a non-emergency situation.

Observable An observable is a property the value of which can be observed for the system
(patient, device) being diagnosed. Example observables are weight, length, blood
pressure, position of a knob, etc.
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FIGURE 5.7: Example diagnosis of chest pain

Finding A finding is a value expression about an observable, e.g. weight = 80, length =
1.90.

Hypothesis A hypothesis is some object that is either considered as a potential solution
for a diagnostic problem or constitutes some relevant intermediate state.

Differential The differential is the set of hypotheses that is considered for a particular
diagnostic problem.?

In the rest of the chapter we use these terms to describe models of diagnosis and
introduce, where necessary, additional terms.

5.5.2 Diagnosis through direct matching Diagnosis is a problem solving task in
which the input is formed by a set of findings (values for observables) and the output
represents a diagnostic category (a fault class) which explains the findings. The simplest
model for diagnosis consists of a direct match between findings and solution through
classification (Fig. 5.8). A set of findings is input to a classify knowledge source and this
inference can produce a solution. It uses some body of classificatory knowledge. Findings
are generated by obtaining a value (a transfer task) for a selected observable. The select

°In medicine, the term “differential diagnosis” is used in a similar sense, although this term also tends
to imply an ordering of the hypotheses.
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observable knowledge source typically selects the observable with the highest information
content (i.e. the one that discriminates best between potential solutions) and/or lowest
costs.

classificatory
knowledge

|
|
|
|
Y

finding @—> solution

new
evidence

obtain ~~————— observable

set of
observables

FIGURE 5.8: Diagnosis through direct matching

A typical task structure for this form of diagnosis is given below.

task diagnosis-through-direct-match
control-terms:
observables: set of all possible observables
findings: set of all findings currently known
task-structure:
REPEAT
select(observables — observable)
obtain(observable — finding)
findings := finding U findings
classify(findings — solution)
UNTIL some solution has been found

In [Patil, 1988] it is observed that computational techniques applying Bayes theorem
have been used for realising this type of diagnosis. Bayesian techniques have a number
of limitations. For each hypothesis knowledge concerning the prior probability and the
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conditional probability given each possible finding needs to be available. This implies that
large amounts of statistical data are required. Also, this technique is computationally very
inefficient unless a number of simplifying assumptions are made, such as mutual exclusivity
of potential solutions and conditional independency of findings. These assumptions do not
hold in most real-life domains. Another computational drawback is that the complete set
of potential solutions is evaluated after every new finding (see the task structure above).
Due to these limitations, this simple direct-match model of diagnosis is unsuitable for most
diagnostic applications.

5.5.3 Diagnosis through generate-and-test Most diagnostic experts do not eval-
uate all potential solutions at once. Instead, they build a differential containing only
a limited number of hypotheses. Typically, the number of hypotheses in the differen-
tial is not more than five or six. The hypotheses in the differential are then tested to
find out whether additional evidence exists for supporting a particular hypothesis. This
hypothetico-deductive approach appears to be a very general method used in problem
solving.

If one wants to introduce this idea of generating and testing hypotheses into the model,
this implies that the classify inference in Fig. 5.8 should be refined into a number of other
inferences (i.e. a task-decomposition):

e Inferences for generating hypotheses for which at least some evidence (findings) is
present.

o Inferences for testing hypotheses by specifying findings that would support the hy-
pothesis, and subsequently finding out whether these findings are in fact present
through obtaining a value for the corresponding observable.

A first inference structure for this generate-and-test approach is shown in Fig. 5.9. The
new elements when compared to Fig. 5.8 are indicated with grey boxes and ovals. The
associate inference generates a new hypothesis, given a finding. The test step is realised
through the specification of a set of conjectured findings (specify-1, note the use of the
thick line to indicate a set) and the specification of a set of corresponding test-observables
for a conjectured finding (specify-2).

The generate-and-test approach is usually much more efficient than the direct-match
approach as it does not require the evaluation of the complete set of possible solutions
(i.e. a computational criterion). Also, the generate-and-test approach is much closer to
the way in which humans carry out diagnosis.

| Generate-and-test |

Operation | Refinement
Method Task decomposition
Criteria Computational

5.5.4 Differentiating findings In the generate-and-test model described in the pre-
vious section, every finding can potentially be used to generate a hypothesis. Patil [Patil,
1988] remarks that this often leads to a differential that is too large. For example, in
a medical domain general findings such as “headache” could generate a large number of
hypotheses.
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FIGURE 5.9: First inference structure for a generate-and-test approach to diagnosis. New elements are
indicated with grey boxes/ovals.

A solution to this problem is to differentiate the set of findings by introducing the

notion of specific finding and to use only these findings for generating hypotheses. This is

similar to the way experts generate hypotheses. The non-specific findings are only used
to confirm activated hypotheses.

Fig. 5.10 shows an extension of the previous inference structure. It contains one addi-
tional select inference select-3 which selects a specific finding from the set of findings. Only

a specific finding can generate a new hypothesis. Again, the rationale for this modification
is of a computational nature: limitation of the size of the differential. It is also a good
example of the concept of role-limiting as described in Ch. 2.

Finding differentiation

Operation | Addition of knowledge source

Addition of specialised role (“specific finding”)
Method Knowledge differentiation
Criteria Computational
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FIGURE 5.10: Differentiating findings

5.5.5 Introducing finding abstractions In many domains, human experts employ
data abstraction as a technique for reducing a large data set. Data abstraction is a
powerful technique that limits the search space and also reduces the size of the differential.
Introducing finding abstraction in the generate-and-test model requires the specification
of one additional inference abstract which takes as input a set of findings and produces
a new, more abstract, finding (see Fig. 5.11). From the task-knowledge point of view,
abstraction typically has a recursive structure. An abstracted finding can be the input for
another invocation of the abstraction knowledge source.
Clancey describes three types of abstraction [Clancey, 1985b]:

(i) Qualitative abstraction, in which an abstraction is made from a (set of) qualitative
findings to a qualitative finding. E.g. a value for the diastolic blood pressure is
abstracted into the finding whether the blood pressure is elevated or not.

(i) Definitional abstraction, in which an abstract name (label) is assigned to a finding.
E.g. hypertension is defined as an elevated blood pressure.

(iii) Generalisation, in which several findings are defined as sub-types of a more general
finding. E.g. hypertension and edema are both circulatory signs.
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In addition, syndromatic abstraction could be considered as a fourth type of abstrac-
tion. In syndromatic abstraction, a cluster of findings is treated as one aggregate finding.
Clustering of findings is probably the most efficient way of limiting the number of hypothe-
ses in the differential. For example, the combination of physical stress and retro-sternal
pain triggers the hypothesis angina pectoris. Retro-sternal pain in isolation would generate
all ischaemic heart diseases and possibly some additional ones as well.

These four types of abstraction can be seen as a special type of differentiation of the
abstract inference, which we have called inference differentiation (cf. Sec. 5.3). In this
case, abstract can be differentiated into four sub-inferences, based on the type of domain
knowledge used by the inferences (see Fig. 5.12).

Finding abstractions

Operation | Addition of knowledge source

Addition of specialised role (“abstract finding”)
Method Knowledge differentiation
Criteria Computational
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FIGURE 5.12: Differentiating the abstract knowledge source into four sub-types.

| Abstraction sub-types

Operation | Refinement
Method Inference differentiation
Criteria Epistemic

5.5.6 Hierarchical organisation of hypotheses Yet another way of limiting the
size of the differential is to organise hypotheses in a definitional hierarchy (taxonomy)
such as provided by KL-ONE [Brachman & Schmolze, 1985]. Such a hierarchy contains
general hypothesis categories. Each general hypothesis category specifies commonalities
among more specific hypotheses.

Such an organisation has several advantages:

e The differential can be limited in size through the activation of a general hypothesis
category, which represents in fact a class of more specific hypotheses.

o If a general hypothesis category is ruled out, then its sub-classes are also ruled out.

e Hierarchies provide a natural way for representing differentiating knowledge: e.g.
identifying an observable of which the value would differentiate between alternative
hypotheses.

A hierarchical organisation of hypotheses leads to the introduction of three additional
inferences in the generate-and-test inference structure (see Fig. 5.13). Two knowledge
sources, refine and generalise constitute operations on the differential. The refine knowl-
edge source enlarges the differential by replacing a general hypothesis category with a set
of more specific hypotheses. The generalise knowledge source can be used to reduce the
size of the differential through the inverse process: replacing in the differential a set of
specific hypotheses with a more general hypothesis category that subsumes this set. The
third knowledge source, differentiate, generates a discriminating observable between two
or more hypotheses that have a common parent in the hierarchy.
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FIGURE 5.13: Hierarchical Organisation of Hypotheses

In principle, a definitional hierarchy is a very powerful and efficient organisation of
hypotheses. A major problem is however that in many domains it is not possible to
define one single natural hierarchy of hypotheses. For example, in the disease hierarchy
in NEOMYCIN [Clancey, 1985a] the distinction between levels is based on four dimensions
along which diseases can be classified:

process type (e.g. infection)

localisation (e.g. meningitis)

time factor (e.g. acute meningitis)
etiology (e.g. acute bacterial meningitis)

R

Each ordering of these dimensions is however somewhat arbitrary. Any ordering implies
that not all useful general disease categories are available in the hypothesis hierarchy. For
example, given the ordering in the list above, the hypothesis “acute infection” cannot be
represented. This can be repaired by reversing the localisation and time-factor level, but
that modification would imply that we lose the general disease category “meningitis” (see
Fig. 5.14).

In domains where there are no natural hierarchies, knowledge engineers often keep
reorganising the hierarchy, but are unable to find a satisfactory organisation exactly for
the reasons given above. In the CADUCEUS system an attempt is made to overcome this
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FIGURE 5.14: Two possible hierarchy organisations, given the dimensions process type, localisation, time,
and etiology.

problem through an organisation of hypotheses along various dimensions [Pople, 1982]:
e.g. a time-directed hierarchy, an etiological hierarchy, etc. Additional inferencing is in
that case necessary for combining the (partial) classifications derived from the different
hierarchies.

| Hierarchical organisation |

Operation | Additions
Method Knowledge differentiation
Criteria Computational

5.6 A KADS Inference Structure for Heuristic Classification

The model construction process described in the previous section resulted in what one
could call a KADs inference structure for the model of heuristic classification (HC) as re-
alised in the NEOMYCIN system [Clancey, 1985a]. NEOMYCIN contains in fact one additional
inference used in the “clarify finding” task: the specification of a number of observables
that are dependent on a known finding. For example, if the finding “chest pain = present”
becomes known, then this inference is able to specify related observables such as the du-
ration, nature and radiation of the pain. The full inference structure for HC is shown in
Fig. 5.15.

This figure contains more detail than the “horse-shoe” figure (see Fig. 5.16). This last
figure is considered by many as an equivalent of a KADS inference structure.* We think
that this interpretation of the horse-shoe figure is incorrect. Clancey’s figure describes
dependencies between the main functional objects (data and solutions) in a more global
way than is required in KADS inference structures.

The main refinements in Fig. 5.15 when compared to the horse-shoe figure are:

e The specification of some inferences in inverse directions:

— specify conjectured finding and match: from a solution (or a solution abstrac-
tion) to data (or data abstractions)

*It was also included (in a slightly different form) in the interpretation model library [Breuker et al.,
1987].
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Source: [Clancey, 1985b; p. 296]
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— generalise hypotheses: from solutions (or solution abstractions) to a (more gen-
eral) solution abstraction.

e The explicit distinction between findings and observables. This distinction allows
one, for example, to pinpoint the basic inference used in NEOMYCIN’s generate ques-
tions task (a task which goal is to get new evidence, when the current set of data is
insufficient to arrive at a solution). This task applies the selection of an observable
from the universe of observables known to the system (select-1in Fig. 5.15).

As remarked before, KADS knowledge sources constitute a generalisation of the use of
domain knowledge. One interesting point, that arises from observations about the KADS
inference structure in relation to the analysis of heuristic classification in [Clancey, 1992],
is that this inference structure can be used to generate a situation-specific model (ssm)
such as advocated by Clancey.

An example of such a KADS ssM is given in Fig. 5.17. This example describes a SSM for
the trace of NEOMYCIN’s reasoning given in [Clancey, 1992; p. 18] (repeated for convenience
in Table 5.1). This particular trace shows how, given a hypothesis “meningitis”, the system
tries to find supporting evidence (i.e. whether the patient has experienced “seizures”).
This new finding leads to a focus shift: it triggers a new hypothesis (“increased intercranial
pressure”), which in turn starts a process of establishing evidence for this hypothesis.

Fig. 5.17 shows a KaDS version of the ssM generated by this example. The numbers
in the figure indicate the ordering in which the various arcs where put in the model. The
main difference between the KADs ssMm and the ssm’s in [Clancey, 1992] is that the relations
between the nodes in the KADS ssM are labeled with inference vocabulary: knowledge
source and meta-class names. In [Clancey, 1992] domain rules provide the relations, with
an additional annotation of the task that invoked the rule. One can view SSM’s as a
particular kind of “knowledge-level” trace of the reasoning process.

The KaDS ssM and Clancey’s ssM’s are in fact complementary. Together these provide
three different and important viewpoints on the rationale behind the reasoning process:

e The domain-knowledge view point: what domain knowledge is used?

e The inference view point: what kind of derivation is made and what is the role of
the object being manipulated?

e The task view point: what is the goal that is being pursued with this reasoning step?

5.7 Discussion: Generic Model Components

The question arises whether a top-down model construction process as described above can
be supported by template model components. This would require a different organisation
of the library of template models, namely not as a flat set of interpretation models but as
a set of generic model components of a smaller grain size. Such model components could
be inserted into a model and result in a more complex model.

The two refinements of the model for systematic diagnosis (Sec. 5.4) can be viewed
as examples of such model components. Model components can be identified also on a
more general level. If one studies the inference structures of systematic diagnosis (Fig. 3.5)
and of monitoring (Fig. 3.8), it becomes clear that these share a common set of related
inferences, namely the process of checking the expected value of a parameter against the
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{1.Top of the line of reasoning: we are pursuing meningitis as a generalization of some
hypothesis triggered by the initial data.}

CONSULT
MAKE-DIAGNOSIS
COLLECT-INFO
ESTABLISH-HYPOTHESIS-SPACE
GROUP-AND-DIFFERENTIATE
TEST-HYPOTHESIS [Meningitis]
APPLY-RULES [Rule060, Rule 323]
APPLY-RULE [Rule060

{2. After finding out about seizures to apply rule 60, we consider other data-directed
inferences: the follow-up question (#9) about seizures duration is generated; the rule 262,
marked “antecedent”; is applied.}

FORWARD-REASON
PROCESS-FINDING [Seizures]
APPLY-RULES-ANTE [Rule262

APPLY-RULE [Rule262

{3. Rule 262 concludes that seizures might also be caused by increased intercranial pressure:
is that linked to anything else we have been considering? It might be explained itself by
an intercranial mass lesion, but more evidence is required before the rule can be applied.
Test-hypothesis is now invoked recursively: a focus change has occurred.}

FORWARD-REASON
PROCESS-HYPOTHESIS [Increased-Intercranial-Pressure]
APPLY-RULES-ANTE [Rule239
APPLY-RULE [Rule239
FINDOUT [Increased-Intercranial-Pressure]
TEST-HYPOTHESIS [Increased-Intercranial-Pressure]
APPLY-RULES [Rule209, Rule233, Rule373]
APPLY-RULE [Rule209

{4. Rule 209 requires information about papilledema; the inquiry is generalized to fundo-
scopic abnormal, question #10.}

FINDOUT [Papilledemal]
FINDOUT [Fundoscopic-Abnormal]

TABLE 5.1: Trace of a consultation of NEOMYCIN. Source: [Clancey, 1992; p. 18].
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HYPOTHESIS HYPOTHESIS
meningitis increased intercranial
pressure

@

trigger
associated hypothesis
specify specify
conjectured-finding conjectured-finding
of focus of focus

SPECIFIC FINDING
seizures = present

(6)
FINDING ;ek%Ct FINDING FINDING FINDING
) duaration of seizures papilledema=present fundoscopic image
seizures=present =1 hour = abnormal
A f (9)
obtain ) obtain obtain
new new new
evidence| (2) evidence specify evidence
test
specify specify observable
test dependent
observable observable 5
® © (10)
OBSERVABLE OBSERVABLE OBSERVABLE
seizures duration of seizures fundoscopic image

FIGURE 5.17: Situation-specific model for the trace of NEOMYCIN shown in Table 5.1 using the KADS
inference structure of HC. The numbers indicate the sequence in which the arcs where placed in the SSM.

observed value. Fig. 5.18 shows this set of inferences. One could view this set as a potential
generic model component.

Representing template models in the form of such generic components is attractive
because it captures the way in which knowledge engineers actually build these models.
The identification of such generic model components can help making a number of aspects
of the model construction process more explicit, namely:

e The ingredients (model components) from which a model is built.

e The rationale behind the inclusion of a particular component (e.g. reducing the size
of the differential).

e The domain-knowledge requirements of model components. For example, refine and
generalise require a particular hierarchical organisation of hypotheses.

In Table 5.2 an effort is made to describe the various modifications in the top-down
construction of the model for diagnosis (Sec. 5.5) in terms of model components.

The components described in Table 5.2 have a number of features in common with
Chandrasekaran’s generic tasks [Chandrasekaran, 1988]. Their grain size is similar. For
example, “hypothesis generation” could be realised through the ¢T “abductive hypothesis
assembly”. The aT “knowledge-directed information passing” can be used for “finding
abstraction”. The main difference is that the GT’s are tied to a particular symbolic repre-
sentation.
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observable parameter

obtain

finding [——>{ compare je——— norm
difference

FIGURE 5.18: Example model component: checking the expected value of a parameter against the observed
value.

Component | Fig. | Knowledge sources | Rationale

question 5.8 | select({O} — O) generates
generation obtain(O — F) (new) input data
hypothesis 5.9 | associate(F — H) put new hypothesis
generation in differential
hypothesis 5.9 | specify(H — {F}) find evidence such
testing specify(F — {O}) that a solution can
select({H} — H) be found
finding 5.10 | select({F} — F) specific finding triggers
differentiation less hypotheses
finding 5.11 | abstract({F} — F) reduction of
abstraction search space
differential 5.13 | refine(H — {H}) reducing/enlarging
reorganisation generalise({H} — H) | differential
hypothesis 5.13 | match({H} — O) find observable that
differentiation discriminates between
two or more hypotheses

TABLE 5.2: Summary of the model components used in the differentiation of the generate-and-test-model.
The symbols O’; ’F’ and H’ denote respectively an observable, a finding and a hypothesis. The ’{..}’
notation denotes a set.
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The Generalised Directive Models (GDM’s) as proposed in the Acknowledge project
[van Heijst et al., 1992] support a similar top-down approach to model construction. The
grammar in which these GDM’s are expressed can be used to carry out refinement opera-
tions on (provisional) inference structures.

In principle, a library of generic model components would allow the knowledge engineer
to derive in a top-down fashion the inferences needed in an application domain. For
example, in the construction process that led to the HC model, the knowledge engineer
could decide for some application to leave out the inferences related to a hierarchical
organisation of hypotheses, when such hierarchies cannot be found or constructed. In
other domains, abstraction could turn out to be unnecessary or testing of hypotheses
could be carried out through causal models.?

However, much work still needs to be done to support the use of generic components
in top-down model construction in a principled way. It would require at least:

e The construction of a comprehensive library of generic model components.

e A description of decision criteria that would lead to including particular components
in the inference structure.

o A set of composition rules for configuring and modifying inference structures from
smaller components.

The grammar for Generalised Directive Models developed in the Acknowledge project
[van Heijst et al., 1992] provide a first step to this type of support. The further exploration
of this approach to model construction is currently a major research topic in the KADS-11
project.

®Although the relations between a hypothesis and a set of corresponding findings are called causal
relations in NEOMYCIN, these should be viewed as direct associations and do not represent a causal model
in the usual sense of the word.






Chapter 6

Operationalising Models of Expertise

Knowledge-level models currently play an important role in the development process of knowledge-based
systems. In this chapter we investigate issues concerning the design and implementation (“operationalisa-
tion”) of such models. We characterise the nature of the KBS design process and distinguish various types
of decisions that have to be made. We define structure-preserving design, i.e. preserving the structure
of the knowledge-level model in the artefact, as the principle that should underly the operationalisation
process, because it facilitates reusability of code, maintenance, explanation and knowledge refinement. We
discuss several existing environments that support the operationalisation process and outline their draw-
backs. We sketch an alternative route for computerised support and illustrate this for a class of diagnostic
tasks.

This chapter will be published in a collection of articles on KADS. Reference: Schreiber, A. T. (1993).
Operationalising models of expertise In Schreiber, A. T., Wielinga, B. J.; & Breuker, J. A., editors, KADS:
A Principled Approach to Knowledge-Based System Development. Academic Press, London.

6.1 Introduction

Model-based development has become over the last few years the prevailing paradigm for
knowledge-based system (KBS) construction. With “model-based” a development approach
is denoted in which a prime role is played by a “knowledge-level” [Newell, 1982] model of
the problem solving behaviour in an application domain.! In this chapter we investigate
the problem of how to operationalise such knowledge-level models in the process of KBS
construction.

Model-based kBs development consists of at least two different types of activities (see
Fig. 6.1):

1. Knowledge modelling activities aimed at constructing a knowledge-level model of the
application.

2. Design & implementation activities aimed at operationalising a particular
knowledge-level model through the selection and implementation of appropriate com-
putational and representational techniques. In this process requirements not directly
related to problem solving are also taken into account (e.g. efficiency).

1On-going debates on the precise nature of the knowledge-level and its role in KBS development are
discussed in Ch. 2.
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FIGURE 6.1: A bird’s eye view of KBS construction based on knowledge-level models

In this chapter we focus on the latter part of the KBS development process which could
be called the “operationalisation problem”. Generally, we use the term “operationalisa-
tion” to denote the process of designing and implementing the final system. However, at
some points we will also take approaches into account that aim at “making knowledge-level
models run”: prototype systems used for validation and knowledge refinement.

Sec. 6.2 discusses the nature of the KBS design process and characterises the various
types of decisions that have to be taken during design. In Sec. 6.3 we discuss structure-
preserving design as a general principle that should underly the entire design process. In
Sec. 6.4 and Sec. 6.5 we discuss how this principle influences the design decisions when
operationalising KADS models of expertise.

Computerised support is an important issue in a KBS development methodology.
Sec. 6.6 describes existing environments for supporting this operationalisation process
and discusses their drawbacks. In Sec. 6.7 an alternative approach is suggested. This ap-
proach is illustrated through an example support environment that we developed. Sec. 6.8
discusses results and future work.

6.2 The Design Process

The major input for the design process in KADS is the model of expertise, which can
be viewed as a specification of the problem solving requirements. Other inputs are user
interaction requirements (i.e. the model of cooperation, see Ch. 3) and also a set of external
requirements, such as costs, software and hardware.

The nature of the design process can be characterised by dividing it into a number
of interrelated design decisions that have to be made during the design process. We
distinguish two major groups of design decisions: (i) decisions with respect to the overall
system architecture and (ii) decisions with respect to the selection of suitable computational
techniques.

6.2.1 Avrchitectural options In the literature the term “architecture” is used in
many different ways. We use the term to denote a global description of the main compo-
nents of the artefact to be developed and their inter-relations. The nature of the prime
ingredients described in an architecture varies depending on the architectural paradigm
that is being used. Such a paradigm prescribes what the building blocks are from which
the artefact will be assembled and what relations exists between them. An architectural
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paradigm can also prescribe how the analysis input should be mapped onto the architec-
ture. Two well-known architectural paradigms in software-engineering are the functional
approach [Yourdon, 1989b] and the object-oriented approach [Coad & Yourdon, 1991;
Rumbaugh et al., 1991]. In the functional approach the prime architectural components
are functions. Functions are linked to each other via data flows. In the object-oriented
approach the main components are objects. Objects are related to each other via associa-
tions (relations) and message connections. Another architectural paradigm that has been
proposed for certain Al programs is the so-called “blackboard” architecture. In the latter
paradigm the emphasis lies on the distribution of control in the system.

In fact, the three example paradigms described above symbolise what appear to be
three fundamental perspectives that one can take when describing a system [Rumbaugh
et al., 1991; Yourdon, 1989a] (see also Ch. 8), namely:

e the data perspective,
e the functional perspective, and
e the control perspective.

These three perspectives can be summarised as the “what, how, and when” views of
a system. Choosing one of the paradigms does not mean that only this particular type
of information is present in the architecture. For example, in the functional approach the
data manipulated by functions must be described as well. Also, in the object-oriented
approach operations (functions) and messages (control) must be defined for each object.
The object-oriented approach in fact groups data, functions and control together in small
untis. The main distinguishing factor between the approaches is the decomposition princi-
ple that is employed when describing a system. In the functional approach the functional
perspective provides the decomposition principle: the system is decomposed into a hierar-
chical structure of functions and sub-functions. In the object-oriented approach the data
perspective provides the entry point: system decomposition starts with building hierar-
chies of data objects.? Many of the debates in software engineering have been about the
“right” decomposition principle. Later in this chapter we will argue for an architectural
paradigm that represents a combination of these three perspectives. This is in line with
recent proposals in software engineering, such as advocated by [Rumbaugh et al., 1991].

Thus, the specification of the architecture entails two steps:

Choice of the architectural paradigm The choice of the perspective that guides the
decomposition in the architecture: e.g function-oriented, object-oriented. In real-life
practice this paradigm choice is often not noted as an explicit design decision. It
is often determined by the background and experience of the system designer or by
software-engineering ‘fashions”.

Architecture specification Given an architectural paradigm, the designer will have to
use the analysis input (the conceptual model) to specify a suitable architecture.
From a methodological point, this activity can be supported by providing the system
designer with skeletal architectures: prototypical decompositions that have to be
instantiated for a particular application. In this chapter we will give two examples
of skeletal architectures that could be useful for “kADS” designers.

2This statement is not completely true for recent developments in the field of so-called ‘user-interface
management systems” such the kernel of the KEW workbench [Anjewierden, 1991].
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6.2.2 Computational options Given an architecture, the designer will have to decide
which computational techniques she is going to employ in the artefact. The nature of these
decisions can be illustrated with an example concerning the skeletal architecture used in
the early days of expert systems. This architecture (Fig. 6.2) was a very simple, naive
one. The two main components of a KBS were in this view an “inference engine” and a
“knowledge base”. It is in fact a control-oriented architecture: the leading principle for
the decomposition is the control relation between a declarative component (the knowledge
base) and a procedural component (the inference engine) of the system.

Inference
engine

executes

Knowledge base

FIGURE 6.2: Naive expert-system architecture

The computational design decisions that have to be taken in this architecture are
typically concerned with:

e the representation formalism for the knowledge base,
e the algorithm for interpreting the knowledge base, and
e the control regime for sequencing interpretations of the knowledge base.

Typically, one type of technique was selected for realising this architecture: e.g. a
production system technique (e.g. production rules, rule interpreter with forward chaining,
some form of conflict resolution) or an automated deduction technique (e.g. predicate
calculus representation and a theorem prover).

One can view production systems and automated deduction as computational
paradigms: they point to a group of related techniques and representations. Other well-
known computational paradigms are state-space search, parsing, constraint satisfaction
and structure matching.

Employing techniques that belong to only one particular paradigm simplifies the pro-
cess of KBS design. In general however, one would not like to limit the designer to use
one particular group of techniques. Some techniques are better suited for solving certain
(sub-)problems than others.

In short, the designer has to make two types of computational decisions: (i) the choice
of the computational paradigms that will be employed in the artefact, and (ii) the specifi-
cation of the techniques that will be used for realising the various elements in the system
architecture.

In Newell’s terms, the computational techniques describe the symbol-level realisation
of the agent. It is important to realise that there is a trade-off between (i) making the
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knowledge-level model more specific, i.e. by introducing more refined elements, and (ii) a
more elaborate specification during design. The decision whether to do the former or the
latter depends on whether one needs to represent explicit control on certain operations
in the model of expertise. The borderline between model of expertise and design is thus
in a sense governed by the level of granularity that is required of the model of expertise.
For example, in OFFICE-PLAN (a system for allocating offices to employees, see [Karbach
et al., 1989]) the actual allocation inference is modelled as one knowledge source assign in
the model of expertise and is realised in the actual system through a complex constraint
satisfaction technique. If it would have been necessary to exercise control on this technique,
then one would need to model constraint satisfaction “at the knowledge level”.

6.2.3 Choosing a software environment In addition, the designer has to choose (or
construct) a software environment that is to be used for implementation. With a software
environment we mean some programming language (with possibly additional components,
e.g. libraries) that is used as the basis for implementation: e.g. KEE [Fikes & Kehler,
1985], EMYCIN [van Melle et al., 1981], Prolog, LisP, etc. A software environment supplies
the designer with a number of predefined (=implemented) computational constructs and
representations. In [Schreiber et al., 1987] a distinction is made between closed and open
environments.

In a closed environment the set of available techniques and representations is fixed and
not expandable. An example of such an environment is EMYCIN. An open environment of-
fers possibilities for expanding the set of methods and representations. Open environments
can be further divided into weak or strong environments, depending on the size of the set
of predefined techniques. Prolog can be viewed as an example of a weak environment. Its
built-in facilities are very general-purpose: unsorted Horn clause logic, unification and sLD
resolution. KEE can be seen as an example of a strong environment. It provides higher-
level primitives for implementing computational techniques, such as frame and production
rule representations, hierarchical structuring of frames and rules, a classifier and various
interpreters,

There is a clear dependency between the computational decisions on the one hand and
the choice of an environment on the other hand. The techniques chosen can influence
the choice of an environment and vice versa. Ideally, the chosen environment should
offer primitives for realising a large variety of techniques and thus limit the amount of
implementation effort. In a weak environment such as Prolog or LISP, it is necessary to
build the techniques on top of the language.

It should also be noted that in real-life KBS development the choice of a software
environment is often dictated by external requirements: costs, availability, etc. This
environment then acts as a constraint on the overall design process: e.g., if, for some
external reason, a system like EMYCIN has to be used, this implies that the designer has
only limited freedom in making computational decisions or has to devise clever ways of
implementing the desired constructs using the limited means that the environment offers.
A typical example of this last phenomenon is the use of parameters to represent control
implicitly in MmycIn [Clancey, 1983].

6.2.4 Overview of the design process Fig. 6.3 summarises the main steps that have
to be taken during KBS design. The arrows in the figure denote dependencies between steps
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in design. This does not mean that the actual process in time should follow the direction
of the arrows. An example of this was given at the end of the previous section, namely
that a early (because fixed) choice of an particular environment constrains other design
steps.

The last step in Fig. 6.3 is the actual implementation of the system. The nature of
this step depends very much on the way the design was carried out and on the chosen
software environment. In Ch. 7 we discuss a full sample implementation based on the
design principles outlined in the remainder of this chapter. The implementation can
be supported in various ways. One important support tool for implementation given a
“structure-preserving design” (see the next section) are transformational tools that map
model-of-expertise descriptions on code fragments. Another useful tool is a dedicated
domain-knowledge editor, which uses a symbol-level translation of the “domain schema”
(see Sec. 3.4.1) to interact directly with an application expert. This type of functionality
is offered by the oPAL knowledge acquisition tool [Musen et al., 1987].

6.3 Structure-Preserving Design

Design thus consists of the specification of an system architecture and the selection of ap-
propriate representations and computational techniques. In principle, the designer is free
to make any set of design decisions that results in meeting the requirements formulated
during analysis. However, from a methodological point of view a structure-preserving
design should be strongly favoured. With “structure-preserving” we mean that the in-
SJormation content and structure present in the knowledge-level model is preserved in the
final artefact. For example, it should be possible to reconstruct from the final system
both the domain-knowledge structures specified during analysis as well as their relations
with knowledge sources and/or meta-classes. Design thus should be a process of adding
implementation detail to a knowledge-level model. The knowledge-level model is in fact
interpreted as a skeletal architecture for the system.

Thus, preservation of information is the key notion. For this purpose, we investigate
in the next section in more detail the nature of the information in the model of expertise.
In Sec. 6.3.2 we discuss the main advantages of the structure-preserving approach.

In Sec. 6.4 we take the “executable specification” view on the model of expertise and try
to define skeletal architectures for supporting structure-preserving design. In Sec. 6.5 we
investigate how the structure-preserving approach influences the computational decisions.

6.3.1 Types of information in the model of expertise In this section we take
a second look at the structure of the model of expertise and characterise what kind of
information it contains with respect to the three perspectives outlined in Sec. 6.2 (data,
function, control).

Functional perspective The functional perspective is represented both in the inference
knowledge and in the task knowledge. Knowledge sources constitute the leaves of
the functional decomposition tree. Tasks represent the higher-level functions. An
example of such a functional-decomposition tree can be found in Ch. 3 (Fig. 3.6).

Data perspective The domain knowledge represents a specification of all domain-
specific data and forms the major part of the data perspective.
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FIGURE 6.3: Dependencies between steps in the design and implementation process. For each step some

sample support knowledge or support tools are listed.
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The meta-classes and the domain view in the inference knowledge are also part of
the data view, but these data are specified in an indirect way: i.e. by mapping
functional names onto domain-knowledge elements. One could say that the name
of a meta-class specifies a functional object (e.g. hypothesis) and that the mapping
onto domain terms (e.g. hypothesis — domain class disease) assigns a data structure
to such a functional object. The mapping provides in fact the link between the
functional perspective and the data perspective. The situation in KADS is thus more
complicated than in conventional data-flow diagrams, where the names of the data
flows refer directly to elements of the data model.

The control terms (part of the task knowledge) specify similar functional objects,
but through a multi-step mapping (e.g. the control term differential maps onto a set
of objects of type hypothesis, which in turn maps onto a class of domain objects.)

Control perspective The control perspective (the “when” view) is present in the task
knowledge (the task structure description of a task) and in the strategic knowledge.

By relating a description of control in a task-structure procedure directly to a task, an
explicit link is made between the functional perspective and the control perspective.
This is not by definition true for the control specified in strategic knowledge, as KADS
provides no strict guidelines for the structure of this type of knowledge,

Table 6.1 summarises the information contained in the various parts of the model of
expertise with respect to three viewpoints. In Ch. 8, we analyse how KADS relates to more
conventional approaches with respect to these three perspectives.

‘ Category ‘ Element ‘ Perspective ‘
domain concepts, properties data
knowledge | relations, structures, etc. | data
inference knowledge source functional
knowledge | meta-class functional — data
domain view functional — data
task control terms functional — data
knowledge | sub-tasks functional
task structure control — functional
strategic control
knowledge

TABLE 6.1: Characterisation of the information contained in a model of expertise with respect to the three
perspectives on systems: data, function and control.

The model of expertise is thus not biased towards one particular perspective, although
part of the functional view, i.e. the inference structure is often the starting point for
building the model. The resulting architecture is thus a mixture of different types of
components, each emphasising different perspectives of the system. This point is discussed
in more detail in the comparison of KaDs with conventional approaches (Ch. 8).

6.3.2 Advantages of structure-preserving design There are a number of reasons
for following a structure-preserving approach to design:
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Reusability of code Structure-preserving design prepares the route for reusability of
code fragments of a KBs, because, in Smith’s terms (see Ch. 1), the “semantical
attribution” [Smith, 1985] of code fragments is explicit. Reusable code fragments
can be of various types and grain size, ranging from implementations of inferences
(knowledge sources) to implementations of an aggregation of inferences plus control
knowledge. The layered structure of KADS models of expertise facilitates this type
of reusability.

Maintenance The preservation of the structure of the knowledge-level model makes it
possible to trace an omission or inconsistency in the implemented artefact back to
a particular part of the model. This considerably simplifies the maintenance of the
final system. It also facilitates future functionality extensions. Experience with the
Fraudwatch system [Porter, 1992; Killin, 1992] indicates that systems built in this
fashion are much easier to maintain than conventional systems.

Explanation A structure-preserving approach facilitates the development of explanation
facilities that explain the reasoning process in the vocabulary of the knowledge-level
model. For example, for some piece of domain knowledge it is possible to ask:

e in which elementary problem solving steps it is used and which role it plays in
this inference;
e when and why it is used to solve a particular problem (control knowledge).

As the knowledge-level model is phrased in a vocabulary understandable for a human
observer, a structure-preserving design can provide the building blocks for “sensible”
explanations. This feature has been demonstrated by [Clancey & Letsinger, 1984]
in the NEOMYCIN system. Several researchers have proposed generic strategies for
generating such explanations from knowledge-level descriptions [Neches et al., 1985;
David & Krivine, 1990; Sprenger, 1991]. Generic explanation tools supporting ques-
tions like why/when/how inference by exploiting the structure-preserving property
of the code.

In EES [Neches et al., 1985] the model information is preserved in a separate “devel-
opment history” generated by a program writer. This database stores facts about
the relation between model elements and code fragments (i.e. 0Psb rules) generated
from these model elements. This “compiler” approach to information preservation
is attractive from an efficiency point of view.

Knowledge acquisition support Given a structure-preserving design, the knowledge-
level description can fulfill the role of semantic information about pieces of code of the
artefact. This additional information can be used to support knowledge acquisition
in various ways. Some examples:

e One can construct editors for entering domain knowledge directly into the sys-
tem which interact with the user in the vocabulary of the model, similar to
systems like MOLE [Eshelman, 1988].

e One can build debugging and refinement tools which spot errors and /or gaps in
particular parts of a domain knowledge base by examining its intended usage
during problem solving.
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e It is possible to focus the use of machine learning techniques to generate a
particular type of knowledge, e.g. abstraction and specification knowledge (cf.
the Acknowledge project [Shadbolt & Wielinga, 1990; van Heijst et al., 1992]).

An example might help to illustrate the advantages of a structure-preserving design.
Suppose we have in a medical application some pieces of domain knowledge of the following
form (here phrased as logical implications):

temperature > 38.0 — fever = present
diastolic-pressure > 95 — blood-pressure = elevated
blood-pressure = elevated — hypertension = present

Suppose also that we have the following two inferences in our model of expertise
applying such pieces of domain knowledge in the reasoning process:

(i) An abstraction inference in which a finding, e.g a quantitative property like the
temperature of a patient, is abstracted into a more abstract finding such as fever.

(i) A specify step which defines an inference that can be used to find-out which observ-
able should be asked to the user once it becomes known that the patient has, for
example, a fever.
Although the validity of the model is not the issue here, it might be useful to add that
physicians usually want to get an answer to the question “What is the temperature”
when they learn (e.g during physical examination) that a patient has a fever, as the
precise value can be important in other parts of the reasoning process.

Fig. 6.4 depicts a simple inference structure containing these two inference steps.®. The
italic annotations of the meta-classes denote the domain-knowledge elements that could
fulfill the role of finding or observable. The domain implications listed above are used
by both inferences in their “domain view” (see Sec. 3.4.1). The inference structure also
contains an additional step (the oval with the dashed border), which denotes a transfer
task (see Sec. 3.4.3) for obtaining the value of an observable (e.g. “What is the value of
the temperature”).*

A structure-preserving design dictates that this two-fold use of essentially the same
pieces of domain knowledge is made explicit in the final implementation. For example,
implementing these domain expressions in duplo as abstraction and as specification rules
would violate the structure-preserving property. It would give rise to knowledge redun-
dancy (the same knowledge is present twice in the system) and can lead to serious main-
tenance problems (when specification knowledge is changed, the abstraction knowledge
needs to be changed as well). For a knowledge acquisition tool it could mean that the user
needs to enter the same piece of knowledge twice (or it would require an undesirable ad
hoc adjustment of the tool). For explanation purposes it is important to be able to explain
the different usage of these implications. At different points in the reasoning process the
explanations about the role of these implications can vary.

*This inference structure is in fact a small fragment of the KADS inference structure for heuristic
classification (see Fig. 5.15).

*As pointed out in Ch. 3 such an inference structure only describes the data dependencies between
inferences.
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Attribute-value pair of: -
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diastolic-pressure
blood-pressure
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|

\J
temperature >= 38.0 ->
Lo fever = present

e N diastolic-pressure >= 95 -> -
N obtain /) blood-pressure = elevated finding
R blood-pressure = elevated ->
hypertention = present
A
| Attribute-value pair of:
fever
temperature observable < specify blood-pressure
diastolic-pressure hypertension

FIGURE 6.4: Two inferences in a medical application with some examples of related domain knowledge.
Both abstract and specify use the same domain implications, but for different purposes. The dashed oval
denotes a transfer task.

Structure-preserving design is currently also being advocated in conventional software
engineering, especially in the area of object-oriented modelling and design [Rumbaugh
et al., 1991; Coad & Yourdon, 1991]. The motivation there mainly concerns reusability
and maintenance. This point is discussed in more detail in Ch. 8.

6.4 Structure-Preserving Design: A Skeletal Architecture

In structure-preserving design, the idea is to use the model of expertise as a skeletal
architecture of the artefact. In fact, most knowledge engineers using KADS think about
the model of expertise as some (semi-)executable specification. One could say that they
have internalised a particular architectural interpretation of the model and use this to
explain how the model they have built can solve a particular problem. However, the
information in the model of expertise is incomplete from the executable-specification point
of view. This is not surprising, as this model is primarily meant for analysis purposes and
not for design. The main ingredients that are missing and that need to be considered in
architectural design are inference methods, domain indexing and access functions, working
memory, and input/output functions:

Inference method Knowledge sources specify the nature of the input and output (the
meta-classes) and the domain knowledge used in deriving the output from the in-
put (the domain view). Knowledge sources do not specify how the inference will be
achieved. This how description is typically something that has to be added during
design. During analysis, the knowledge engineer often takes, what one could call, an
automated-deduction view on a particular inference: the knowledge engineer speci-
fies a knowledge source in such a way that she knows that it is possible to derive a
conclusion, given the available knowledge, no matter how complex such a derivation
in practice might be. In analysis, the emphasis lies on a competence-oriented de-
scription: can I make this inference in principle, and what is the information I need
for making it happen. An inference method specifies a computational technique,
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that actually does the job.> Some example inference methods mentioned in [Breuker
et al., 1987; p. 41] are inheritance, empirical association, matching algorithms, and
generalisation.

One can take the view that inference methods are part of knowledge sources and
thus should not have the status of separate architectural components. However, the
relation between knowledge sources and inference methods is not one-to-one. Several
knowledge sources may apply the same inference method, but for different purposes.
For example, in the StatCons system for statistical consultancy two inference meth-
ods realised in total eight inferences [de Greef et al., 1987; pp. 73-99]. Also, in the
Sisyphus application described in Ch. 7 one method is used to realise three different
inferences.

The reverse can also be true, namely that one inference function is realised through
multiple methods. Thus, incorporating inference methods into operational knowl-
edge sources prevents making full use of the reusability concept.

Domain access and indexing One of the subtle points of the model of expertise frame-
work is the use of functional names (i.e. meta classes, domain views) to describe
the inference process. In the knowledge-source specifications (see e.g. Sec. 3.4.2) the
mapping between functional names and domain-specific terms is indicated. During
design, one has to construct for these inference/domain mappings indexing mech-
anisms for the (operational) domain knowledge-base. Domain-access functions use
this indexing information to retrieve the required domain knowledge for carrying
out a particular inference. These access functions ensure that system elements that
realise inferences (the “inference functions”, see further) can be specified fully in
a manner that is independent of the application-domain. This is a key point with
respect to reusability (see also the discussion on data-function interactions in Ch. 8).

Working memory During analysis one is (and rightly so) sloppy in defining storage of
the run-time data. This is mainly because a full specification of this type of informa-
tion requires a detailed description of all kinds of data manipulations. The working
memory (with which we mean the database of the run-time results of inferences
and tasks) is only specified implicitly, in particular through meta-classes and control
terms (see Sec. 3.4.3 for a definition of the notion of control terms). During design,
one has to define however explicitly the nature of working memory, possibly adding
other types of run-time information as well: e.g. which tasks have been executed
etc.

HCI functions Although the emphasis lies in this chapter on the impact of the model of
expertise on the design, a few remarks are in place here about the components that
are concerned with the interaction of the system with external agents. The model

°If the model of expertise is fully specified in some strictly formal language such as M L* [van Harmelen
& Balder, 1992; Akkermans et al., 1992] it is in principle possible to use a dedicated theorem-prover for
executing the model. In practice however, some inferences involve computations that are, given the state of
the art, computationally intractable within such an approach . In the KADS-II project, we are developing
a theorem-prover for simulating the problem-solving behaviour of a particular model, providing pragmatic
short-cuts for intractable parts. This theorem-prover is meant to be used for model validation purposes
and 1s not expected to fulfill the role of final system.
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of cooperation contains the detailed specification of this part of the system. In the
skeletal architecture (cf. Fig. 6.5 such components appear as human-computer inter-
face (Hc1) functions.® These functions implement transfer tasks such as obtaining a
value and presenting a solution.

It should be noted that the model of cooperation can interact with the specification
of control in the model of expertise. For example, it can be the case that the model
of cooperation specifies a desired interaction strategy in which obtaining the value
of certain observables should involve asking also for values of related observables
(e.g. because this increases the plausibility of the line of questioning of the system).
In fact, the model of cooperation often gives rise to an adaptation of the control
knowledge as specified in the model. Typically, it influences the design of task
knowledge and strategic knowledge specified. This point is discussed in more detail

in [de Greef, 1989].

Fig. 6.5 depicts a typical skeletal architecture for structure-preserving design. We
briefly discuss its various components below, except for the HcI functions which fall outside
the scope of this chapter.

Domain knowledge-base and access functions The domain knowledge-base con-
tains a declarative symbolic representation of the domain-specific knowledge. It contains
both the actual domain expressions (e.g. relation tuples, concept instances) as well a de-
scription of the structure of the domain expressions (the symbolic representation of the
domain schema, cf. Sec. 3.4.1).

This schema is used by the knowledge-base access functions to retrieve certain types
of domain knowledge, using the mapping specifications provided by meta-classes and do-
main views. The access functions should be able to handle requests such as ‘retrieve all
abstraction knowledge” or “retrieve a domain entity that can play the role of observable”.

The operationalised domain schema can also be used for explanation purposes (e.g.
providing an answer to the question: “what domain knowledge was used in making this
inference”) and for the development of domain-knowledge editors that interact with the
user in a domain-specific vocabulary, similar to oPAL [Musen et al., 1987].

Inference functions and inference methods We use the term inference function
to denote the design counterpart of knowledge sources. Inference functions should contain
the same information as described for knowledge sources; types of input, output, and na-
ture of the domain knowledge used (all in domain-independent terminology). In addition,
every inference function defines how a particular inference method can be activated to
realise the inference and what type of information needs to be retrieved (using the domain
access functions) for successful execution of the inference method. In Sec. 6.5, we provide
an example operationalisation of the inference functions for the abstract/specify exam-
ple. More elaborate examples can be found in the description of the Sisyphus application

(Ch. 7 and Appendix B).

6The skeletal architecture makes the simplifying assumption that the external agents the system will
deal with are all humans.
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FIGURE 6.5: Skeletal architecture supporting structure-preserving design. The boxes with rounded cor-
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Non-dashed lines describe a control operation (activates) between components; dashed lines a data opera-
tion (store, retrieve, interpret).

Task interpreter, task descriptions, and working memory The task inter-
preter is the central control unit of the system in this architecture. It uses a declarative
description of task structures and stores/retrieves run-time results of the reasoning process
in/from working memory. The complexity of the task interpreter can vary, depending on
the technique being chosen for implementing this component. In the simplest case, it is
a straight-forward interpreter for KaDS-type task structures. A more complex technique
would be a blackboard-type of control technique. Choosing a particular control technique
is discussed in more detail in Sec. 6.5.

6.4.1 Meta-level vs. object-level inferencing The skeletal architecture shown in
Fig. 6.5 has a meta-level flavour, in which the domain knowledge base represents the
object-level and the inference- and task-elements represent the meta-level. Van Harmelen

distinguishes three types of meta-level architectures based on the locus of action [van
Harmelen, 1989]:
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e Pure meta-level inferencing: all computation is carried out at the meta-level. The
object-level has no interpreter and is only accessed to retrieve information.

e Pure object-level inferencing: the meta-level has no interpreter of its own, but is
active at fixed points during the computation through the execution of predefined
meta-predicates.

e Mixed inferencing: both object-level and meta-level have an interpreter. The object-
level interpretation is a black box for the meta-level.

Within this classification, the skeletal architecture of Fig. 6.5 can be characterised as
either pure meta-level or mixed, depending on whether the retrieval of domain knowledge
involves computations in the domain knowledge-base. In the Sisyphus application the
architecture is a mixed one: the domain knowledge-base contains additional axioms which
are interpreted by the domain access functions: e.g. knowledge about properties of relation
types such as transitivity is used to infer tuples of a relation.

6.5 Structure-Preserving Design: Computational Decisions

In this subsection we discuss some more detailed design decisions in a structure-preserving
approach. The scope of the section is limited to decisions with respect to elements of
the model of expertise. A more detailed description of these decisions can be found in
[Schreiber et al., 1987; Schreiber et al., 1989a].

6.5.1 Inference and domain knowledge Foreach knowledge source a corresponding
computational technique needs to be selected that can realise this inference. A technique
consists of three types of elements: (i) an algorithm, (ii) input-output data structures
and possibly additional temporary data structures, and (iii) a representation of domain
knowledge. The algorithm embodies the method for realising the inference and specifies
the local, symbol-level control (cf. Sec. 2.3).

As remarked before, a number of groups of computational techniques have been devel-
oped in Al research, such as production systems, state-space search, parsing, classification
and matching. These groups can be viewed as computational paradigms. Detailed studies
have been performed to unravel the criteria for choosing a technique within one group
such as hierarchical classification [Goel et al., 1987] or automated deduction [Reichgelt
& van Harmelen, 1986]. In [Schreiber et al., 1989a] criteria for chosing a particular type
of technique are discussed. Often, knowledge engineers use within one system only one
or two types of techniques. For example, in NEOMYCIN [Clancey, 1985a] four production
system techniques are provided. Each inference” applies one of these production system
techniques. Applying only one type of technique, such as production systems, in one
particular KBS minimises the interaction problems with the design of other parts of the
system (in particular the domain knowledge-base, as it requires just a single representa-
tional formalism), but apart from that there is no compelling reason to adhere strictly to
this approach.

"NEOMYCIN distinguishes only one “inference” type: apply-rule. The lowest level of meta rules fulfills
however a similar role as knowledge sources in KADS, namely performing the computations using domain
knowledge.
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A crucial design decision concerns the choice of the representation technique(s) for
the domain knowledge. Often, the nature of the knowledge described in the domain
schema indicates suitable symbolic representations. If the knowledge engineer works within
a particular paradigm, such as production systems, the choice of the representational
technique is usually obvious: the domain representation technique is the same as the
representation used by the chosen type of computational technique.

With respect to the structure-preserving principle, the most difficult part is to preserve
the information about the functional names (meta classes, domain views, the domain spe-
cific names and their mappings. As the analysis in the previous section has shown, these
inference-to-domain connections specify in fact the relation between the functional per-
spective and the data perspective on the system and constitute crucial areas for reusability
etc.

To illustrate how structure-preserving design can be achieved in this respect, we present
an example of a simple Prolog implementation of the inferences in Fig. 6.4. A full listing
of the code, together with some sample traces, can be found in Appendix C.

Example fragment of a model of expertise We assume that the inferences in
Fig. 6.4 are specified in the following way in the conceptual model:

knowledge-source abstract

input-meta-class:

finding — some expression about patient-data
output-meta-class:

finding — some expression about qualitative-data
domain-view:

abstraction-knowledge —

< relation(qualitative-abstraction), relation(definition) >

knowledge-source specify

input-meta-class:

finding — some expression about qualitative-data
output-meta-class:

observable — some property of qualitative-data
domain-view:

specification-knowledge —

< relation(qualitative-abstraction), relation(definition) >

These inferences use the same domain knowledge (see the domain view), but for dif-
ferent purposes.

The domain knowledge is specified in the model of expertise using the domain descrip-
tion language (DDL) defined in Ch. 4:

concept patient-data ;

concept quantitative-data ;
sub-type-of: patient-data ;
properties:
temperature: number-range(35 - 42) ;
diastolic-pressure: number-range(0 - 300) ;

concept qualitative-data ;



Chapter 6. Operationalising Models of Expertise 115

sub-type-of: patient-data ;
properties:
fever: {absent, present} ;
blood-pressure: {normal, elevated} ;
hypertension: {absent, present} ;

relation qualitative-abstraction
argument-1: expression(quantitative-data) ;
argument-2: expression(qualitative-data) ;
tuples:
< temperature > 38.0, fever = present >
< diastolic-pressure > 95, blood-pressure = elevated > ;

relation definition
argument-1: expression(qualitative-data) ;
argument-2: expression(qualitative-data) ;
tuples:
< blood-pressure = elevated, hypertension = present > ;

The DDL description specifies two types of attributes of a patient and two relations
that express relations between expressions about such attributes.

Representation of domain knowledge For this example we use a set of Prolog
predicates that allow an almost direct translation from DDL statements onto the chosen
knowledge representation. This representation was also used for the implementation of the
Sisyphus application (cf. Ch. 7 and Appendix B)). The main idea is to keep the domain
knowledge as much as possible in the form of a declarative theory of the domain, without
any particular commitment towards specific use during reasoning.

% concept (Concept name, Supertypes)

concept (patient_data, [1.
concept (quantitative_data, [patient_datal).
concept (qualitative_data, [patient_datal).

% property(Concept, Property name, Valueset)
property(quantitative_data, temperature, numberrange (35.0, 42.0)).
property(quantitative_data, diastolic_pressure, numberrange(0, 300)).
property(qualitative_data, fever, [present, absent]).
property(qualitative_data, blood-pressure, [normal, elevated]).
property(qualitative_data, hypertension, [present, absent]).

% relation(Relation name, Type first argument, Type second argument)

relation(qual_abstraction, expr(quantitative_data), expr(qualitative_data)).

relation(definition, expr(qualitative_data), expr(qualitative_data)).
% tuple(Relation name, [First argument, Second argument])
tuple(qual_abstraction, [temperature >= 38.0, fever = present]).

tuple(qual_abstraction, [diastolic_pressure >= 95, blood-pressure = elevated]).
tuple(definition, [blood-pressure = elevated, hypertension = present]).



116 Pragmatics of the Knowledge Level

Automatic generation of this representation from the bDL would require little effort.

Domain index The domain index specifies the mappings from inference-level names
(see next paragraph) onto domain-specific data types in the knowledge-base.

domain_index (expression, finding, [ expr(patient_data) 1).

domain_index(entity, observable, [ property(patient_data) 1).
[ relation(qual_abstraction)

relation(definition) 1).

domain_index(relation, gpecification, [ relation(qual_abstraction)
, relation(definition) ]).

domain_index(relation, abstraction,

The predicate domain-index has three arguments, namely:.

1. The inference-level data type (one of entity, relation, and expression).
2. The inference-level name (e.g. finding, observable).
3. A list of domain types that can play the role of this inference-level object.

Thus, the inference-level relations “abstraction” and ¢ ‘specification” both map onto all
tuples of two domain relations.

Inference knowledge The inference-knowledge representation consists of three el-
ements. The first element is the declaration of inferences as defined in the model of
expertise.

% inference(Internal name, External name)

% metaclass(Inference, Input/Output, General name, Specialised name).
% domain_view(Inference, , Inference knowledge).

inference( abstract, ’Abstract’).

metaclass( abstract, input(l), finding, ’Specific finding’).
metaclass( abstract, output, finding, ’General finding’).

domain_view(abstract, relation(abstraction, finding, finding)).

inference( specify, ’Specify’).

metaclass( specify, input(1), finding, ’Finding to be clarified’).
metaclass( specify, output, observable, ’Dependent observable’).
domain_view(specify, relation(specification, finding, finding)).

The domain view describes the static domain-knowledge used by the inference (cf.
Sec. 3.4.2).

The second element of the inference-knowledge representation is the definition of an
inference function that realises this inference by retrieving the necessary domain knowledge
and activating an appropriate inference method:

inference_function(abstract, [In], Out) :-
domain_retrieval (find_all, abstraction, Rules),
rule_interpreter (Rules, In, Out, forward, single_pass, find_one).

inference_function(specify, [In], Out) :-
domain_retrieval (find_all, specification, Rules),
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rule_interpreter (Rules, In, Out, backward, multi_pass, find_omne).

The predicate domain_retrieval represents a knowledge-base access function that re-
trieves the required domain knowledge by interpreting the domain-view description of the
inference. The predicate rule_interpreter represents a call to a production-system tech-
nique, where the last three arguments indicate the required control regime in a similar
way as is NEOMYCIN:

e forward/backward Derive conclusion from the premise of a rule (forward) or set up
premise as a goal to achieve the conclusion of the rule (backward).

e single/multi pass Stop once a conclusion or a goal has been inferred (single pass)
or invoke the rule interpreter recursively (multi pass).

e find one/all Stop evaluation (find one) or continue evaluation (find all) of the rule
set when a conclusion or a goal has been found.

This  production-system  technique interprets a domain-relation tuple as
< premise, conclusion >.

The inference abstract is thus realised by a single, data-driven, evaluation of the rule
interpreter using the tuples of the two domain relations as rule set. The inference specify
is realised by a recursive, goal-directed, execution of the same rule set.

Fig. 6.6 shows a a schematic view of a sample execution of the specify inference. The
input is a finding. The corresponding inference function calls a domain-retrieval function
to retrieve all specification rules. This retrieval function uses the domain index to collect
the appropriate domain knowledge. Finally, the inference method (the rule interpreter) is
activated which produces the output (in this case an observable).

finding input - specify output - observable
"hypertension=present" inference "diastolic pressure"
domain
retrieval activate
inference method
speification
rule
T role-interpreter
domain
index
domain tuple

FIGURE 6.6: Schematic overview of a sample execution of the inference specify.

The third element of the inference-knowledge representation is the actual definition
of the inference method. The corresponding Prolog predicates implementing the rule
interpreter can be found in Appendix C.
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6.5.2 Task knowledge Given the set of tasks specified in the conceptual model (con-
sisting of both problem solving tasks and of transfer tasks) the designer has to make two
— interrelated — decisions, namely:

1. The choice of a control technique for executing tasks. The simplest solution would

be to define an interpreter for a representation of the task structures in the model of
expertise. This solution is sufficient in the case where the model of cooperation does
not impose additional requirements on the control regime (see the discussion earlier
on Hcl functions). This is the solution taken in the diagnostic system described in
Sec. 6.7.
If the model of cooperation imposes additional control requirements, it is usually
appropriate to employ a more complex control technique, that integrates the execu-
tion of task structures and the control of HCI functions as defined in the model of
cooperation. Control techniques that could be used for achieving this are an agenda
mechanism, a blackboard or a skeletal planning technique. The StatCons system is
an example KBs where the user interface requires complex control [de Greef et al.,
1988b].

2. The choice of how to represent and update the run-time data. These data can be

viewed as the “working memory” of the KBs. This working memory contains the
data that are manipulated by the tasks and the inferences: e.g. the current state
of the differential, the findings, etcetera. The control terms and the meta-classes
specified in the conceptual model form the basis for the representation of working
memory: they often reappear in the final system as labels for (sets of) working
memory elements.
Most existing KBS’s use a simple monotonic technique for updating working mem-
ory. We expect that in the next generation KBS’s more complex techniques such as
truth-maintenance techniques will be used more often. Note that the use of such
a technique can pose additional requirements on the output produced by computa-
tional techniques realising primitive inferences. An example of such an additionally
required output is the “justification” used in an ATMs [de Kleer, 1986].

In Appendix C an example task structure representation can be found for two tasks
that apply respectively the abstract and the specify inference.

6.5.3 Strategic knowledge Most conceptual models that have been constructed do
not contain much strategic knowledge, if any at all. In most systems the strategic part has
been “compiled out” into fixed task decompositions with possibly a few strategic decision
points that can be influenced by the user (cf. [de Greef et al., 1987]).

If more elaborate strategic knowledge is present, the following techniques could be
applicable:

e A production system containing a set of meta-rules with states of working memory
as conditions and task activations and/or changes to working memory (e.g. assump-
tions) as actions.

e An extended blackboard technique such as the “Blackboard Control Architecture”
[Hayes-Roth, 1985], where the scheduling part represents the strategic knowledge.
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From the viewpoint of the skeletal architecture in Fig. 6.5, these techniques involve
the development of a complex central control unit (the term “task interpreter” is probably
not appropriate anymore within this context).

Strategic knowledge as meta-knowledge An alternative route is to view the
strategic knowledge as a separate meta-system, The PDP system is an example of this ap-
proach [Jansweijer et al., 1986]. This approach has been the focus of the REFLECT project
[van Harmelen et al., 1992]. In the REFLECT approach the strategic knowledge is viewed
as a meta-theory about the three other knowledge categories in the model of expertise (the
object-theory). This meta theory can be described with the same modelling framework
as the object-theory. In architectural terms, this means that the skeletal architecture
sketched in Fig. 6.5 is extended to a meta-level architecture in which a strategic meta-
system reasons about and acts upon a model of the object system. This object-model
is causally connected [Maes, 1987] to the corresponding constructs in the actual object
system. In practice, this causal connection can only be achieved if the object-system has
been can be operationalised in a structure-preserving way.

Note that the architecture of the object-system itself is also of a meta-level nature:
the inference-level components reason about an d act upon the (object-level) domain
knowledge (see the discussion in Sec. 6.4.1).

The term “knowledge-level reflection” has been coined for the REFLECT approach to
distinguish it from most other meta-level approaches that reason directly about the actual
code fragments of a system. The REFLECT architecture allows to build systems that carry
out reflective tasks like competence assessment and competence improvement in a flexible
way. For more details about this architecture, the reader is referred to [Reinders et al.,
1991; Schreiber et al., 1991b; van Harmelen et al., 1992].

6.6 Existing Approaches to Computerised Support

Although in principle a knowledge-level model can be viewed as a specification that can
be implemented in a conventional manner, for most modelling approaches dedicated envi-
ronments exist, that support structure-preserving operationalisation. In this section, we
discuss the nature as well as the merits and limitations of each of approaches.

6.6.1 Types of support environments FExisting support environments can roughly
be be divided into three categories:

1. Task-specific shells
2. Task-specific programming languages
3. Task-independent programming languages

Task-specific shells Task-specific shells support the operationalisation of a range
of application domains. In KADS terms, a task-specific shell can be seen as an opera-
tionalisation of an interpretation model. The model incorporated in a task-specific shell
represents a problem solving method for solving a certain type of problems. Example
task-specific shells are MOLE (method: cover & differentiate; [Eshelman, 1988]), sart
(method: propose & revise; [Marcus & McDermott, 1989]) and opAL (method: skeletal
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plan refinement; [Musen et al., 1987]). In task-specific shells the structure of the task is
fixed: the knowledge engineer cannot change the structure of the domain knowledge (i.e.
the domain schema), the set of inferences or the control imposed on these inferences. Only
the domain-specific knowledge needs to be entered in the predefined format.

It is assumed that the expert is capable of entering this domain knowledge directly
into the system with the help of a dedicated domain-knowledge editor. [Musen et al.,
1987] makes the point that this can best be achieved by providing the expert with a
support tool that communicates with the user in a domain-specific vocabulary. OPAL uses
this approach. This is not the case in MOLE and SALT, where the interaction is (at least
partially) in terms of functional objects.

The PROTEGE system [Musen, 1989] overcomes some of the problems associated with
task-specific shells. This system allows the knowledge engineer to tailor a skeletal plan-
ning method to meet the demands of a particular application domain (within the area of
managing protocols for medical treatment) and then generates an opaL-like shell that can
interact with the expert to acquire the domain-specific knowledge.

Task-specific programming languages A second type of support environments
is represented by the task-specific programming languages such as developed within the
Generic Task (GT) approach [Chandrasekaran, 1988]. These programming languages con-
tain constructs specific for operationalising a particular (generic) task (see Sec. 3.7 for
a discussion on the relation between GT and KaDs). An example of such a language
is csrRL [Bylander & Mittal, 1986], which supports the operationalisation of hierarchical
classification problems.

The methodological viewpoint behind the GT approach is that problem solving con-
sists of a relatively small set of information processing tasks (the generic tasks) and that a
particular instantiation and configuration of these tasks can be used for realising a partic-
ular application. Each programming language supports such a generic task. The resulting
generic task programs are integrated into one system in an object-oriented fashion.

Task-independent programming languages Task-independent programming
languages are high-level programming languages that allow a (relatively) simple map-
ping from the knowledge-level model onto computational constructs in the language, For
the KADS approach a number of such languages have been developed: e.g. Model-K [Kar-
bach et al., 1991] omos [Linster & Musen, 1992] and KARL [Angele ef al., 1991]. For the
Components of Expertise approach the language described in [Vanwelkenhuysen & Rade-
makers, 1990] has been developed. zDEST-2 [Tong et al., 1988; Karbach et al., 1988] can
also be viewed as such a language, although it is not tied to a particular knowledge-level
modelling approach.

The mapping from model to language elements is in these languages usually supported
by giving the computational constructs names similar to the model elements. For example,
Model-K offers computational constructs with KADs-specific names such as knowledge
source and metaclass.

6.6.2 Merits and limitations of the approaches Task-specific shells provide a high
level of support to the knowledge engineer. If the application domain fits well with the
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environment, then only relatively little effort is necessary for building a system. The price
paid for the high level of support is a low level of flexibility: small mismatches between
domain and tool can already render the tool unsuitable for the target application.

The task-independent programming languages leave the knowledge engineer with con-
siderable freedom during operationalisation. Within the limitations of the computational
techniques supported by the language, it is possible to operationalise a variety of appli-
cations. On the other hand, their level of support for the knowledge engineer is limited.
Unlike the task-specific shells, which contain reusable computational constructs for one
particular knowledge-level model, the current programming languages do not contain any
reusable pieces of code, e.g. predefined domain structures or inferences. So, the higher
level of flexibility is paired with a lower level of support.

The task-specific programming languages take more or less an intermediary position.
This approach is flexible in the sense that the control knowledge is not fixed: the knowl-
edge engineer has to ‘program” each generic task as well as specify how these should be
integrated to solve the overall problem. In terms of support, in particular the reusability
of code, this approach is limited: the languages themselves are of course reusable, but
there are no predefined pieces of code, such as provided by the task-specific shells.

The three approaches can be seen as as points on a spectrum determined by the level
of support vs. the level of flexibility (Fig. 6.8).

high level of support

; . low level of support
inflexible PP

flexible
i R TR >
OPAL DSPL Model-K
SALT CSRL KARL
MOLE OMOS
ZDEST

FIGURE 6.8: Characterisation of some support environments with respect to level of support and flexibility.

6.6.3 Some remarks about operational “knowledge-level” languages In the
last few years, several languages have been proposed for operational and/or formal repre-
sentation of KADS models of expertise. Some examples were given earlier in this section.
Some additional remarks about this line of research are in place.

It is clear that it is desirable to have, as early as possible in the development process,
some machine-executable version of the model of expertise. Such prototypes can be used
for simulation of the problem-solving behaviour that is specified in the model and can thus
play a role in validation of the model.

One should however separate two fundamentally different aspects of such languages:

1. The modelling aspects of the language: what constructs does the language offer for
modelling the reasoning process in the application domain.

2. The operational aspects of the language: what is the operational interpretation of
the language constructs.
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There is a kind of trade-off between these two aspects. During modelling, one wants to
be as flexible as possible in specifying the required problem-solving behaviour. One is pri-
marily interested in the declarative semantics of the language. During operationalisation,
one needs to restrict the language to expressions that have operational semantics.

The formal specification languages for KADS models of expertise such as M L? [van
Harmelen & Balder, 1992; Akkermans et al., 1992] emphasise the modelling aspects, al-
though they have a (partial) operational interpretation. The task-independent program-
ming languages are much more directed towards operational aspects. The languages KARL
[Angele et al., 1991] and FORKADS [Wetter, 1990] take an intermediate position, empha-
sising both modelling and operational aspects.

Fig. 6.9 characterises the different languages on a spectrum from formal specification
(emphasising modelling) to executability (emphasising operationality).

formal -
specification executability
B >
ML2 KARL FORKADS OMOS Model-K

FIGURE 6.9: Formal languages for KADS models of expertise interpreted as points on a continuum from
formal specification to executability.

Also, it should be noted that in most real-life applications external requirements dictate
constraints on the software environment in such a way that the operational languages
cannot be used for the final implementation. For example, the successful Fraudwatch
system [Killin, 1992; Porter, 1992] was implemented partly in Cobol (while following
the structure-preserving principle which indeed greatly facilitated the maintenance of the
system [Killin, 1992]).

6.6.4 Design languages Another type of support for design can be given by a design
language such as DESIRE [van Langevelde et al., 1992]. In this approach, it is assumed that
there exists some (informal) conceptual model of what the system should do. Given this
input, the design language supports the formal specification of appropriate system com-
ponents and their configuration into a system architecture. From this design specification
the system code can then be generated automatically.

The DESIRE approach fits in fact quite well with the KADS approach. One major
advantage is that there is a clear separation of roles: the model-of-expertise language
used during analysis emphasises modelling aspects; the design language emphasises oper-
ational aspects. This circumvents the problems encountered with some afore-mentioned
“knowledge-level programming languages” in which the distinction between these, funda-
mentally different, view points is not clear.

An interesting research question would be to study the possibility of predefining within
a design language such as DESIRE the components of a skeletal architecture like the one
in Fig. 6.5. This would simplify the mapping from the analysis input onto components in
the design language.
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6.7 Maximising Support and Flexibility: An Example

Ideally, one would want to combine the support provided by reusable pieces of code and
the flexibility offered by the “knowledge-level” programming languages. The grain size
of task-specific shells is too coarse: these constitute an implementation of a complete
interpretation model. On the other hand, the programming languages do not provide any
reusable code fragments such as ready-to-use implementations of inferences. What appears
to be needed is an environment with a library of reusable modules that can be used to
operationalise elements of a knowledge-level model and allow the knowledge engineer to
configure these into a system that meets the demands of the application at hand.

Within the framework of KADS we have developed a prototype environment that can
be considered as a first attempt in this direction. It contains a library of modules that
can be used to operationalise inferences for a class of diagnostic tasks. These inferences
appear in the interpretation model for systematic diagnosis. This model represents a
method for diagnosis in which a device is examined in a systematic, top-down, manner to
find a component that behaves abnormally. Systematic diagnosis can be seen as a form
of generate and test. Hypotheses are generated through decomposition of a hierarchical
device model into sub-components. A component is tested by predicting the value of an
observable using a model of the normal behaviour of the device and comparing this norm
value with the observed value. The control knowledge typically has a recursive structure:
decomposition is carried out until a non-aggregate abnormal component is found.

This basic version of the model of systematic diagnosis can be extended in a number
of ways. These extensions are adaptations of the model that could be necessary in a
particular application. They modify the basic model of systematic diagnosis and define
in fact a space of potential systematic diagnosis models. Two example extensions are (i)
the introduction of complex tests that require system reconfiguration (e.g. reconnecting
cables), and (ii) the use of multiple device models each representing a different view on the
device (e.g. functional, physical). An overview of the complete set of inferences is given
in Table 6.2. For a more detailed description, see Sec. 3.4.2 (basic version) and Sec. 5.4
(extensions).

The environment we developed contains modules for all potential inferences, both for
the basic version and for those required by the extensions. Each module represents a
computational technique for realising the inference. Each computational technique has
particular domain knowledge requirements, e.g. the technique for realising the inference
in which a norm value is predicted requires a causal model of the normal behaviour of the
device.

The environment offers the following facilities to a knowledge engineer who wants to
build a system for a particular instance of systematic diagnosis:

e The instantiation of techniques for the required set of inferences.

e A language to define tasks that specify the sequencing of inferences (control knowl-
edge). The control language is an operationalisation of the modelling language used
for describing task structures. It contains additional constructs necessary for imple-
mentation, such as invocation of user interface functions and storage and inspection
of of intermediate results. An example fragment of this language can be seen in the
top-right window of Fig. 6.10.
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Inference | input | output | description used in |
select complaint system model | selection of an appropriate device | basic version
model
decompose | system model | differential hypothesis generation though de- | basic version
composition of the device model
select first | differential hypothesis select a component for testing basic version
specify hypothesis test find a test for the a component to | basic version
be tested
specify test norm predict the normal test outcome basic version
system model
compare value, norm truth value compare the observed and the ex- | basic version
pected value
assemble complaint system model | dynamic creation of the device | extension
model
initial data
transform system model | system model | allow tests that require a reconfigu- | extension
ration of the device
sort differential differential order the hypotheses in the | extension
differential
criterion
select complaint view allow multiple device models each | extension
representing a view

TABLE 6.2: Inferences in systematic diagnosis models

e A simple editor for entering the domain knowledge required by the selected infer-

ences.

The environment also supports the execution of the resulting system and an interface

that allows a user to trace the reasoning process in the vocabulary of the knowledge-level
model. Fig. 6.10 shows part of this interface. The interface allows the user to trace the
reasoning with respect to various aspects of the model, such as:

e the task that is being executed and its internal control structure;

e the inference-structure diagram in which an inference is highlighted when it is being
executed;
e the bindings of meta-classes such as “system model”.

e the domain knowledge that is used by inferences that are executed.

A detailed description of the environment can be found in [Lemmers, 1991]. The

architecture of the environment is an instantiation of the skeletal architecture of Fig. 6.5.

Future perspectives for support The environment for systematic diagnosis mod-

els discussed in the previous section is only a first step in the direction of flexible support

for operationalising knowledge-level models. It has still a number of important limitations:

e For each inference only one computational technique is provided to operationalise it.

This is too restrictive. For example, the inference in which a norm value is predicted

can currently only be operationalised with a technique that uses a causal model

of the device. For some applications other techniques might be more attractive, for

example some form of qualitative reasoning. Ideally, the environment should support
a range of techniques for realising some inference.
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FIGURE 6.10: Prototype interface for tracing the execution of a system for systematic diagnosis in the
vocabulary of the knowledge-level model. The inference structure is shown on the left. The decompose
knowledge source is currently being executed. The task structure (control knowledge), the bindings (in
this case the system model that is currently being decomposed) and the domain knowledge used by the
decompose knowledge source (a part-of relation) are shown on the right. The window in the lower-right
corner allows the user to trace the reasoning process at the task and/or inference level.

e The environment provides only limited support for specifying control knowledge.
The notion of task decomposition methods, such as used in Components of Expertise
[Steels, 1990], can be of value here. Task decomposition methods specify prototypical
decompositions of a task into sub-tasks and/or inferences plus information about
sequencing these. Incorporating such methods also as reusable constructs in an
environment can support the knowledge engineer also in this respect.

e The environment supports the operationalisation of just a small set of models. For
example, to be able to cover a large range of diagnostic applications it would be nec-
essary to include also heuristic methods for diagnosis and combinations of systematic
and heuristic methods (cf. [Benjamins et al., 1992b]).

Within the context of the KADS-II project (ESPRIT project 5248) we are developing a
more comprehensive environment. This environment will support the operationalisation
of a large variety of models applying some form of generate and test. The environment
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will contain a large set of techniques for both hypothesis generation as well as hypothesis
testing. The knowledge-level models supported there are the result of a unification of
the original KADs-1 model of expertise (the “four-layer model”) and the Components of
Expertise framework [Wielinga et al., 1992b].

Other researchers are working along similar lines. Both in Spark/Burn/FireFighter
[Klinker et al., 1991] and in PROTEGE-1I [Puerta et al., 1991] the aim is to overcome the
limitations of the role-limiting methods described earlier by providing the knowledge en-
gineer with a set of predefined computational “mechanisms” from which she can configure
a system.

An important research question that arises is whether it it possible to come up with an
appropriate typology of such mechanisms. Such a typology would pave the way for building
a library of reusable operationalisations of model elements which is not ideosyncratic for
one particular approach and can thus be shared by several groups.

6.8 Discussion

The structure-preserving approach as outlined in this chapter has been applied in a number
of system development projects. The StatCons system [de Greef et al., 1987; de Greef et al.,
1988b], developed in an early P1098 experiment, was developed along these lines and served
as an important source of ideas for the theoretical background. The mixer-configuration
system [Billault, 1989], also part of a P1098 experiment, used the structure-preserving
approach and experimented with more flexible forms of control. The developers of the
Fraudwatch application [Porter, 1992; Killin, 1992] which has been in commercial use for
some time now remark that the KADS approach to design in fact leads to a system which
is easier to maintain that a conventional system. This despite the fact that part of the
system had to be be implemented in coBoL. Object-systems developed in the REFLECT
project where all based on a structure-preserving design, and this was found to facilitate
the construction of flexible meta-systems on top of these object-systems [van Harmelen
et al., 1992]. Also, the fact that in conventional software engineering researchers are
advocating a design approach in which design is seen as adding implementation detail to
an analysis model ([Rumbaugh et al., 1991]), supports our view that structure-preserving
design is a promising approach.

However, still a lot needs to be done to support designers in the actual process. The
support environments discussed earlier are one way of providing support, but are currently
only useful in the realm of prototyping. External requirements of the KBS development
process are often in conflict with the constraints of such an environment. From our point
of view, a promising line of research is to study mappings between knowledge-level models
and design languages that guarantee the structure-preserving property for the resulting
system.

Acknowledgements Marco Lemmers implemented the systematic-diagnosis system
described in Sec. 6.7.






Chapter 7

Applying KADS to the Sisyphus Domain

In this chapter the KADS approach is used to model and implement the office assignment problem. We
discuss both the final products (the model of expertise and the design) and the process that led to these
products. Emphasis is put on modelling the problem in such a way that it closely corresponds to the
behaviour of the expert in the sample protocol. The last section of the chapter addresses the evaluation
points raised by the initiators of Sisyphus’91.

This chapter is a heavily revised version of a submission to the Sisyphus’91 project “Models of Problem
Solving”. Reference: Schreiber, G. (1992) Sisyphus’91l: Modelling the office-assignment problem. In
M. Linster, editor, Sisyphus’91 Part II: Models of Problem Solving.

7.1 Introduction & Approach

This chapter describes an exercise to model and implement the sample problem of the
Sisyphus’91 project. The Sisyphus project was initiated at the European Knowledge Ac-
quisition Workshop 1990 in the Netherlands. The aim of the project is to collect data for
comparative studies of approaches in various fields. One of these fields is “Models of Prob-
lem Solving”. Researchers were asked to model a domain of allocating rooms to employees
and explain the rationale behind decisions made in this process. . A description of the
Sisyphus’91 problem statement (drawn up by Marc Linster) is repeated for conveninece
in Sec. 7.2.

This chapter is organised as follows. In Sec. 7.3 a brief account is given of the steps that
were taken to arrive at the model for the office-assignment task-domain. Sec. 7.4 discusses
some initial observations that came out of a first global analysis of the problem description.
The next three sections describe the results of the process of modelling expertise: (i)
description of the domain schema (Sec. 7.5), (ii) classification of the office-assignment
task and model selection (Sec. 7.6), and (iii) model decomposition and resulting inferences
and tasks (Sec. 7.7). Sec. 7.8 discusses the step from model of expertise to design and
implementation. Finally, in Sec. 7.9 the proposed solution to the problem is evaluated
with respect to the questions raised in the problem description.
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7.2 Statement of the Sample Problem!

The members of the research group YQT of laboratory HNE are moved to a new floor of
their chateau. Due to severe cuts in funding they only get a very limited number of offices.
It will be quite a problem to cram them all in. To complicate matter even further some
will have to share an office. After several vain attempts, that all ended in nightmares
that would have impressed Freddy, the management of HNE is desperate. Sisyphus is their
last hope. HNE implores the Sisyphus teams to provide knowledgeable systems that are
up to the task. It is important that the systems’ way to solve the problem follow the
shining example of the wizard Siggy D., the only one ever managed to solve the problem.
The system developers should be aware of the fact that YQT’s members are used to be
pampered. They all have their personal preferences and professional peculiarities that
should better be observed, as the dungeons of the BABYLON tower are deep and lonely.

7.2.1 Data on people and offices Not all members of YQT can profit from this new
office space in the chateau: about half of the group will stay in their old offices. Those
that are concerned by the new assignment are:

Werner L. Juergen L.

Role = researcher Role = researcher

Project = RESPECT Project = EULISP

Smoker = no Smoker - no

Hacker = true Hacker = true

Works-with = Angi W. Works-with = Harry C.
Marc M. Thomas D.

< plus 13 other employees >

Within the subset of member we have the following organisational structure. Thomas
D. is the head of the group vQT. Eva I. manages YQT. Monika X. and Ulrike U. are the
secretaries. Werner L. and Angi W. work together on the RESPECT project. Harry C.,
Jiirgen L. and Thomas D. work in the BEULISP project. Michael M. and Hans W. work in
the BABYLON Product project. Hans W. is the haed of this large project. Marc M., Uwe
T. and Andy L. pursue individual projects. Katharina N. and Joachim 1. are haeds of
larger projects which are not considered in this problem.

The floor plan is shown in Fig. 7.1. C5-123, C5-122, C5-121, C5-120, C5-119 and
C5-117 are large rooms that can host two researchers. Large rooms can be assigned to
heads of groups too. C5-113, C5-114, C5-115 and Ch-116 are single rooms.

7.2.2 Protocol Table 7.1 shows a sample transcript of a protocol in which the expert
Siggy solves the problem.

Note 1 Our wizard Siggy D. seems to pursue a general strategy of assigning the head
of group and the staff personnel first, followed by the heads of large projects, who through
their seniority are eligible for single offices (some are more equal than others). The offices
of the head of group and the staff should be close to each other. Heads of projects should,
if possible, be allocated offices close to the head of group.

!Shortened version of the problem description drawn up by Marc Linster Copied with permission.



Chapter 7. Applying KADS to the Sisyphus Domain 131

The words of the
wizard Siggy D.

Comments, questions and annotations

Put Thomas D. into of-
fice C5-117

la

1b

The haed of group needs a central offices that he/she
is as close to all the members of the group as possible.

This should be a large office.

This assignment is defined first as the location of the
office of the head of group restricts the possibilities
of the subsequent assignments.

Monika X. and Ulrike
U. into office C5-119.

2a

The secretaries’ office should be located close to the
head of group. Both secretaries should work together
in one large office. This assignment is executed as
soon as possible, as its possible choices are extremely
constrained.

Eva I. into C5-116

3a

3b

The manager must have maximum access to the head
of group and to the secretariat. At the same time
he/she should have a centrally located office. A small
office will do.

This 1s the earliest point where this decision can be
taken.

JoachimI. into C5-115.

4a,

The heads of large projects should be close to the
head of and the secretariat. There really is no reason
for the sequence of assignments of Joachim, Hans,
and Katharina.

Hans W. into C5-114.

Ha

The heads of large projects should be close to the
head of and the secretariat.

Katharina N. into C5-
113.

6a

The heads of large projects should be close to the
head of and the secretariat.

Andy and Uwe T. into
C5-120.

Ta

Both smoke. To avoid conflicts with non-smokers
they share an office. Neither of them is eligible for a
single office. This 1s the first twin-room assignment
as the smoker/non-smoker conflict is a severe one.

Werner L. and Jurgen

L. into office C5-123.

8a

8b

They are both implementing systems, both non-
smokers. They do not work on the same project,
but they work on related subjects. Members of the
same projects should not share offices. Sharing with
members of other projects enhances synergy effects
within the research group.

There really are no criteria for the sequence of twin-
room assignments.

Marc M. and Angi W.
into office C5122.

9a

Marc is implementing systems; Angi isn’t. This
should not be a problem. Putting them together
would ensure good cooperation between the RESPECT
and the KRITON projects.

10

Harry C. and Michael
T. into office C5-121.

10a

They are both implementing systems. Harry devel-
ops object systems. Michael uses them. This should
create synergy.

TABLE 7.1: Transcript of protocol
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C5-123 C5-122 C5-121 C5-120
C5-144
C5142 I — C5-119
C5-143 [
C5-118
C5-113 | C5-114 | C5-115 | C5-116 C5-117 (The tower)

FIGURE 7.1: The part of the floor plan considered in the sample application.

Note 2 Twin offices are assigned to the members of research projects under the
consideration that synergy among projects is boosted. This means that researchers that
work in the same project, are if possible not sharing an office. Co-workers that work on
related subjects can share an office. It is important not to put smokers and non-smokers
together into twin offices.

7.3 Modelling the Office Assignment Problem

The problem description basically consists of two parts:

1. A description of the major entities (employees, rooms, projects) and relationships
(hierarchies, project assignments, floor plan) in the sample domain.

2. A think-aloud protocol showing how an expert solves a particular office assignment
problem.

As there is only one protocol, it can occur in the remainder of this chapter that there
is not sufficient information to make a particular (modelling) choice. Such a situation
usually gives rise to a knowledge engineering (KE) goal: a topic for which further knowledge
elicitation and/or analysis is necessary. We will point to these KE goals in the text and
state what kind of assumptions we have made about its outcome in building the model.

We should also mention here that it is our goal to build a model and a system that
reflects as closely as possible the reasoning process of the expert. It is not our goal to find
an algorithm that, given the input, would produce the same or similar output.

The process which led to the construction of the model of expertise presented in this
chapter roughly consisted of the following steps:
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Initial observations Firstly, the protocol was used to make some initial observations
about the nature of the task, e.g.:

What kind of task is it: analytic, synthetic?

Are there clearly identifiable sub-tasks?

What can be said about the information and the knowledge that the expert uses?
Does the task resemble some known (generic) task? If so, what are similarities and
differences?

Does it seem feasible to automate (part of) the task?

Tentative domain schema Subsequently, a first sketch was made of the types of
domain knowledge that play a role in solving this task. This characterisation of domain
knowledge is done before any detailed model construction for a dual purpose:

1.

2.

To guide and verify the process of model selection and/or decomposition: is the
knowledge available for achieving this task.

To prevent as much as possible that domain knowledge is only specified because it
is required by the particular problem solving method that was chosen to achieve the
task.

The chosen problem solving method will of course influence the required represen-
tation of domain knowledge. Our goal is however to specify such representations as
much as possible as a viewpoint on the available domain knowledge. For example, in
the office-assignment domain relations exists between particular employees and their
roles in the department (employee X has the role of head-of-group). The fact that
this relation can be used as classification knowledge is a method-( or use-)specific
viewpoint.

Model selection & top-down model construction The next step was to specify

the top-level task (in this case office assignment) in terms of sub-tasks and primitive

inferences required for solving the problem. This model construction process consists of
one or both of the following activities:

1.

Selection of a predefined generic decomposition in sub-tasks and inferences: an in-
terpretation model. The selection of such model is guided by characteristics of the
task such as the nature of the input and output of the top-level task (e.g. an enu-
merable set of solutions suggests an interpretation model for an analytic task) and
of the required types of domain knowledge (e.g. a model of the normal behaviour of
a device). In Ch. 3 (Fig. 3.9) these selection criteria are represented in the form of
a decision tree.

. A (repeated) process of model decomposition. In the worst case, no (partial) inter-

pretation model is available for the task at hand. The knowledge engineer then has
to decompose the top-level task into sub-tasks and inferences (primitive leaf tasks)
on the basis of the elicited data (in particular protocols).

There are however also a number of other situations in which decomposition plays
a role:
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o The top-level task is not a generic task for which an interpretation model can
be selected, but is a compound, “real-life” [Breuker et al., 1987], task.

In that case, the knowledge engineer will first have to decompose the top-level
task to the level of generic tasks.

o The decomposition given by the selected interpretation model is too coarse-
grained.

The “inferences” in such a model are in fact complex sub-tasks that need fur-
ther specification and decomposition to arrive at inferences that can be linked
to fragments of domain knowledge. For example, many models for synthetic
tasks in the KADS library of interpretation models provide only a first level of
decomposition.? Also, even if a detailed interpretation model such as system-
atic diagnosis is selected, it is possible that this model needs further detailing
for the task-domain at hand.

Often, there is an interplay between the selection of generic components and model
decomposition. In the office assignment case the emphasis was on decomposition, as there
was no detailed interpretation model available.

Refinement When a first (partial) model of expertise has been established through
selection and/or decomposition, it will need to be refined. This refinement was in this
case performed in two ways:

1. By formulating task structures (i.e. control relations between sub-tasks) and check-
ing whether these task structures could serve as plausible explanations of the be-
haviour of the expert.

2. By trying to identify the types of domain knowledge that would be needed to carry
out the various inferences, and checking whether this knowledge could be derived
from the domain schema. If it is not derivable, the question arises whether it can be
formulated as an extension of this theory and whether expertise data are available
for formulating this knowledge. Often, this involves additional knowledge elicitation
(KE goal).

The refinement process acts in a sense as a verification of the chosen decomposition.

In the next section, the initial observations about the office assignment problem are
discussed. In Secs. 7.5-7.7 a description is given of the major product of the modelling
process: the model of expertise. These contains a description of the underlying domain
knowledge, of the process of model selection and decomposition, and of the resulting
inferences and tasks necessary for solving the problem.

20Omne could view problem solving methods such as “propose & revise” [Marcus & McDermott, 1989],
“cover & differentiate” [Eshelman, 1988] and “skeletal planning” [Musen, 1989] also as partial interpretation
models that can be used as a starting point for a model of expertise.
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7.4 Initial Observations

Initially, the protocol is our focus of attention. While reading the protocol, we noted the
following features of the problem solving process of the expert:

e A first thing to note is that the office assignment problem is of a synthetic nature:
the solution is not chosen from a given set of predefined solutions, but is constructed
using knowledge about employees, rooms and allocation constraints.

e The expert appears to solve the problem in two steps: (i) selecting a particular
(group of ) employee(s), and (ii) assigning this (group of) employee(s) to a room.

o It seems that the selection process is based on a global plan of the expert, namely
assigning employees in a particular order. This plan is however not explicitly men-
tioned by the expert. This assumption would need to be verified in a future session
with the expert (KE goal).

e The ordering in the allocation plan is not an ordering of specific employees, but of
types of employees, e.g. head of group, manager, etc. The underlying knowledge on
which this ordering is based seems to be quite subtle. For example, it is not just
based on a simple hierarchy of employee types, as one could be inclined to deduce
from the fact that the head of group is assigned first: this would not explain why
the secretaries are assigned before the manager and the heads of projects.

e The elements of the allocation plan are not just single employees. These elements can
also be sets of employees that are assigned in a random order (heads of projects) or
groups of employees that are assigned in blocks to a room (secretaries, researchers).

If one requires of the final model that it indeed models the behaviour of the expert
as closely as possible, then this would exclude every model or method in which
employees are assigned one at a time.

e The expert does not backtrack in the protocol. There is no evidence of a verifi-
cation and/or a revision process. Most existing models and systems for synthetic
problems, e.g. [Chandrasekaran, 1990; Marcus & McDermott, 1989], contain such
a verify /revise step. The absence of this step could very well be an artefact of the
sample problem solved in the protocol. This should be a major topic for future
sessions with the expert (KE goal). We will come back to this issue in the discussion
section.

This is by no means meant to be a complete or even correct list.®> Such initial obser-
vations focus however the modelling process (see the next section).

7.5 Domain schema

In the description of the domain knowledge we are mainly interested in a structural descrip-
tion: what types of knowledge are available in the problem description? For this schematic

°Tt is in fact the list that the author presented at the EKAW?91 Sisyphus workshop in Crieff, Scotland
after a first reading of the sample problem.
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description we use the constructs of the data-description language (DDL) proposed in Ch. 4:
concepts, sets, properties, and relations between concepts, instances and/or expressions.
Fig. 7.2 gives a graphical overview of the structure of the domain knowledge described
below.
works-well-with
smoker-non-smoker

on-different-projects
hacker-non-hacker

: employeei

. project
proj works-on P
— Pil—— —— e
size head-of smoker? role
hacker?
room
boss-of
floor : role-interaction roperty: level
number expression|<———room-preference property:
near-to preference property: strength
type occupancy
size
location
room
Y
next-to head of head of
distance manager secretary group project researcher

FIGURE 7.2: Schema of the domain knowledge in the office-assignment domain. See Fig. 4.5 for an
explanation of the graphical notation used.

Employees and rooms stand out as central concepts in this domain. Employees have
properties (such as whether they smoke or like to hack) and relations with projects they
work on or are the head of. Also, a number of relations between two employee in-
stances seem to be important: a smoker and a non-smoker, employees working on different
projects, etc. Rooms have a number of properties (size, number, type, etc.) and relations
with other rooms (distance, next to).

A DDL description of the concept employee and of one relation between employee
instances is given below. A full DDL description of the domain schema is listed in Ap-
pendix A.

concept employee;
properties:
smoker: [true, false];
hacker: [true, false];

relation on-different-projects;
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argument-1: instance(employee);
argument-2: instance(employee);
semantics: associative;
axioms:
VY E1,E2:employee, P1,P2:project
on-different-projects(E1,E2) —
works-on(E1, P1) A works-on(E1, P1) A P1 # P2;

Another central concept in this domain is the notion of a department role: head of
group, secretary, etc. As observed in the previous section, the expert seems to base most
of his allocation decisions on properties of employee types and not on individual employees.
The employee types are represented as sub-concepts of department-role (see Fig. 7.2).

Several types of relations concerning department roles seem to be important in the
domain:

e A hierarchy of roles (e.g. the head of group is the boss of the manager)

e The amount of daily interaction (e.g. a high level of interaction between head of
group and secretary)

e Positional preferences (e.g. the head of group should be near to a secretary)

e Relations between department roles and expressions about rooms, denoting room
preferences (e.g. the head of group should have a large, central room).

This room-preference relation is represented in the DDL as follows:

relation room-preference;

argument-1: department-role;

argument-2: expression(room);

tuples:
< department-role, type(room) = office >
< head-of-group, location(room) = central >
< head-of-group, size(room) = large >
< head-of-project, size(room) = small >
< researcher, size(room) = large >
< manager, size(room) = small >
< secretary, size(room) = large > ;

The intended interpretation of such relation tuples is described in Ch. 4. For example,
the statements about “head of project” should be interpreted as “all heads of projects
need to get some small, single room”.

7.6 Task classification and model selection

The office-assignment task takes as input a set of employee instances and a set of room
instances and produces as output a set of allocations of rooms to employees. The office-
assignment task can be classified as a design task: although the solutions are in principle
enumerable for a given input problem, in practice the solution is not selected, but con-
structed.

In [Chandrasekaran, 1988] three classes of design tasks are described: creative design
tasks, routine design tasks and a mix of routine and creative design. The prime property
of routine design is that the elements from which the solution is constructed are known in
advance. Office-assignment can thus be classified as a routine design task.
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Puppe distinguishes three sub-classes of routine design tasks [Puppe, 1990]: planning,
configuration and allocation (in German: “zuordnung”). According to Puppe, the main
features that distinguish allocation from planning and configuration are:

e It operates on at least two disjunct sets of objects,
e The solution consists of allocation relations between objects of different sets that
satisfy particular requirements.

Office-assignment is thus clearly an allocation task. The two disjunct sets of objects
are in this case the employees and the rooms.

Unfortunately, the KADS interpretation model library in [Breuker et al., 1987] does not
contain a model for allocation. In such a case, it can be useful to look at a more general
model for design tasks and use this is a starting point. Such a model for a more general
task provides however only a first level of decomposition.

Chandrasekaran describes methods for routine design tasks [Chandrasekaran, 1988].
The general structure of the design task is presented as consisting of of three major sub-
tasks: propose, critique and modify. For each sub-task a number of methods are described
(informally) that can be used for realising the task. For example, the propose task can be
realised with decomposition methods, with constraint satisfaction, etc.

The sALT system [Marcus & McDermott, 1989] implements a similar model for routine
design called “propose & revise”. The propose step proposes a value for a design param-
eter. Design parameters are linked to design constraints. When a constraint violation
is detected, the revise task is activated to suggest changes (“fixes”) to the design. This
process is iterated until all design parameters have a value and no constraints are violated.

The mixer-configuration system [Wielemaker & Billault, 1988] design starts with build-
ing an ordered list of “duties” (i.e. design requirements). The first duty of the list (the
“top duty”: the requirement which is considered to be the most critical one) is used to
generate an initial configuration, which is subsequently tested and refined on the basis
of the other requirements. If a conflict arises, e.g. because some requirement cannot be
satisfied, this duty becomes the top-duty and the design is modified.

In each of these models, the general structure of routine design appears to have an
iterative structure: first, a (partial) solution is proposed, which is subsequently verified
and if necessary adapted and /or refined, This leads to a new proposal and thus starts a
new cycle of verification and adaptation/refinement.

As noted in the previous section, the expert in the sample protocol seems to carry out
only the propose task. We limit the modelling enterprise in this chapter to a study of the
nature of this propose task. However, this apparent absence of verification and revision
should be a major focus for further knowledge engineering,

7.7 Model construction

Initially, we observed (Sec. 7.4) that this propose task seems to consist of two steps:
selecting an employee and assigning her to a room. Also, the point was made that this
selection step seemed to be based on a global allocation plan. In other models for design
tasks the notion of a plan also appears. For example, in the mixer-configuration system
[Wielemaker & Billault, 1988] the notion of a plan plays a role in terms of an ordering of
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requirements. “Tackle the most difficult requirement first” appears to be a quite general
strategy in design tasks. We will assume here that the expert indeed has some allocation
plan. The precise nature of this plan is discussed below. As already pointed out, this
assumption would need to be verified during further knowledge engineering (KE goal).

This gives us a first decomposition of the propose task (see Fig. 7.3). This figure (and
also Fig. 7.5, see below) should be interpreted as a provisional inference structure. It
fulfills the role of a working hypothesis in the knowledge engineering process. It can (and
will) be refined in the process of model construction, e.g. through task decomposition and
knowledge differentiation (see also Ch. 5).

As task and inference knowledge are described in a domain-independent way, we coin
the general role names component and resource to talk at the task and inference level
about employees and rooms. This is one way of enabling a potential reusage of (part of)
the resulting model for another resource allocation domain.

assemble lan plan
Component pa element

resource @

allocation

FIGURE 7.3: First provisional structure of the propose task. See Sec. 5.2 for a description of the graphical
notation used.

The task structure of the propose task is specified below in a structured-English format.
The top-level task propose-allocations consists of two major steps:

o Assemble plan which generates a plan in which the allocation order of components
is specified

o Assign resources which produces parts of the solution. This last step is carried out
for each element in the plan.

task propose-allocations
input:
components: set of components to be allocated
resources: set of available resources
output:
allocations: set of tuples <resource, set of components>
control-terms:
plan: list of (sets of ) components representing an allocation ordering
plan-element: (set of) component representing an element of the plan
task-structure:
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propose-allocations(components + resources — allocations) =
assemble(components — plan)
FOREACH plan-element € plan DO
assign-resources(plan-element 4 resources — allocations)

We use the format proposed in Ch. 3. The slots input, output and control-terms describe
the data manipulated by the task, such as single objects, tuples, sets and lists. The task
structure specifies the sub-tasks and their control dependencies in the form of a piece of
pseudo-code. The arrows in the task structure describe the relation between input and
output of the task or sub-task.

7.7.1 Plan assembly The question now arises whether it is possible to identify one
inference that can generate the plan, or whether plan assembly should be considered a
non-primitive task that requires further decomposition. To resolve this question we turn
back to the protocol.

We noted the following characteristics of the way in which the expert orders the as-
signment of components:

1. The ordering is not based on individual components, but on component types: the
expert does not talk about specific employees, but about the head of group, the
secretaries etc. This means that during plan assembly it is necessary to classify
components (the input of the assembly task) in terms of component types.

2. The head of group is assigned first, because this assignment “restricts the possibilities
of subsequent assignments” (fragment 1 of the protocol). There is a similarity here
with other models of design tasks, such as the model of the mixer configuration
system [Wielemaker & Billault, 1988]: the component which is expected to impose
the heaviest constraints on the final solution is tackled first. The allocation plan
represents an implicit ordering of requirements: not the requirements themselves are
ordered, but the component types to which they are related.

3. The other component types are ordered on the basis of the level of required access
to and interaction with the head of group (fragments 2-4).

These observations led us to the formulation of three inferences that are needed to
carry out the plan assembly task:

o Classify components as component types.

o Select the component type with the highest associated constraints.

e Sort the other components types relative to the one that imposes the highest con-
straints.

These three inferences are described in detail below. The inference structure in Fig. 7.4
shows the dependencies between the inferences for plan assembly. An important point of
the specification of inferences is to indicate for each inference how its functional terms
(meta-classes, domain view) relate to available domain knowledge. This will often reveal
that some type of domain knowledge is lacking and can thus lead to new KE goals.*

*Here we will only describe inferences that use knowledge described in Fig. 7.2, but it is fair to say that
this is an artefact of a post-hoc description.



Chapter 7. Applying KADS to the Sisyphus Domain 141
component list of

component tp o — component
yP types

@ component
prime type

FIGURE 7.4: Inferences for plan assembly.

Classify The classify knowledge source uses the domain relation employee-role (see
Fig. 7.2) for classifying a component (an employee instance) as a component type (i.e. a
department role).

knowledge-source classify
input-meta-class
component — employee
output-meta-class
component-type — department-role
domain-view
type associations from component to component-type —
employee-role(employee, department-role)
description
knowledge-base look-up

The arrows in the description above show how names at the inference level map onto
domain terms. The meta-classes can be seen as the data elements that are being manip-
ulated by the knowledge source. The domain view describes the static knowledge that is
used in this inference. The “description” slot gives an indication of how the output could
be generated from the input and the domain view. This allows the knowledge engineer
to make some remarks about possible computational methods. The actual selection of a
computational method (which could turn out to be a different one) is part of the design
process (see Sec. 7.8).

Select prime The select-1 inference is used in the plan-assembly task to find the
component type with the highest requirements. This knowledge source uses a domain
relation boss-ofto find the highest node in the component-type hierarchy®. This component
(for which we will use the term “prime”) is assumed to be the most critical one to assign
(fragment 1 of the protocol).

knowledge-source select-1 (select prime)
input-meta-class
component-types — set of department-role
output-meta-class
prime — department-role

®In retrospect, this is probably a suboptimal specification, because it makes unnecessary strong as-
sumptions about the nature of the domain knowledge. It is conceivable that in other tasks other types
of domain knowledge than hierarchies could be used to select the component with the highest associated
constraints.
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domain-view
hierarchy of component-types —
boss-of(department-role, department-role).
description
find the top node in the hierarchy of component types

Sort As remarked in Sec. 7.4, the other components are sorted on the basis of the
amount of interaction that is required between certain types of components (see items 2-4
of the protocol).

knowledge-source sort
input-meta-class
prime — department-role
components-types — set of department-role
output-meta-class
component-types — list of department-role
domain-view
sort predicate —
value of the attribute “level” of the relation
role-interaction(department-role, department-role)
description
a component type is placed before another component type of the
level of required interaction with the prime is higher

Plan assembly tasks In the task-knowledge specification for the plan assembly
task we have to indicate how the three inferences can be sequenced to achieve the goal
of the task: the construction of a plan. The simplest solution would be to specify one
task structure for plan assembly. However, the select and sort inference are so tightly
connected, that we decided to view this as part of a separate sub-task order. A reason for
this more detailed task decomposition is that one can envisage that in other domains this
task could be realised with one inference.®

We thus end up with three tasks that specify the sequencing of inferencing in plan
assembly: plan assembly and two sub-tasks: (i) a classification task, and (ii) an ordering
task.

The plan-assembly task is specified as follows:

task assemble-plan

input: components

output: plan

control-terms:

component-types: set of components classes

task-structure

assemble-plan(components — plan) =

classify(components — component-types)
order(component-types — plan)

6 Although this may sound a bit altruistic, the whole idea of “model construction for reusability” is so
central to KADS approach that it tends to become a second nature for people involved in it.
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The classify task requires a repeated invocation of the classify knowledge source plus
a data operation (set unification).

task classify

input: components

output: component-types

task-structure:

classify(components — component-types) =
FOREACH component € components DO

classify(component — component-type)
component-types := component-type U component-types

For readability purposes, the names of knowledge sources are italicised in the task
structure.

The order task specifies a sequence of the select and sort inference and appends the
output of both inferences to the resulting allocation plan.

task order
input: component-types
output: plan
control-terms:
prime: the component-type with the highest constraints
other-components: the components minus the prime component
ordered: the other components sorted with respect to constraints
in relation to the prime
task-structure
order(component-types — plan) =
select-1(component-types — prime)
other-components := component-types/prime
sort(other-components + prime — ordered)
plan := prime , ordered

The “/” symbol represents a subtraction operator on a set; the “.” symbol is used here

to specify the order in a list. The resulting plan consists of an ordered list of component
types.

7.7.2 Assign resources In assign-resources components of one particular type are
allocated to a resource. Again, we turn to the protocol to study the inferences involved in
assigning resources.

e As was noted in Sec. 7.4, if it concerns a multiple assignment (more than one compo-
nent to one resource) the expert first groups these components into units of the right
size using a special type of requirement concerning component interaction (avoiding
conflicts and enhancing synergy, see protocol fragments 7-10). The type of assign-
ment (single or shared) is fully determined by the component type (e.g. a head of a
project should have a single room).

e The input for the actual assign task with respect to the components to be allocated
can be of two types (see the remarks in Sec. 7.4):

1. One single component (head of group, manager) or component group (secre-
taries).
2. A set of components (heads of projects) or component groups (researchers).
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If the input is a set, the assignment order of its elements should be random, as the
expert indicates in the protocol explicitly that there is no particular reason for his
sequencing of, for example, assignments of head of projects and pairs of researchers
(fragments 4-6 and 8).

These observations lead us to a first refinement of assign resources by introducing an
additional group step. This refined structure of the assign step in Fig. 7.3 is shown in
Fig. 7.5. The corresponding task-knowledge specification is given below:

component . select .
type grouping unit

resource @

allocation

FIGURE 7.5: First refinement of the assign step of Fig. 7.3 by introducing a group step which generates
possible groupings and a random selection of a unit (a component or set of components to which one

resource will be assigned).

task assign-resources
input:
component-type: type of component allocated in this plan step
resources: available resources
output:
allocations
control-terms:
unit: a component or set of components
grouping: set of units
suitable-groupings: groupings satisfying particular constraints
task-structure
assign-resources(component-type + resources — allocations) =
group(component-type — suitable-groupings)
select-random(suitable-groupings — grouping)
REPEAT
select-random(grouping — unit)
assign({component-type + unit + resources — allocations)
UNTIL grouping = #

The group step is only interesting for components that share resources. For other
component types we assume it is a kind of no-op. The random selection of units in the
REPEAT loop ensures that, for example, heads of projects are really assigned in a random
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order. This also implies, that the specification differs here slightly from the assignment
order in the protocol. There, a unit of two researchers is assigned directly after grouping.
As the expert indicates that there is no special reason for this (except maybe mental
hygiene) we have separated in our model the grouping of units from the actual assignment
of units

It might be useful to note that the introduction of a separate group step implies a
differentiation of allocation requirements into two major types: (i) requirements concerning
interaction of components with respect to one resource (conflicts, etc.), and (ii) resource-
specific requirements (room preferences, etc.). This is in fact a role differentiation at
the level of the model of expertise that can make the resulting system more efficient
(cf. Sec. 2.4). For example, a computational technique implementing one of these sub-
tasks would need to handle less requirements and operate on a smaller set of components
(because some of them are already grouped into units).

In the next sections, we study the group and the assign step in more detail.

7.7.3 Group When components are grouped together for joint assignments to one
resource, a different kind of domain knowledge comes into play, namely knowledge about
possible effects of the joint usage of the resource. The expert tries to minimise negative
effects and support positive ones as much as possible. This grouping of components into
appropriate units (fragments 7-10 in the protocol) appears to be the only part of the
resource allocation process where the expert uses requirements based on properties of
individual employees: e.g. whether they smoke or on which project they work, etc.

Generating suitable groupings is typically a task where one would specify another prob-
lem solving method for a machine than the one the expert employs. The expert generates
in the protocol partial groupings based on the requirements. This partial grouping is in
fact one of a set of possible partial groupings. Given the limited size of human short-term
memory it is usually impossible to consider all possible solutions. For a machine however,
this storage problem does not exist. On the other hand, the somewhat ad hoc, intuitive
way in which the expert generates a grouping would be quite difficult to model for machine
execution.

Thus, we decided to drop for this subtask the general guideline of modelling the expert
as closely as possible and model the grouping task as consisting of two types of inferences:

o A transform inference, which generates all possible groupings.
o A select inference which selects a subset of groupings that satisfies particular re-
quirements.

The transform inference is described below:

knowledge-source transform
input-meta-class:
component-type — department-role
output-meta-class:
possible groupings: set of employee structures
domain-view:
description:
generate all possible groupings of components of this type
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For the select inference (“select-2”, to distinguish it from the previous select inference)
one has to decide what the requirements should be for suitable groupings. The following
types of requirements are mentioned by the expert:

e Conflicts The expert tries to minimise conflicts. Putting a smoker and a non-
smoker together is considered a major conflict (fragment 7) and should have a high
impact. Putting a hacker and a non-hacker together is only a minor conflict that
could be allowed if more important reasons exist for preferring such a grouping.

e Synergy The expert also tries to maximise synergy. Putting employees together
that work on different projects is considered by the expert as an important type
of synergy (fragment 8). Also, grouping researchers working on similar subjects is
considered synergetic, although to a lesser degree (fragment 10).

The select inference specifies the selection of a subset of groupings given one particular
criterion (some conflict or synergy). Based on the observations above, we distinguish four
types of criteria: minimise major/minor conflicts and maximise major/minor synergy.
This choice would have to be verified in future sessions with the expert (KE goal).

The dependencies between these two inferences, which constitute a refinement of the
group step in Fig. 7.5, are shown in Fig. 7.6.

selection
criterion

maximize synergy
minimize conflict

CO”t‘Sgge”t —- grouping @ grouping

possible suitable
groupings groupings

FIGURE 7.6: Inferences for generating suitable groupings of components.

knowledge-source select-2 (select suitable groupings)
input-meta-class:
groupings — set of employee structures
selection-criterion — a conflict- or synergy-type
output-meta-class:
suitable-groupings — set of employee structures
domain-view:
major-conflict — smoker-and-non-smoker relation
minor-conflict — hacker-and-non-hacker relation
major synergy — on-different-project relation
minor-synergy — works-with relation
description:
generate the subset of all possible groupings
that minimises some conflict or maximises some type of synergy.
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This distinction between four different types of criteria can be considered as an example
of inference differentiation (cf. Sec. 5.3 and Fig. 5.12): the select-2 inference can be
differentiated into four sub-types each using a different type of criteria.

In the task-knowledge specification of group we have to decide in which order these four
possible instantiations of the select-2 inferences should be executed. The order “avoid ma-
jor conflict, increase major synergy, increase minor synergy, avoid minor conflict” seemed
to conform most to the way the expert solves the grouping problem. Again, this hypothesis
would need to be verified (KE goal).

task group
input:
component-type: the type of components being grouped
output:
preferred-groupings: the optimal sub-set of groupings given the selection criteria
control-terms
possible-groupings: all possible groupings of the components of this type
task-structure
group(component-type — suitable-groupings) =
transform(component-type — possible groupings)
select-2(possible-groupings + minimise(major-conflict) — preferred-groupings)
select-2(preferred-groupings + maximise(major-synergy) — preferred-groupings)
select-2(preferred-groupings + maximise(minor-synergy) — preferred-groupings)
select-2(preferred-groupings + minimise(minor-conflict) — preferred-groupings)

In Appendix B (Sec. B.5.2) a sample trace is listed of the execution of the group
task for the researchers in the Sisyphus data set. The transform inference generates 105
possible groupings. Avoiding major conflicts reduces this set to 15. Maximising synergy
by putting people on different projects together reduces this set further to 10 possible
groupings. Maximising synergy by grouping people that work on similar subjects reduces
the set of ten to two groupings. The last inference (reducing hacking conflicts) has no
effect in this particular case.

The two groupings generated by the program differ slightly from the grouping generated
by the expert. This is due to the fact that we assumed that the “works-with” relation in
the sample data set represented the notion of working on similar subjects that the expert
talks about, Probably, this was not a correct assumption and should be noted as a KE
goal. However, this type of refinement does not affect the structure of the model and can
be carried out in a later knowledge-refinement phase.

7.7.4 Assign In the assign task resources are allocated to components or groups of
components on the basis of various requirements. We distinguished two types of such
requirements:

1. Resource specific requirements Requirements about a resource independent of other
allocations: required size, required location, etcetera.

2. Positional requirements Requirements about a resource that are dependent on other
allocations: e.g. a room is required as close as possible to the head of group.

These requirements are the same for every component of a particular type.
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Thus, we defined two select inferences select-3 and select-4 each selecting a subset
of resources that respectively satisfy resource-specific and positional requirements. The
select-4 inference has as an additional input the current set of allocations.

Fig. 7.7 shows the dependencies between these two select inferences. This figure rep-
resents a further detailing of the assign step in Fig. 7.5.

. set of
unit
resources

S

(group of) component 4\ ajilable resources

select-4 allocation

suitable resources

resource

FIGURE 7.7: Inferences for resource selection.

knowledge-source select-3 (select on resource requirements)

input-meta-class:

component-type — department-role

resources — set of rooms
output-meta-class:

suitable-resources — set of rooms
domain-view:

resource-requirement — room-preference relation
description:

select the subset of resources that satisfies

resource-specific requirements

knowledge-source select-4 (select on positional requirements)
input-meta-class:
component-type — department-role
resources — set of rooms
output-meta-class:
suitable-resources — set of rooms
domain-view:
resource-requirement — near-to-preference relation
description:
select the subset of resources that satisfies
positional requirements
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Note that the unit to which a resource will be assigned is input to neither of the
two inferences. This is consistent with the fact that resources are only selected based on
requirements connected to a component type. The main decision that has to be taken
when defining control over these inferences, is which one should be executed before the
other (or maybe in parallel). In the current task structure select-3 is executed before
the select-4 inference. This implies that we give a higher priority to a resource-specific
requirements. If, after execution of both inferences, more than one resource is considered
suitable, one is selected at random.

task assign
input
component-type:
unit: the component or group of components that to which a resource is assigned
resources: available resources
allocations: current allocations
output
resources: available resources
allocations: current allocations
control-terms: =
task-structure
assign(<component-type + unit 4 allocations + resources — allocations + resources)
select-3(component-type + resources — suitable-resources)
select-4(component-type + suitable-resources + allocations — suitable-resources)
select-random(suitable-resources — resource)
allocations := < unit, resource > U allocations
resources := resources/resource

In Appendix B (Sec. B.5.3) a sample trace is listed of the execution of the assign task
for the manager. In the example, select-3 generates four suitable rooms: the four small
rooms. Select-4 selects from this subset the room closest to the one allocated to the head
of group.

The full inference structure that resulted from the model construction process for
this model of resource allocation is shown in Fig. 7.8. Fig. 7.9 shows the resulting task
decomposition.

7.8 Operationalising the Model of Expertise

In this section we describe some aspects of the design and implementation of a system that
implements the behaviour specified in the model of expertise. In the design of the system
we follow the structure-preserving principle as defined on Ch. 6: all relevant elements of
the conceptual model should map onto clearly identifiable constructs in the system. The
advantages of such a design approach are (see also Sec. 6.3):

e It simplifies the implementation of an explanation facility that enables the user
and /or the expert to trace the system’s execution in the vocabulary of the model of
expertise. Although we have not build a graphical interface for this particular case,
we have tried to ensure that all the necessary anchor points for such an extension
are present.

e It provides clear routes for refining and/or extending the system, such as:
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FIGURE 7.8: Inference structure for resource allocation in the office-assignment domain. The figure sum-
marises the results of the various decompositions and refinements of the first model in Fig. 7.3.

1. adding/modifying domain knowledge such as other conflicts or room require-
ments;

2. changing the control of task execution;

3. replacing computational techniques;

4. introducing additional tasks and inferences such as for verification and revision.

No special-purpose tools were used in the development of this system. Also, the fact
that no run-time interaction with external agents such as a user is required simplifies the
system development. The chosen environment was the swi-prolog system [Wielemaker,
1991], mainly for pragmatic reasons. The system architecture is an instantiation of the
skeletal architecture described in Sec. 6.4. Modules were used to support the separation
of various elements of this architecture (see Fig. 6.5). Fig. 7.10 gives an overview of the
various Prolog modules. The source code of the application plus some example traces can
be found in Appendix B. A synopsis of the contents of each module is given in the rest of
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allocate
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cIaSsify select-1 sort transform select-2 select-3 select-4

FIGURE 7.9: Task decomposition of the office-assignment problem. Italic names denote knowledge sources.
Two trivial select inferences (select-next and select-random) have been left out

this section.

Task-declarations, inference-declarations and domain-theory These three
modules contain an almost direct translation of the contents of the model of expertise
task into a predefined format of Prolog clauses.

Below, the task declaration of the classify task is listed, It is an almost direct mapping
of the description given in the previous section. The data operations in the original task
structure (set membership, set addition) was translated into the format of the access
functions defined in the module task-working-memory (see below).

task( classify).
task_input ( classify, ’components’) .
task_output( classify, ’component types’).

task_structure(classify,
( forall( data_operation(member, components, C),
( exec_inference(classify, [C], CType)
, data_operation(add, ’component types’, CType)
))
).

An inference declaration is described in a similar fashion. The only difference is that
all mappings from inference-level names to domain-specific constructs are specified in a
separate module domain index (see below). The example below shows the Prolog facts
associated with the classify inference:
% inference(Internal name, External name)
% metaclass(Inference, Input/Output, General name, Specialised name).

% domain_view(Inference, , Inference knowledge).

inference( classify, ’Classify components’).
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FIGURE 7.10: Import relations between Prolog modules of the Sisyphus system.

metaclass( classify,
metaclass( classify,
domain_view(classify,

The domain-theory module defines a language on top of Prolog which allows the dec-
laration of concepts, instances, sets and various types of relations and also the possibility
of defining properties for each of these constructs (not just for concepts). In addition, it
is possible to specify semantic information about relations (associativity, transitivity) and

sets (cardinality).

This language was used to describe the domain schema as presented in Fig. 7.2 and also
the actual domain knowledge (concept hierarchies, relation tuples, definitional axioms).
An example fragment of the representation of the domain knowledge used by the classify

inference are listed:

input (1),

output,

component,

component_type,
relation(type_association, component, component_type)).

).
).
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% concept (Concept name, Supertyes)

% property(Concept, Property name, Valueset)

% relation(Relation name, Type first argument, Type second argument)
% tuple(Relation name, [First argument, Second argument])

concept ( employee) .
property(employee, hacker, bool).
property(employee, smoker, bool).

concept (department _role).

concept (head_of _group, [department_role]).
concept (manager, [department_role]).
concept (secretary, [department_role]).
concept (head_of _project, [department_role]).
concept (researcher, [department_role]).
relation(employee_role, instance (employee), department_role).

tuple (employee_role, [Employee, head_of_project]) :-
get_instance (project, Project),
get_value(Project, size, large),
tuple (head_of, [Employee, Project]).

tuple (employee_role, [Employee, researcher]) :-
tuple (works_on, [Employee, _SomeProject]),
\+ tuple(employee_role, [Employee, head_of_project]),
\+ tuple(employee_role, [Employee, head_of_group]).

Task-interpreter and task-working-memory The task interpreter module exe-
cutes the task structures defined in the module task-declarations and stores intermediate
results in data stores. These data stores and their access operations (cf. the data-operation
clause in the Prolog task structure above) are defined in task-working-memory. The im-
plementation supports three types of working-memory data structures: set, list (= sets
with an ordering relation, used for example to represent the allocation plan) and a single
object.

Inference-functions, inference-methods, and inference-activation The mod-
ule inference functions defines for each knowledge source how inference methods should be
activated to realise the inference. In addition, it retrieves the necessary domain knowledge
by calling domain access functions. In fact, the classify inference function only retrieves
domain knowledge:

inference_function(classify, [In], Out) :-
domain_retrieval (find_one, type_association, {In, Out]),

The six other inferences in the office-plan model are realised through four inference
methods (see Table 7.2). The partition-set method is used to realise three select infer-
ences, all selecting a subset based on some criteria. All inference methods are defined in
the module inference-methods. Ideally, one should have a large library available of such
methods.

The module inference-activation contains the generic part of the inference-functions
module (e.g. how to produce trace information).
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| Method Method description Used for

Hierarchy search Supports search in hierarchical relations, in this case find- | select-1
ing the root node of the hierarchy

Sorting Supports sorting given a predicate that compares two | sort
members of the set being sorted (built-in SWI-Prolog
predicate)

Pair permutations | Generates all possible permutations of pairs of set | transform
elements

Partition set Partitions a set into an ordered list of subsets based on | select-2

a predicate that assigns a rating number to each element | select-3
of the set. The method can be used to either maximise | select-4
or minimise this rating.

TABLE 7.2: Inference methods used in the implementation of the Sisyphus model

Domain-access and domain-index The domain-access module defines a number
of access functions for the domain knowledge base. The module uses the indexing infor-
mation defined in domain-inder to map inference-level names onto domain-specific ones.
The access functions are used by the inference functions to retrieve domain knowledge (cf.
domain-retrieval in the example inference function above). This is a typical part of KBS
from which one abstracts in the model of expertise: it is specific for the representation
chosen in design.

The domain index is a specialisation of the meta-class and domain view mappings
defined in the model of expertise. These last ones are typically defined in a sloppy manner
during analysis. Below the mappings used by the classify inference are listed:

domain_index(entity, component , [instance(employee)]).
domain_index(entity, component_type, [concept (department_role)]).
domain_index(relation, type_association, [relation(employee_role)]).

Domain data This module contains the example data set provided for the Sisyphus
problem in the format of the knowledge base representation used in the module domain
theory: (i) employee, room and project instances with their associated property values,
and (i) some relation tuples that are not part of the domain theory: employee-project
tuples and some employee-role tuples. Some sample data:

instance (employee, ‘Werner L.’, [smoker = false, hacker = truel).
instance(project, "RESPECT’, [size = medium]).

tuple (works_on, [’Werner L.’>, ’RESPECT’]).

tuple (employee_role, [’Eva I.’, manager]) .

Main This module is the central module that invokes the top-level task. It could
contain in future versions some additional strategic knowledge.

7.9 Discussion

How general and/or reusable is the model? A major assumption in KADS is
that the description of task and inference knowledge is sufficiently domain-independent to
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have the potential of being reused in a similar task domain. With regard to the model that
was constructed for the office-assignment domain, the following tentative observations can
be made:

e The notion of plan representing an ordering of requirements seems to be a quite
general one: it reoccurs in many constructive task-domains.

e The differentiation into various types of requirements can be useful. In some domain,
e.g. allocating air planes to gates, the component-interaction requirements will not
be relevant (only one plane per gate), thus leading to a simplified version of this part
of the inference structure (the grouping inferences do not have to be included).

o The office-assignment domain contains a number of simplifications that could well
not be present in other domains and thus may lead to more complex models, e.g.:

— No time considerations come into play (no existing allocations, no planning of
future allocations). This could be very important in a domain such as allocating
air planes to gates.

— Preferences of individual components are not considered in the selection of
suitable resources.: only preferences of types of components.

e An obvious shortcoming of the model is that it covers only the propose task. In
most domains, an iterative revision process is required.

What would be needed to include the revisions in this model? The inclusion of a
separate revise task and the additional control can easily be achieved by defining
an additional task on top of propose-allocations which activates both the propose
and the revise task. The main question is whether the revisions would require a
different structure of the propose task. Some revisions can be achieved by relaxing
the constraints, i.e. changing the domain theory and re-activating the propose task.
For example, if not enough single rooms are available for all heads of projects, a
revision might be to consider one of them (temporarily) as an ordinary employee.
However, the nature of the revise task needs to be studied in more detail before a
definite answer can be given,

Concerning the reusability of the domain knowledge, it can be said that the description
of employees, rooms, projects, and department roles has a quite general flavour. On the
other hand, some relations such as room preferences are rather specific for this task-
domain.

Comparison with other approaches This exercise has made clear that there is
quite some overlap between various approaches to modelling problem solving. As shown
in this chapter, the problem solving methods described by Chandrasekaran (1988, 1990)
and Marcus & McDermott (1989) could be used as input for a KADs modelling enter-
prise. We see two major differences between the Generic Task approach (as described in
Chandrasekaran, 19907) and KADs:

"The description given in this article is much more conceptual and therefore better comparable to KADS
than other publications.
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e The Generic Task approach makes the underlying problem solving method explicit
(e.g. goal decomposition). In KADs this is implicit in the task knowledge description.

e In the Generic Task approach only the method description is domain-independent:
its application to a task-domain is, unlike KADS, described in domain-specific terms
[Allemang, 1991]. This limits the reusability of the resulting model.

In the computationally-oriented approaches, the underlying assumptions about the
reasoning techniques supported by the approach tend to bias the problem solving model.
For example, in a pure constraint-satisfaction approach the idea of grouping will usually
not be considered and will also not be easy to include.

Weak points of the approach In this application of KADS, some weak points that
have already been pointed at before (see Sec. 3.8), become very clear:

e If no interpretation model is available, the knowledge engineer has to construct a
model almost from scratch.

e The typology of knowledge sources described in Breuker ef al. (1987), and used quite
rigorously in this chapter, does not provide always appropriate distinctions between
inferences. For example, knowledge sources of type select appear in many places in
the model presented and range from trivial selections to inferences involving complex
knowledge structures (select 2-4).

Acknowledgement Werner Karbach provided valuable comments on an earlier version
of this chapter.



Chapter 8

Comparing KADS to Conventional
Software Engineering

In this chapter, a comparison is made between KADS and two leading software-engineering methodologies:
Structured Analysis & Design and the Object Modelling Technique. In the comparison the emphasis lies on
similarities and differences in analysis: the process of describing what the system should do. We compare
the approaches with respect to three different perspectives on modelling a system: the data perspective,
the functional perspective and the control (or: dynamic) perspective. The study shows that, though
terminology is different at some points, there are quite a number of similarities between the approaches.
We also study some important differences. We discuss some lessons that might be learned from these
differences. A common topic that arises is that of reusability.

This chapter will be published in a collection of articles on KADS. It is co-authored by Bob Wielinga.
Reference: Schreiber, A. T & Wielinga, B. J, (1993). Comparing KADS to conventional software engi-
neering In Schreiber, A. T., Wielinga, B. J., & Breuker, J. A.| editors, KADS: A Principled Approach to
Knowledge-Based System Development. Academic Press, London.

8.1 Introduction

Knowledge engineering (KE) and conventional software engineering (CsE) are closely re-
lated fields. Although both fields emphasise different aspects of the system development
process, there is no sharp boundary between conventional software systems and knowledge-
based systems. The main features that distinguish a KBS from a conventional system are
often said to be the nature of the task (problem solving) and the explicitness of knowledge
(the knowledge base). But with the growing complexity of conventional systems, the bor-
derline is at most vague. Also, the tendency is to use KBS applications not as stand-alone
applications, but in combination with other, more conventional, applications.
The aim of this chapter is twofold:

1. To identify bridges between KADS and ¢SE methodologies: how do models, terms,
techniques etc. map from one approach to another.

2. To identify common themes and suggest areas in which results achieved in one field
could be of use for research in the other field.
Both KE and cSE are still very much under development and sometimes the respective
research communities seem to be more apart than ideally should be the case.
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Given the context of this thesis, we limited the scope of comparison to the analysis
stage and the role of the analysis results in system design. In Sec. 8.2 we discuss the
type of analysis and design models that are distinguished in the approaches. In Sec. 8.3
three basic perspectives on describing a system are identified: the data, the functional and
the control perspective. Sec. 8.4 discusses for each of the three perspectives the type of
modelling techniques advocated by the approaches. Sec. 8.5 contains a brief discussion on
the role of the analysis model in the design process. Sec. 8.6 summarises some conclusions
with respect to the points raised above: bridges and cross-fertilisation.

The comparison is made with an emphasis on the content of the models and the
modelling languages and methods, much less on the modelling process. The reason is
that both in KADS and in ¢SE the descriptions of the actual modelling process are not
prescriptive and often vague. Although Ch. 5 gives some indications about the modelling
process in KADS and although there exist cognitive studies of the modelling process in CSE,
a more thorough analysis is needed for a detailed comparison.

In this study we have limited the comparison to two examples of CSE approaches, each
representing a leading development paradigm: the functional paradigm and the object-
oriented paradigm. The example functional approach is Structured Analysis and Design
which appears to be the leading methodology in this area. The major source of refer-
ence used in this comparison is the latest book on “Modern Structured Analysis” (MSA)
[Yourdon, 1989b].

In the object-oriented area the choice was difficult. There is an abundance of books
and articles on various flavours of “object-oriented”. We have chosen the oMT (Object
Modelling Technique) methodology [Rumbaugh et al., 1991] as the example object-oriented
approach for this study, because it assumes an object-oriented view point, but covers also
many other aspects of the development process.

8.2 Models Distinguished

In this section we look at (i) what kind of models are being distinguished in KaDs and
csE during analysis and design and (ii) what these models describe.

MSA In [Yourdon, 1989b; Chapter 17] two modelling approaches are sketched: the
classical modelling approach and a more recent approach.

In the classical approach, four system models are important: two “physical” models,
and two “logical” models. Physical models describe the detailed implementation of a
system; logical models focus on the essential requirements of these systems. In other
words, a logical model describes the what and a physical model describes the how. A
further distinction is made between current and new models. The current physical model
and the current logical model describe the current situation: the real world (organisation,
enterprise, department, task) in which system development will be undertaken. The new
physical model and the new logical model describe the target system to be developed,
including its new! environment.

1This is consistent with observations that the introduction of new automated functions within an
organisation often involves new distribution of tasks
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Yourdon argues that this classical approach has failed, because in many cases it has
proven difficult to build models of the current situation. Often, an enormous amount of
time is spent on analysing the current situation. Especially, the construction of a current
physical model in full detail is a time-consuming process, which only marginally pays off
in later stages of the project.

Based on these observations, Yourdon argues that system development should focus
more on modelling the new situation, and especially on the new logical model. He calls
this model the essential model. He characterises the essential model as follows [Yourdon,
1989b; p. 323]:

“The essential system model is a model of what the system must do in order to
satisfy the user’s requirements, with as little as possible (and ideally nothing)
about how the system will be implemented.”

Two sub-components are distinguished in an essential model:

e The environmental model defines the system boundary: what is the relation of the
system with its environment.

e The behavioural model defines the required internal behaviour of the system necessary
for performing its intended function in the environment,

The new physical model takes the role of the design model.

OMT oMT describes two models: the analysis model and the design model. The
analysis model consists of three submodels: the object model, the dynamic model and the
functional model. Whether this analysis model is a model of the current situation or the
future situation is not completely clear. Some quotes from [Rumbaugh et al., 1991]:

“Starting from a statement of the problem, the analyst builds a model of
the real-world situation showing its important properties.” (p. 5).

“During analysis, a model of the application domain is constructed ...”
(p- 17)

“The analysis model is a concise, precise abstraction of what the system
should do, not how it will be done. The objects in the model should be
application-domain concepts and no computer-implementation concepts such
as data structures “ (p. 17)

From the last quote, it can be concluded that the oMT analysis model is very similar
to what Yourdon calls the essential model. The oMT analysis model should describe what
the system should do, independent of how it will be realised in the artefact.

KADS Models distinguished in KADS are briefly described in Ch. 3. Fig. 3.2 in that
chapter gives an overview on these models. We focus here on the main models relevant
for a comparison with the models defined in CSE.

e The task model defines a top-level decomposition of tasks to be carried out in the
application domain, together with their input-output relations. In addition, the task
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model specifies the task distribution: an assignment of tasks to agents: (i) the system
to be developed, (ii) users, and (iii) possibly other automated systems. The task
model thus describes, from a high-level point of view what is called the automation
boundary in CSE.

The model of expertise describes for those tasks assigned solely to the system? the
required internal behaviour of the system needed to carry out these tasks. The
model of expertise is a so-called ¢ ‘knowledge-level model” [Schreiber et al., 1991a]: it
describes the required problem solving behaviour in the vocabulary of users /experts
and it abstracts from implementation details.

The model of cooperation provides a description of those tasks that exchange infor-
mation across the system boundary: e.g. require interaction with the user or an
external system. It also abstracts from implementation details.

Together, the model of expertise and the model of cooperation form the conceptual
model. This conceptual model contains a complete specification of the functionality
provided by the system, in implementation-independent terms.

The design model specifies how this conceptual model will be realised in the artefact:
what computational and representational techniques are needed to implement the
requirements implied by the conceptual model.

Discussion [t will be clear that, although terminology is different, there are many

similarities between CSE and KE with respect to the models being distinguished. These
similarities are summarised in Table 8.1

| MSA | OMT | KADS |
essential model analysis model task model +
conceptual model
environmental model part of task model +
analysis model | model of cooperation
behavioural model part of model of expertise
analysis model
new physical model design model design model

TABLE 8.1: Correspondences between models in the three approaches.

From this table it can be concluded that models distinguished in ¢SE and KADS are

closely related. One question that comes up when inspecting this table is why a separate
task model is considered necessary in KADS. The reason for this is that KADS distinguishes
two stages in task description. The purpose of the first stage (described in the task model)
is to decompose the application task down to the level where generic problem solving tasks
can be identified. KADS provides a set of reusable templates for a number of those generic
tasks, such as diagnosis, monitoring, assessment, repair, etc. The generic tasks provide

2When we use the term “system” we always mean the target system to be developed, unless explicitly
stated otherwise. The simplifying assumption is made here that the system development process is aimed

at one single application.
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the starting point for the second stage: the detailed analysis of a problem solving task
which is described in the model of expertise (and the model of cooperation).

Another question concerns the problem whether the analysis models describe the cur-
rent or the future situation. The position taken in MsA is that one should concentrate on
the future situation. Although this has been a point of discussion for many years in KADS
(see Sec. 3.2) the current position is that the final conceptual model also is a model of the
future situation. The position of OMT appears to be close to that of MsA as well.

8.3 Modelling Framework

One can take three basic perspectives when modelling a system [Yourdon, 1989a; p. 219]
[Rumbaugh et al., 1991; p. 17]:

Data perspective Modelling the essential information that one needs to represent in the
system.

Functional perspective Modelling the functions and the flow of data between functions.

Control perspective Modelling the dynamic, time-dependent, behaviour of the system.

Yourdon remarks [Yourdon, 1989a; pp. 218-222]% that many of the debates in soft-
ware engineering have been about the “right” perspective. Traditionally, the information
modellers argue that one must start with describing the data perspective because the
data form the most stable part of the application. The data-flow adepts claim that data
representation is so dependent on the way it is used that one should start with func-
tional decomposition. People working on real-time systems claim that neither is the right
approach for this type of system: a control-oriented modelling approach is required.

In Yourdon’s view, these debates about the right perspective are fruitless in the sense
that there does not exists a single perspective that is better than another for every appli-
cation. The right perspective varies with the nature and the complexity of the application
domain. In some domains, such as large database applications, the structure of the infor-
mation is complex and the functions relatively simple. In real-time systems, the dynamics
of the system are often the most complex part. Also, given the increasing complexity of
systems being built, there now tend to be more and more applications in which all three
perspective are (almost) equally important.

The oMT analysis model consists of three sub-models (object model, dynamic model
and functional model) each representing one of the perspectives. The MsA analysis model
does not contain an explicit representation of the three perspectives. The KADS model of
expertise can be viewed as supporting an integrated description of the three perspectives
(see also Ch. 6, Table 6.1), although this is not an articulate postulate of the description
of the model components given in Ch. 3.

In the next section we compare the approaches with respect to the modelling techniques
offered for modelling the three perspectives during analysis. In addition, we study the way
in which the connection between perspectives is modelled.

®These remarks are made in a chapter of Managing the structured techniques and do not come from the
book on MSA.
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8.4 Modelling Techniques

8.4.1 Data perspective

OMT owmT offers an extensive (graphically-oriented) object-modelling language
based on constructs developed in semantic database modelling. The main ingredients
of this language are:

o Object class & instance The object is the central entity in the data model. An
object class describes the structure of a set of object instances through the definition
of attributes (“properties”) and operations (“methods”) for objects in this class.

e Association & Link A link is a connection between object instances. An association
describes the structure of a set of links between object instances (one could think of
it as a link class). For associations, attributes and cardinality constraints (in oMT
“multiplicity”) can be defined that apply to links in this class.

o Aggregation Aggregation provides a way of describing part-whole relations between
objects, e.g. a mixer consists of a vessel and an agitator. It is in fact a special type
of association with additional semantics.

o Generalisation & Inheritance Generalisation refers to a hierarchical organisation of
object classes to capture similarities between objects. Inheritance refers to the fact
that this hierarchy can be used to inherit object class definitions such as attributes
and operations. oMT allows various types of generalisation/specialisation such as
extension and restriction (similar to the notion of differentiation and value restriction
in KL-ONE [Brachman & Schmolze, 1985]). It also supports multiple inheritance.

e Module A module provides a way of grouping object classes that naturally belong
together (e.g. through various associations), without imposing the semantics of
aggregation.

o (onstraints Constraints are used to express features of one or more elements of
the data model that cannot be represented with the constructs mentioned above.
Simple constraints are annotated in the data model using semi-natural language
(these strings could contain equations etc.). According to OMT, complex constraints
should be placed in the functional model.

MSA wMsA provides two modelling tools for describing the data perspective: the data
dictionary and the Entity-Relationship Diagram (ERD).

The data dictionary consists of a set of structural descriptions of the basic data elements
that are relevant in a particular application. For example, a data dictionary could contain
an entry for person-name and a description of its internal structure (title + first name +
optional middle name 4 last name, each conisting a some sequence of characters).

The BERD describes the general structure of entries in the data dictionary and their
interrelationships. The ERD’s used in MSA support a subset of the modelling constructs
provided by oMT, notably entity classes with attributes (similar to object class definitions
without operations), relationships (associations), and sub-supertype relations (generalisa-
tion & inheritance, but with less expressive power than provided by omT).
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KADS The KADS modelling tools for describing the data perspective were discussed
extensively in Ch. 4. This data modelling language provides ER-type constructs with gen-
eralisation /specialisation and aggregation (part-of structures). In addition, KADS provides
some constructs for modelling the structure of “rules” or ‘axioms”: relations between ex-
pressions about entities. An example of such a relation is a causal relation. A causal
relation is not just a relation between two entities, but between state values of entities
(e.g. “if the lumen of a coronary artery is obstructed, then this may lead to necrosis of
the heart muscle”). A distinction is also made between relations between entity classes
and entity instances.

Discussion From the data perspective there do not seem to be many differences
between CSE and KE. This is also clear from the literature on for example “expert database
systems” [Kerschberg, 1986]. There is a clear link between work on A1 data modelling
languages such as KL-ONE and its descendents, and research on extensions of the ER
approach in semantic database modelling.

Still, the emphasis in KE is slightly different. An example of this can be found in
the efforts in KADS to describe rule and axiom schemata. In OMT and MsA this type of
information would either need to be described in the form of constraints (omT), which
are basically just textual annotations of the data model, or in the functional model. For
example, Yourdon proposes decision tables as a possible technique for describing a process
specification (the description of the internal process of a function, see below) [Yourdon,
1989b; p. 219]. Decision tables constitute in fact sets of rules (see the example decision
table in Table 8.4.1). For a KBS application a schematic description in the data model
of the structure of this type of knowledge is crucial. This explains also the need for
additional vocabulary in the KADS data modelling language, such as relations between
expressions. For example, the medication table can be modelled in the ppL (see Ch. 4) as
a relation between expressions about certain properties of patients (age, sex and weight)
and a medication.

11231456 |78
Age > 21 Y|Y|Y|Y|N|N|N|N
Sex M M|F|F| M|M|F|F
Weight > 150 | Y | N|Y|[N|Y [N |Y N
Medication 1 X X X
Medication 2 X X
Medication 3 X X X
No medication X X

TABLE 8.2: Example decision table (copied without permission from [Yourdon, 1989b]).

An important common theme is that of reusable data/knowledge bases. For example,
many companies are developing company-wide data models, that should be used by each
(new) application. In Al some efforts have started to develop large reusable knowledge
bases. The best-known is the cyc project [Lenat & Guha, 1990]. Such large data or
knowledge bases require at least an expressive data modeling language such as oMT and
KaADS offer. But this is not sufficient. The methodologies offer little guidance with respect
to the ontologies of such knowledge bases. The definition of generally-shared ontologies in
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currently an important research topic.

8.4.2 Functional perspective

MSA In msaA, the functional perspective is described using a “data-flow diagram”
(DFD). A DFD consists of so-called ¢ ‘bubbles”, representing functions, and data stores.
Functions and data stores are connected via directed links. These links represent data
flows and describe the input/output of a function. The name of the data flow is written
on the link. Fig. 8.1 shows an example DFD. In addition, a DFD can contain “control
bubbles”. These bubbles represent the link between the functional view and the control
view (see Sec. 8.4.3).

input " N output
data store data flow bubble data flow data store
symptom generate hypothesis

findings ——————{ hypotheses /> hypotheses

FIGURE 8.1: Example data-flow diagram

Each function itself can be described in more detail in a separate DFD, thus giving rise
to a hierarchical DFD structure. A process specification describes the internal structure of
a function that is not decomposed into sub-functions. MSA suggests three main techniques
for writing process specifications:

1. Structured Fnglish This technique describes a procedure using a subset of English.
The aim of Structured English is to balance the formal properties of (procedural) pro-
gramming languages with the flexibility and readability of natural language. Struc-
tured English descriptions specify in an informal manner the algorithm that the
function uses to compute its output from the input.

2. Pre/post conditions Pre- and post conditions describe logical relations that must
hold between input data, output data and/or data stores. The main distinction with
Structured English is that one does not describe the algorithm itself.

3. Decision tables A decision table specifies for each value of the input variables the
value of the output variable. A decision table represents in KBs terms a rule set (see
Table 8.4.1).

OMT oMT basically applies Msa techniques for describing the oMmT functional
model. The main difference lies in the fact that process specifications are described as
operations (methods) on an object class in the data model. oMT advocates basically the
same techniques for describing process specifications (i.e. operations) as MSA.
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KADS The functional perspective in KADS can be found in the task model and in
the model of expertise. The task model provides a top-level functional decomposition. The
task knowledge in the model of expertise details this decomposition to describe problem-
solving tasks (i.e. composite functions) and, at the lowest level of decomposition, knowl-
edge sources and transfer tasks (i.e. primitive functions). DFD’s are not systematically
used in KADS to describe the functional decomposition. The input-output dependencies
between the leaf functions are graphically described in an inference structure. An inference
structure can be viewed as a data-dependency diagram at the lowest level of functional
decomposition.

A first difference between the functional description in KADS and in CSE is that the
data elements in inference structures do not refer directly to elements of the data model
(entities, relations, etc.). Inferences in KADsS define functional objects of which the name
reflects the role that the object plays in the problem-solving process. The major reason
for introducing separate functional objects in KADS is reusability. The functional objects
give a characterisation of the data in terms of the roles that these data elements play in
solving the application task. This creates the possibility of using functional descriptions
such as inference structures as templates for a class of application tasks with similar
characteristics. KADS calls these reusable templates “interpretation models”. See for a
more detailed discussion of interpretation models Ch. 3 and Ch. 5.

A second difference is that the KADS knowledge sources are not described via detailed
process specifications. These leaf functions are described via the data-flows and the un-
derlying domain knowledge used by the function. As pointed out in Sec. 6.4, the analyst
takes an automated deduction view on the primitive functions: is it clear that it is possible
to derive the input from the output plus the underlying domain knowledge? The specifi-
cation of the actual algorithm for computing the output is left for the design phase. This
approach is probably closest to the pre/post condition technique for writing process spec-
ifications. This technique only describes logical relations between data elements involved
in the function.

A third distinction is that KADS provides a typology of basic functions (see Sec. 3.5.1).
Each basic function should be an instance of one of these types. The current typology in
KADS has however proved to be insufficient for handling every possible function.

Discussion: data-function interactions The interaction between the data per-
spective and the functional perspective is probably one of the most critical points in the
system development process. Yourdon describes from his experience the frequently occur-
ring situation where two groups, an “information modelling” group and a DFD group, start
working in parallel on an application and end up with incompatible results. In K& this
dependency problem between data and function has been called the interaction hypothesis
[Chandrasekaran, 1988]: data cannot be described independent of its use.

In MsA the data flows and the data stores in the functional model refer directly to
elements in the data model. The situation is similar for oMT. Direct links between the
data model and the functional model hamper the reusability of functions (and data).
The KADS approach to connecting the functional perspective and the data perspective
is substantially different from the cSE approaches. In KaDs functional role names are
introduced in the functional model. The mapping of functional names onto elements of
the data model is specified separately. The introduction of functional objects implies that
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the functional description is not directly dependent on the data model. Asremarked above,
this opens the possibility of reusing functional descriptions such as inference structures.
The tentative typology of primitive functions (knowledge sources) and the approach taken
to define the internals of a primitive function (I/O plus static domain knowledge used)
also facilitates a concise description of the functional perspective.

This type of reusability is not present in MsA. The simple case study of MsA in
[Yourdon, 1989b; Appendix F] (the Yourdon Press application) contains 9 complex data-
flow diagrams and 23 pages of process specifications in Structured English. It appears
attractive to study whether KADs-type techniques can be used in CSE to reduce the effort
spent on functional descriptions in individual applications.

oMT advocates reuse of functions by selecting (parts of hierarchical structures of)
existing object-class definitions on which operations are defined. There is however no
typology of primitive functions and no explicit relation between the type of task the
system has to perform and the objects to be reused.

8.4.3 Control perspective

OMT & MSA Both oMT and MsA employ state-transition diagrams for describing
the control (or “time-dependent behaviour”) of the system. Sometimes, additional internal
control is specified in process specifications, e.g. if these are described through structured
English procedures.

oMT employs a comprehensive state-transition technique developed by Harel [Harel,
1987]. The Msa diagrams support a simpler version. The oMT state-transition diagrams
consist of six types of elements: states, state-transition links, events, conditions, activities
and actions. An (object) state is the set of attribute values and links held by an object
or an abstraction of it. A state-transition linkis a directed dependency between states: it
indicates that one state can lead to another state. An event is something that happens at
some point in time; conditions are valid over an interval of time. Events and conditions
are used to indicate when a state change over a transition link takes place. For example,
a state “no sound” of an audio system changes into the state "sound” when the event
“play-button CD player pressed” occurs under the conditions that the power is on, a disc
resides in the CD player etc. Activities and actions are functions (i.e. operations on an
object). An activity is associated with a state: for example, in state s1, do activities Al
and A2 in sequence. An action is a function associated with a state transition. The oMT
state-transition technique supports the specification of concurrency and the partitioning
and levelling of diagrams.

In oMT the connection between the control perspective and the other perspectives is
achieved through the activities and actions: these map onto operations of an object class
in the data (object) model. MsaA includes special “control bubbles” describing control
relations in the data-flow diagram The process specification of a control process is provided
by a state-transition diagram. The inclusion of control processes should ensure an adequate
connection between functional and control perspective.

KADS The task knowledge in the KADS model of expertise uses a form of pseudo-
code to describe the internal control of a problem-solving task. This control procedure (the
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“task structure”) defines control dependencies between functions (sub-tasks, inferences)
involved in the task. Transfer tasks (functions that communicate with a user or another
system, see Ch. 3 and [de Greef & Breuker, 1992]) are used to indicate events, for example
those in which an external agent has the initiative (receive and provide, see Sec. 3.4.3).
In some applications the structure diagrams proposed by JsD were used instead of pseudo
code to describe task control [Readdie & Innes, 1987; de Greef et al., 1987]. Additional
control of the problem solving process can be specified in the strategic knowledge (to
handle internal events such as impasses), but no particular formats are prescribed for
these descriptions.

The model of cooperation describes aspects of the control of transfer tasks , in partic-
ular the initiative (who is responsible for starting communication).

The connection of control and function is achieved by describing control as a part of
the task description.

Discussion In cSE the description of control is focused on the relation between the
system and external agents (users, other systems). State-transition diagrams are especially
useful if the system interacts heavily with its environment and external events (e.g. user
actions, incoming data) strongly influence the activities to be performed by the system.

In contrast, the description of control in KADS focuses on the internal control of system
behaviour. This is probably due to the particular characteristics of knowledge-based sys-
tems. Problem solving involves elaborate reasoning strategies which KADs tries to capture
through the definition of task and strategic knowledge. In the model of expertise the em-
phasis lies on the internal control of reasoning. KADS assumes that it is possible (at least
to some extent) to study the internal behaviour of the system (the model of expertise)
and the interactions with the outside world (the model of cooperation) in parallel.

While the KADS approach may be sufficient for systems that work mainly in “batch-
mode” (e.g. certain diagnostic or configuration systems), the vocabulary offered for de-
scribing control appears insufficient for real-time KBs applications such as process control
systems. State-transition diagrams are more appropriate for these type of applications.
Integrating state-transition diagrams with the existing KADS constructs can be achieved
easily, e.g. by defining tasks as activities or actions or by allowing pseudo-code descrip-
tions of the invocations of activities and/or actions. Given the growing complexity of
conventional systems, these extensions can be useful for these systems as well.

8.5 The Role of the Analysis Model in Design

In this section some brief remarks are made about the role of the analysis model in the
design process. As discussed in Ch. 6. KADS strongly advocates a “structure-preserving”
approach to design: preserving the structure and the content of the information in the
analysis model during design and implementation. It was argued that this approach to
design facilitates code reusability, system maintenance, and explanation of the system’s
behaviour in a for humans intelligible way.

Similar ideas are put forward in the object-oriented approaches to analysis. Some
quotes from OMT:

“Optimization of the design should not be carried to excess, as ease of im-
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plementation, maintainability and extensibility are also important concerns.”
(p. 227)

“Object-oriented design is primarily a process of refinement and adding
detail.” (p. 228)

“Design decisions should be documented by extending the analysis model,
by adding detail to the object, dynamic and functional models.” (p. 253)

In oMT design is viewed as a process of adding detail to the three parts of the analysis
model. For example, additional classes may be introduced for optimisation, but may not
corrupt the original structure.

OMT is not the only object-oriented approach that takes this point of view on design.
The object-oriented approach described by [Coad & Yourdon, 1991] views design along
similar lines:

“moving from 00A* to 00D® is a progressive expansion of the model.
...The expansion is in contrast with the radical movement from data flow

diagrams to structure charts .... Such a movement is abrupt and forever
disjoint: the designers get a hint from analysis and then go off to the “real”
design. ...Moreover, meaningful traceability - one which supports the process

itself — withers away.” (p. 178)

In MsaA, analysis and design are viewed in a more traditional way. The functions in the
data-flow diagrams are mapped onto modules in “structure charts”. These modules are
reorganised on the basis of principles concerning coupling and cohesion of modules. No
explicit attention is given in this transformation to the preservation of information.

8.6 Conclusions

The aim of this comparison was twofold: (i) to identify bridges between the two fields,
and (ii) to identify common research areas in which results from one filed could be of use

for the other field.

Bridges The common ground between csE methods and KADS lies in the use of the
three perspectives: data, function and control. Each of the methods studied constructs
models along all three dimensions, albeit with a different emphasis. Fig. 8.2 summarises
the various techniques that each method recommends for constructing models along each
dimension. In OMT these perspectives are explicit sub-models of the modelling framework.
In the KADS model of expertise, the three perspectives are integrated into one model. This
similarity of perspectives between CSE and KADS is in our view a strong indication that
KADS is not just an ideosyncratic method for constructing KBs’s, but is based on the same
foundations as conventional methods.

With respect to data modelling we have seen that KADS and cSE offer similar con-
structs, based on techniques from semantic database modelling. The main difference lies
in the fact that in KADs (and in KE in general) more information is viewed as being part

*Object-oriented analysis
®Object-oriented design
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of the data perspective. For example, part of the information present in process specifi-
cations such as decision tables is included in the data model. This explains the need for
additional vocabulary in the KaDs data modelling language.

With respect to the functional perspective it can be concluded that the concept of
tasks, inferences and inference structures is quite compatible with data-flow diagrams.
The main difference is the extra layer of abstraction that KAps through the functional
role names and the separate specification of data-function mappings.

With respect to the control perspective we have seen that there is a different emphasis
in KE and cSE. In the first, the control description is focused on the internal control of
reasoning; in the latter the control mainly describes the interaction between the system
and the outside world.

Research topics The field of data modelling is clearly a common research area of
KE and ¢skE. The development of data modelling languages which can be used for both
types of systems would facilitate the integratrion of KBS and conventional applications.
The study of reusable ontologies is a longer-term research goal. In principle, ontologies
can provide powerful support for data modelling.

It appears worthwhile to study whether the KADS approach to functional modelling,
in which one abstracts from the data model and tries to define types of functions, can also
be used in ¢sE. This paves the way for reusing functional descriptions in a similar way as
provided by interpretation models in KADS.

KADS should consider whether it is useful to include techniques such as state-transition
diagrams to describe control, especially for real-time KBS applications.



Chapter 9

Differentiating Problem-Solving
Methods

Problem solving methods (PSM’s) are important in constructing modular and reusable knowledge-based
systems, as they specify the different types of knowledge used in knowledge-based reasoning, as well
as under what circumstances what knowledge is to be applied. We argue that there is a need for a
more rigorous description of PSM’s than the prevailing verbal and/or computational descriptions, because
this facilitates clarifying, communicating and comparing problem-solving knowledge. In this chapter an
attempt is made to describe the Cover-and-Differentiate method for diagnosis in a more formal way, and
to compare this method to Heuristic Classification. We bring to light considerable differences with the
heuristic classification method, although in the original literature Cover-and-Differentiate was said to be
a specialised form of it. We are not claiming that our model is the only correct one. However, the account
given in this chapter can be a starting point for a precise, knowledge-level, definition of what methods like
Cover-and-Differentiate actually do.

This chapter is a revised version of a paper presented at EKAW’92. Reference: G. Schreiber,
B. Wielinga, and H. Akkermans. Differentiating problem solving methods. In Th. Wetter, K-D. Al-
thoff, J. Boose, B. Gaines, M. Linster, and F. Schmalhofer, editors, Current Developments in Knowledge
Acquisition - EKAW’92, Berlin/Heidelberg, 1992. Springer Verlag.

9.1 Introduction

A generally accepted principle underlying Knowledge-Based Systems (KBs) is that they
solve problems through the application of domain specific knowledge. On the basis of this
principle many useful systems have been developed [McDermott, 1988], some of which are
in operational use. However, the principle of problem solving power through application
of domain knowledge does not specify what the nature of the knowledge is that these
systems use and under what circumstances what knowledge should be applied, i.e. the
method of solving a particular problem through application of knowledge still needs to
be explicated. In recent work [McDermott, 1988; Clancey, 1983] several of such Problem
Solving Methods (Psm’s) have been described, but so far no comprehensive theory of PsM’s
has been put forward. The goal of this chapter is to investigate the nature of problem
solving methods through an analysis of methods that were used in some well known Al
programs. The application task is diagnostic reasoning. The example psM this chapter
focuses on is the Cover-and-Differentiate method [Eshelman et al., 1988; Eshelman, 1988].
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We also illustrate how several methods, which are seemingly alike at the level of informal
description, can be compared and can be shown to be different, when a more rigorous
PSM analysis method is applied.

What constitutes a psm? It is progressively becoming clear [Clancey, 1985b; Wielinga
& Breuker, 1986; Wielinga et al., 1992a; Steels, 1990] that there are a number of basic
ingredients that are needed in order to specify a problem solving method. These ingredi-
ents are types of knowledge which would be instantiated for each specific method. There
are at least the following types of knowledge required in the specification of a PsM.

1. Knowledge describing which inferences are needed in an application. Inferences (in
KADs: “knowledge sources”) describe the elementary reasoning steps that one wants
to make in some domain and the roles that pieces of domain knowledge that are
manipulated by the inferences play in the overall reasoning process (e.g. finding
or hypothesis; in KADs “meta classes”). The set of inferences is often graphically
represented in a diagram showing the input-output dependencies between inferences:
the so-called “inference structure”.

2. Knowledge about the structure of the domain-specific knowledge required to per-
form inferences. For example, an inference in which quantitative data are abstracted
into qualitative findings requires domain knowledge which relates pieces of domain
knowledge that play the role of data and findings (e.g. definitions, generalisations
or qualitative abstraction relations [Clancey, 1985b]). This type of knowledge corre-
sponds to the notion of domain view in Kaps [Wielinga et al., 1992a).

3. Control knowledge which is used to determine how inferences are sequenced in a
particular situation. The notion of a task is used to structure this control knowledge.
A task defines a typical decomposition into inferences and /or sub-tasks together with
internal sequencing information.

The different types of knowledge can be viewed as located in layers which have a object-
meta-like relation. An inference applies domain knowledge with a particular structure;
control knowledge invokes inferences.

Generally speaking, there are two ways in which psMm’s are described in the literature:
the informal description using either natural language or an informally defined graphical
notation [Breuker et al., 1987; Wielinga et al., 1992a], and a computational description,
which is formal and unambiguous, but difficult to interpret and dependent on implemen-
tation details. Both ways of describing PsM’s make it hard to compare methods, let alone
to develop a theory of problem solving in KBS. There is a clear need for an intermediate,
formal but implementation-independent, description of psMm’s.

In this chapter we show how formal methods can support the definition of the different
knowledge types required for specification of psm’s. There are several reasons why a
formal account of PsM’s is useful. First, formal models are a means for concise and precise
communication of psM’s. Second, formal models help to identify distinguishing properties
of different PsM’s and thus to compare them. A third reason is re-usability. When we
specify different knowledge types in a modular way, modules can be re-used over different
pPsM’s. Such re-usability is of great practical importance for building KBs’s. Last but not
least, formal approaches to modelling PsM’s can provide first steps towards a theory of
automated problem solving.



Chapter 9. Differentiating Problem-Solving Methods 173

9.2 Framework for Specification of PSM’s

In several recent papers [Akkermans et al., 1992; van Harmelen et al., 1990; van Harmelen
& Balder, 1992], we have developed and applied a logic-based framework called MIL?,
which is based upon the KADs approach and allows for a formal specification of PsM’s. As
pointed out in the Introduction, we propose to define a PsM in terms of different categories
of knowledge, categories that are also distinguished in the KADS conceptual modelling
framework. Our specification language ML? has been designed such that these various
knowledge categories and types are expressed by means of different formal constructs.
Basically, an ML? description is a structure of logical theories. The choice of both the
logic and the structure has been derived from the nature of the various elements occurring
in the KADS framework, as briefly indicated below.

Categories of knowledge Our description of psm’s will be in terms of different cate-
gories of knowledge: domain, inference, and task or control knowledge. This cate-
gorisation recurs in ML?, each category being represented as a set of logical modules
of a certain structure. Thus, in an ML? specification the various categories occur as
separate components in a one-to-one relation to the ‘layers’ of a KADS conceptual
model.

Domain knowledge Domain knowledge is modelled in ML? as a collection of logical
theories. Each theory consists of a signature and a set of axioms. The logical lan-
guage is usually first-order order-sorted predicate calculus (order-sorted Fopc), but
it can be extended to include, for example, modal operators. Domain knowledge
can be structured, since ML? allows for the modular combination of separate sub-
theories. Typically, such a subtheory or module corresponds to a specific domain
model. This modular structuring and recombination is done by means of simple
meta-theoretic operators, such as the import operator which generates the union of
two theory modules.

Inference knowledge Also the knowledge at the inference layer is specified in terms of
a modular order-sorted Fopc. The modular structure is such that the well-known
inference structure diagrams in KADS and in ML? are identical. Inference steps
(knowledge sources) and their inputs and outputs (metaclasses) are thus visible
in ML? as separate components. Knowledge sources are specified as full-fledged
logical theories, whereas metaclasses are mainly given by signature only (defining
the language used at the inference layer).

Task knowledge Task knowledge contains control and procedural aspects which cannot
be naturally modelled in terms of FopC. Therefore we use for these aspects a different
logical language, viz. quantified dynamic logic (QDL, a multi-modal logic) that is able
to speak about the execution of inference steps and has built-in notions of sequence,
iteration and selection. This QDL is a superset of the language used at the inference
layer such that task decompositions, structures and procedures can be written down
formally. Thus, it is possible to formally express procedural knowledge and have a
declarative semantics. However, in the present chapter we will mainly deal with the
domain and inference knowledge, and hardly touch upon the control aspects.
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Links between categories In ML? the relation between the domain and inference knowl-
edge is a meta-relation. This is a natural solution since the domain layer describes
the content of expert knowledge, while the inference layer speaks about the inferen-
tial use of the domain knowledge. The link between these layers is specified in by a
so-called lift definition. 1t gives domain model statements a name at the inference
layer by establishing a naming relation. The mapping is achieved via sets of rewrite
rules. Such a user-definable naming makes it possible to give meaningful names to
domain knowledge elements that express the role that they play in the inference
process. In addition to meaningful naming, ML? employs so-called reflection rules.
For example, in the context of a specific inference step one can ask by means of a
reflection rule whether a certain domain statement is present as an axiom or can be
derived. In the following we will see several examples of these specification elements.

For a further technical discussion the reader is referred to the above-cited papers on
MIZ2.

This specification framework will be used in the sequel for the description of psm’s,
and in particular for our analysis of the Cover-and-Differentiate method.

9.3 A Model of Cover-and-Differentiate

In this section parts of a formal description in ML? of the problem-solving method cover-
and-differentiate (c&D) are presented. The full formal description can be found in [van
Harmelen et al., 1990]. The information sources for this description [Eshelman et al., 1988;
Eshelman, 1988] do not supply a complete description of all the details of c&D. Parts of
the underlying specification are thus a more or less “educated guess” about the workings
of c&D. The idea behind this description is to create a platform to discuss what Psm’s
like c&D actually do and to be able to compare them.

Note All free variables in the theories given below are implicitly assumed to be
universally quantified.

9.3.1 Conceptual description of C&D Cover-and-differentiate [Eshelman, 1988] is
a problem solving method for diagnostic tasks. The main knowledge structure on which
c&D operates is a causal network. The nodes in this network are expressions about the
state of the system being diagnosed. Reasoning basically comprises two types of inferences:
cover inference steps in which the causal network is used in an abductive manner to
generate potential explanations for nodes that need to be explained, and differentiate
inference steps in which these potential explanations are confirmed or disconfirmed by
applying additional knowledge in the network. c&D uses in its reasoning two general
principles: ezhaustivity (every symptom should be explained), and exclusivity (a form of
Occam’s razor: all things being equal, parsimonious explanations are preferred). The
solution that c&D comes up with is an explanation path from symptoms to (potentially
multiple) causes. The solution can be a partial one.

One of the points that triggered the work presented in this chapter is the following
quote from [Eshelman, 1988; p. 37]:
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“MOLE is an expert system shell that can be used in building systems that use
a specialised form of heuristic classification to solve diagnostic problems.”

In the comparison between Cover-and-Differentiate and Heuristic Classification in
Sec. 9.4 we will come back to this statement and show that there are a number of funda-
mental differences between these two problem solving methods.

9.3.2 Structure of domain-specific knowledge in C&D

Concepts Two types of concepts are distinguished: states and qualifiers. States are
the nodes in the causal network. Fig. 9.1 shows the example causal network defined in
this section. The start-nodes in the causal network are the initial causes, the end-nodes
are the complaints or symptoms. and the intermediate ones are internal states. Qualifiers
are observations, that do not play the role of symptoms. These are used to qualify (or
disqualify) the “truth” of a state or of a causal relation between states.

initial causes

coronary artery coronary artery coronary artery
obliteration obliteration obliteration
100% 90% 70%

physical state

stress
qualifier
mvocardial myocardial
blood CPK - - - - - > n)clscrosis ischaemia
qualifier
internal states
myocardial angina
infarction pectoris

retro-sternal
pain

symptom

FIGURE 9.1: Example causal network for Cover-and-Differentiate

Relations In c&D, two types of relations are distinguished between states and/or
qualifiers. These relations are represented in the domain theories as axioms.

Causal relations These relations define a causal network from causes to symptoms, po-
tentially via intermediate states.
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The theory causes shows some axioms representing causal relations in a domain of
ischaemic heart diseases!. The axioms can be read as “some state (may) cause some
other state”. We use a modal operator < (“it is possible that”) to indicate that a
state transition is possible, but not necessary.?.

theory causes
axioms

< (coronary-artery-obliteration(70-percent)
— myocardial-ischaemia(present)) ;

<& (coronary-artery-obliteration(90-percent)
— myocardial-ischaemia(present)) ;

<& (myocardial-ischaemia(present)
— angina-pectoris(present)) ;

< (angina-pectoris(present)
— retro-sternal-pain{present)) ;

coronary-artery-obliteration(100-percent)
— myocardial-necrosis(present) ;

<& (myocardial-necrosis(present)
— myocardial-infarction(present)) ;

<& (myocardial-infarction(present)
— retro-sternal-pain{present)) ;

Qualification relations States can be qualified through certain observations. The effect
of such a qualifier can be positive (a state becomes more likely) or negative (a
state becomes less likely). In a similar spirit, causal relations between states can be
qualified through observations. The effect of such a qualifier can be positive (a causal
relation becomes more likely) or negative (a causal relation becomes less likely).

theory manifestations
axioms
blood-CPK(high)
— myocardial-necrosis(present) ;

physical-state(stress)
- &
(coronary-artery-obliteration(70-percent)
— myocardial-ischaemia(present)) ;

Lift definition The required domain structure for c&D is specified by providing
meaningful names (see Sec. 9.2) for the domain specific axioms shown above. This is
done in a so-called [lift definition. The connection between axioms and their names is
realised through a set of rewrite rules, that specify the relation between object-level (=
domain-specific) and meta-level (= psM-specific) knowledge structures.

In the lift definition domain-schemata below we show how the axioms of the theories
presented above can be mapped onto names on a meta-level. The names are in this case

!To save space, we have left out the declaration of the signature (sorts, comstants, functions, and
predicates) and also of some import operations. For more details on these issues, see [Akkermans et al.,
1992]

2This use of modal logic presents no problems, as we do not deduce new theorems in this theory. See
also Sec. 9.3.3
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uninterpreted function terms such as cover-relation(S1, S2) and correspond to what we
call a meaningful name. The first argument of the mapping function lift in the rewrite
rules is the name of some object-level theory; the second argument specifies an axiom
schema in this theory. The right-hand side of the rewrite rule maps instances of such a
schema onto names in the meta-theory, such as a complex term of type cover-relation.

lift-definition domain-schemata
from causes, manifestations
to cover-theory, anticipate-theory, prefer-theory, ...
signature
sorts:
% event has two sub-sorts
(event (state qualifier))
functions:
cover-relation: state x state — ...
anticipate-relation: state x state — ..
prefer-state: qualifier x state — ..
rule-out-state: qualifier x state — ..
prefer-connection: qualifier x state x state — ..
rule-out-connection: qualifier x state x state — ..
lift-variables: P¢, P>, P3: atom
mapping
lift(causes, & (P — P2) )
— cover-relation([P1] state, [P2] state) ;
lift(causes, Py — P3)
— cover-relation([P1] state, [P2] state) ;
lift(causes, Py — P3)
— anticipate-relation([P1] state, [P2] state) ;
lift(manifestations, Py — P2)
— prefer-state([Py]:qualifier, [P2]:state) ;
lift(manifestations, Py — = P3)
— rule-out-state([P1]:qualifier, [P2]:state) ;
lift(manifestations, Py — (P2 — P3))
— prefer-connection([P1]:qualifier, [P2]:state, [P2]:state) ;
lift(manifestations, P; — = (P2 — P3))
— rule-out-connection([P1]:qualifier, [P2]:state, [P2]:state) ;

The approach of separating the two views of knowledge structures (domain-specific
and psM-specific) has important advantages. Domain-specific theories could be re-used
in other Psm’s. Multiple mappings can facilitate multiple use of essentially the same
knowledge. For example, the non-modal implications in the causes theory are mapped
onto two different names: P, — P, maps to both a cover-relation symbol and a anticipate-
relation symbol (see the second and third lift rule). In c&D , this separation also keeps
intact two distinct views on nodes in the causal network, namely the node as an expression
about a value of an attribute of the system (at the object level) and the node as an object
in its own right (at the meta level).

9.3.3 Inference knowledge in C&D Cover-and-differentiate operates on a causal
network of states. This network is actually present in two forms:

1. The causal network itself as defined by the cover relations. These relations describe
possible explanations.
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2. The explanation network that is built during problem solving. The explanation
network is a subset of the causal network and can be viewed as its instantiation for
a particular problem.

The explanation network consists of three subsets, namely considered explanations, ac-
cepted (= preferred) explanations and rejected explanations.
The inference theories operate on the following data elements:

1. Element of the three subsets of the explanation network: (i) considered explanations,
(ii) accepted explanations, or (iii) rejected explanations.

2. A focus: a state in the considered or accepted explanation network that is not
explained by a another state.

3. A finding: some observed state or qualifier.

These data elements correspond to what were called roles earlier.

theory role-defs
use domain-schemata
signature
predicates
considered-explanation: state x state
accepted-explanation: state x state
rejected-explanation: state x state
focus: state
finding: state V qualifier

The phrase “explanation network” as used in the rest of this text refers to the consid-
ered solutions. Note that inference theories specify elementary inference steps. Updates
of the sets of considered, accepted and rejected explanations are handled in the control
knowledge. Through the use clause one declares that the theory needs access to the
object-level terms provided by the lift definition domain-schemata.

The elementary inference steps are described as a set of first-order theories, that use
the domain schemata described in Sec. 9.3.2. Fig. 9.2 depicts the inference steps (the
ovals) we have specified for c&D and their input-output (the boxes).? The inferences can
be divided into two groups:

1. Inferences that use the domain knowledge defined by the lift definition domain-
schemata. Examples of these inferences are cover, anticipate, prefer and rule-out.

2. Inferences that reason only about the current state of working memory, e.g. the
current contents of the explanation network. Examples of such inferences are the
theories describing the principles of exhaustivity and exclusivity.

Cover Inference The cover inference generates considered explanations. It uses
the cover-relation to find a potential explanation of a state that is not yet explained
(the focus). The cover inference step builds the explanation network by going backwards
through the causal network. Cover models one aspect of the exhaustivity principle of c&n:
all symptoms should be explained, whenever possible.

*Note that this diagram does not prescribe a particular order in which the actual problem-solving should
be carried out. This is specified as separate control knowledge.
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FIGURE 9.2: Inferences in Cover-and-Differentiate: their input-output dependencies.

theory cover
use domain-schemata
import role-defs
axioms
focus(S1) A aske(causes, cover-relation(Sz, S1))
— considered-explanation(S2, S1)

Ask¢ is one of the reflective predicates. It requests the lift definition domain-schemata
to find out whether the complex cover-relation term can be mapped onto an axiom of the
“potential-causes” theory. Note that the predicate considered-explanation is an example
of a description of the role that an object (or in this case, a tuple of objects) plays in
the inference process. These role predicates are defined in the role-defs theory specified
earlier. This theory is imported into the inference theory.

The structure of the defining axiom of inferences that make use of domain knowledge
is typically:

< inputs > A aske(domain knowledge) —< output >

where the inputs and outputs are role-names of objects in the reasoning process.

Anticipate Inference The differentiation part of c&D is more complicated than
covering and consists of a number of elementary inferences (see also below). The antici-
pate inference is part of this differentiation process, in which the considered explanations
generated by cover are pruned. The anticipate theory defines that if a state S1, that is
considered as an explanation for a state 52, should always cause some other state S3, then
53 should be true. If this is the case, then S1 should be accepted as an explanation of S2
(and S3), else it should be rejected.

As inference in KADS have only one output type (cf. Ch. 5), the anticipate inference is
defined in two separate theories. Anticipate-1 produces accepted explanations; anticipate-2
produces rejected explanations.
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theory anticipate-1
use domain-schemata
import role-defs
axioms
considered-explanation(S1, S2)
A aske(causes, anticipate-relation(S1, Ss))
A finding(Ss)
— accepted-explanation(S;, S2) A accepted-explanation(S;, Ss3)

theory anticipate-2
use domain-schemata
import role-defs
axioms
considered-explanation(S1, S2)
A aske(causes, anticipate-relation(S1, Ss))
A = finding(Ss)
— rejected-explanation(S1, S2) A rejected-explanation(S1, Ss)

We do not define finding here. It is assumed to find out whether a state is part of
the explanation network or to query the user for a value, whatever is appropriate.

Prefer & Rule-out Inferences Prefer and rule-out are also part of the differenti-
ation step of c&.

The prefer theory uses two prefer relations (prefer-state and prefer-connection) to prefer
a particular state as the explanation of a state over other states that are not explicitly
preferred. The preference is established by the presence of qualifiers for this state or
causal relation. E.g., in the example causal network of Fig. 9.1 the finding that a patient
is physically stressed would give rise to a preference for the state with a smaller degree
of coronary artery obliteration as the explanation of myocardial ischaemia (i.e. oxygen
shortage in the heart muscle).

theory prefer

use domain-schemata

import role-defs

axioms
considered-explanation(S1, S2)
A aske(manifestations, prefer-state(S1, Q))
A finding(Q) —

accepted-explanation(Sy, S2)) ;

considered-explanation(S1, S2)
A aske(manifestations, prefer-connection(S1, Sz, Q))
A finding(Q) —

accepted-explanation(Sy, S2) ;

The structure of the rule-out theory is similar to the prefer theory. This inference
produces rejected instead of accepted explanations using another partition of the domain
knowledge (rule-out-state and rule-out-connection).

theory rule-out
use domain-schemata
import role-defs
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axioms
considered-explanation(S1, S2)
A aske(manifestations, rule-out-state(S;, Q))
A finding(Q) —
rejected-explanation(S1, S2)) ;

considered-explanation(S1, S2)
A aske(manifestations, rule-out-connection(S1, Sz, Q))
A finding(Q) —

rejected-explanation(S;, S2) ;

Exhaustivity c&D assumes that every state that can be explained, must be ex-
plained. This is called the exhaustivity principle. This principle can be used to accept an
explanation by ruling out the candidate explanations.

The theory below specifies this use of the exhaustivity principle. The axiom states
that a potential explanation of a state can be accepted, if there are no other potential
explanations of the state. This is the case if all other explanations were ruled out or if the
explaining state was the only explaining state in the causal network.

theory exhaustivity
import role-defs
axioms
considered-explanation(S1, S2) AND
— 3 S3 considered-explanation(Sa, S2)

—

accepted-explanation(Sy, S2)

N.B. We assume that the task knowledge specification ensures that explanations that
are rejected are no longer member of the set of considered explanations.

Exclusivity FEzclusivity models the exclusivity principle of cover-and-differentiate.
Exclusivity is a form of Occam’s razor: all things being equal, parsimonious explanations
are preferred.

The axiom below says that if a state 57 explains a state S3 and also some other state
S4, then this explanation should be preferred above a competing explanation S2 for S;
where the explaining state explains only S5.

theory exclusivity
import role-defs
axioms
considered-explanation(S1, S3) A considered-explanation(Sz, S3)
A (3 S4 considered-explanation(S1, S4) A Sa # S4)
A = (3 S5 considered-explanation(S2, S5) A Sz # S5)
— accepted-explanation(S;, Ss)

An interesting feature of these last two theories is that, unlike the other theories, these
do not make use of domain knowledge (i .e. there is no ask statement). This is fully in
accordance with the generality of the principles. To re-use the theories in another PsMm it
would be sufficient to rename the predicate-symbols.
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Establish focus The establish-focus inference searches for states which are consid-
ered (or accepted) as an explanation for another state, but need themselves to be explained
as well.

theory establish-focus
import role-defs
axioms
(3 S2 considered-explanation(S;, Sz))
AND
(— 3 S3 considered-explanation(Ss, S1))
— focus-state(S;)

This last theory also does not apply domain-specific knowledge.

9.4 Analysing Cover-and-Differentiate

Given a formal account of cover-and-differentiate as a problem solving method for a di-
agnosis task, we are now in a position to use the formalisation for analysing the relation
of c&D to other methods for diagnosis. Eshelman [Eshelman, 1988] states that c&D is a
form of heuristic classification (HC) [Clancey, 1985b]. A formal description of parts of HC
is presented in [Akkermans et al., 1992]. When we compare c&D and HC there appear to
be a number of fundamental differences.

1. A crucial elementary inference step in HC is the abstraction inference: the left part
of Clancey’s “horseshoe” [Clancey, 1985b] (see Fig. 5.16). This abstraction step in
the HC problem solving method is used to abstract specific findings (e.g. patient is
alcoholic) to more general ones such as “compromised host”. These general findings
are then used in an association step to generate hypotheses. It is clear from the
formal definition of c&D that there is no equivalent of such abstraction steps in the
c&Dp method. Findings are either symptoms or qualifiers and are directly associated
with hypotheses (states that explain other states). Of course abstraction could be
added to c&D, but this would require an additional domain theory describing the
relations to be used in the abstraction inferences. In addition it would require the
definition of an abstract problem solving step, changes to the cover-theory would
be needed and a new role would have to be defined: abstracted-data. Although
these changes are not very difficult to make in the formal model, they would yield a
different structure of the knowledge at several levels.

2. A second difference concerns the way in which hypotheses (considered-explanations)
are generated. In the cover-theory these hypotheses are generated through a query
of the potential-causes theory concerning cover-relations. This means that only
those hypotheses are generated which are directly linked to the symptom being
focussed on. In HC hypotheses can be generated from an etiological hierarchy through
trigger relations. A trigger relation can relate one or more symptoms to a hypothesis
anywhere in the hierarchy. So, the method for generating hypotheses in HC is more
flexible and more of a heuristic nature than the one in c&D. Changing the c&p
model to incorporate such heuristic associations would require significant changes.
In order to maintain the exhaustivity principle (all symptoms are explained) a new
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inference would be needed. This inference would establish an explanation path
between hypotheses somewhere in the causal network and the symptoms. Moreover
the simple control structure of c&D would need to be replaced by a more complex
one, since the set of covered symptoms would have to be derived.

3. A third difference between c&D and HC concerns the way in which the differential is
reduced. In c&D the set of hypotheses is reduced by applying rule-out anticipation
and preference inferences. Each of these inferences applies to a single hypothesis.
The HC method differentiates between competing hypotheses by searching for dis-
criminating evidence. For example, the equivalent in HC of the anticipate inference
would look like the theory below.

theory hc-anticipate
axioms
considered-explanation(S1, S3) A considered-explanation(S2, S3) AND
aske(causes, anticipate-relation(S1, S4)) AND
aske(causes, anticipate-relation(S2, — S4))

(finding(S4) A rejected-explanation(S2, §3)) OR
(— finding(S4) A rejected-explanation(S1, S3))

The premise of the theory mentions two considered-explanation atoms. The rea-
son why in c&p differentiation can be performed on single hypotheses is that the
exhaustivity principle allows c&D to prefer hypotheses by ruling out alternatives.
There are thus essential differences between what is called differentiation in c&p
and HC.

4. In HC hypotheses (internal states) are structured in a hierarchy which is used to
generalise or specialise a hypothesis. No such hierarchical relations are present in
the c&D domain theories, nor are they used in the inferences. Again such knowledge
could be incorporated in a new domain theory and inferences and tasks could be
updated accordingly.

In fact, there are many more differences. The solution in HC contains in principle one
cause; in ¢&D the solution can consist of multiple causes and includes the causal pathways
to these causes.

If we step back and take a global view on both c&D and HC, we observe some simi-
larities. Both PsMm’s are specialisations of a general generate and test schema. In c&D the
generate process is simply represented by the cover-theory. In HC this process is repre-
sented by a more complex combination of abstraction and heuristic association. The test
process in c&D is realised by the differentiate task, which in turn applies the rule-out,
prefer and anticipate inferences. In HC the test is performed through a different differen-
tiate task using the hierarchy of hypotheses. Concerning the principles that underlie HC
and c&D we see that both PsM’s are based on abductive generation of hypotheses, but
that c&D requires the symptoms to be fully explained by the solution, and that HC only
requires that a solution is consistent with the symptoms.

All in all, we can conclude that c&D and HC have some similarities when viewed at a
sufficiently high level of abstraction, but that the differences at a more detailed level turn
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out to be considerable. The given formal account has thus shown that is not warranted
to view c&D as a special form of HC. In addition we can see how new PSM’s can be
constructed by combining the ingredients of both models.

9.5 Conclusions

We have sketched in this chapter a framework for the analysis of problem solving methods.
This has been illustrated by constructing a specification of the Cover-and-Differentiate
method that can be used for certain types of diagnosis tasks. On this basis, we have
brought to light considerable differences with the heuristic classification method, although
in the original literature Cover-and-Differentiate was claimed to be a variant of it. Different
specifications of the Cover-and-Differentiate method are conceivable. We are not claiming
that our model is the only correct one, nor that it fully reflects the actual implementation
in MOLE. However, the account given in this chapter can be a starting point for a precise
definition of what Cover-and-Differentiate is.

The main conclusion is that analysis and specification of problem solving methods of
a type as exercised in this chapter, is a useful means for clarifying and communicating
the precise nature of problem-solving knowledge that underlies reasoning in knowledge-
based systems. Informal statements in the literature about methods such as Cover-and-
Differentiate appear to be imprecise, and sometimes misguided, if not incorrect. Thus,
we need specification methods for psm’s that are better than saying that the computer
program is the ultimate specification. This chapter has suggested some ways how this may
be achieved.

A long-term goal behind the present work is the idea to combine components of various
problem-solving methods into new PsM’s that are tailored to the domain application. For
example, one could add to a Cover-and-Differentiate PsM an abstraction inference (an
element of Heuristic Classification not present in Cover-and-Differentiate) if it appears
that the domain data space is too large. This is a constructive use of PsM’s and their
components which however requires specifications of PsMm’s that are well-structured into
components and clearly define the nature of these components, as well as the assumptions
under which they may be used. Ultimately, this should result in knowledge-engineering
libraries of reusable and combinable PsM components. Although mainly used for analysis
purposes here, we believe that the methods discussed in this chapter provide a useful step
in this direction.
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Conclusions

In this thesis we studied the application of Newell’s idea of a “knowledge level” in the
process of constructing knowledge-based systems. In our view a knowledge-level descrip-
tion is an essential ingredient in any principled approach to building intelligent systems.
This is surely not to say that the approach outlined here is the only one. It should just
be considered as a attempt to put the the knowledge-level idea to work in a consistent
manner to the level of detail necessary for practical usage in knowledge engineering.

10.1 Explication of Assumptions behind KADS

In Ch. 2 and Ch. 3 assumptions behind KADS were explicated. A central assumption is
that the KADS models of expertise can be seen as an attempt to reify the knowledge-level
hypothesis for practical use in knowledge engineering.

A second assumption of KADS is that a knowledge-level description is necessarily under-
specified for the purpose of constructing a symbol-level system that implements this de-
scription. Just like a physical law is no recipe for building a numerical simulation program,
a knowledge-level model is no blue print for the artefact. In each case, a number of de-
tailed “symbol-level” decisions still have to be made. It is possible to construct for some
subset of knowledge-level descriptions automated transformation procedures which prede-
fine symbol-level decisions and translate the descriptions into a working system, but this
does not corrupt the premise that a knowledge level model (the KaADs model of expertise)
and its symbol-level realisation are fundamentally different levels of descriptions.

A third assumption of KADS is that a knowledge-level typology of the elements nec-
essary for the required problem-solving behaviour provides important safe-guards against
computationally intractable systems. This is fully in line with McCarthy’s point that
epistemological adequacy is directly related to computational adequacy. Finer grained
epistemological distinctions prevent unrestricted application of domain knowledge and
thus lead to more efficient and tractable systems.

An assumption is also that the knowledge-level provides the possibility of both ex-
plaining and predicting the behaviour of the resulting system. These predications are of a
particular type, namely at the level of reasoning steps (which type, under what conditions)
that we can expect an intelligent to perform.
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10.2 Principles and Techniques Developed

With respect to the nature and role of KADS model of expertise we studied a number of
more detailed methodological topics, notably (i) the specification of domain knowledge, (ii)
the construction of inference structures, and (iii) the design process: mapping a knowledge-
level description onto a symbol-level representation.

Domain-knowledge specification Data modelling methods in conventional soft-
ware engineering and those used in knowledge engineering are converging. The DDL de-
veloped in this thesis already is a synthesis between conventional data modelling and A1
representation languages. The DDL is based on an analysis of KBS-specific requirements
for data modelling. It provides a generalisation over various symbolic representation lan-
guages. This is exactly what one would want from a knowledge-level description of domain
knowledge, because it provides the key to reusability. What is still needed is a more formal
theory of the constructs in languages such as this DDL, comparable to Chen’s theory of
ER models and its extensions.

Construction of inference structures Any methodology for KBS development
needs to provide structured techniques for model construction in order to turn this process
from an art (which it currently often basically is) into structured engineering. Ch. 5
presents a structured analysis of the process of constructing inference structures: a crucial
ingredient of KADS models of expertise. The notion of top-down construction of inference
models and the identification of generic components that can support this approach is a
promising approach for this knowledge engineering activity.

The methodology underlying model construction needs to be further developed. The
operations, methods and criteria discussed need to be worked out in more detail. For ex-
ample, it is worthwhile to study various sub-types of the knowledge-differentiation method
in more depth and try to link these to the type of operations that need to be performed
on the inference structure. Also, criteria used in this process are an important subject for
further research. Work on this last topic is being done in the SKBs-A2 project [Benjamins
et al., 1992a] and in the KADSs-IT project.

Operationalisation: from knowledge level to symbol level Operationalisation
of a knowledge-level model should be guided by the “structure-preserving principle”: both
the content and the structure of the information in the model should be preserved in the
final artefact. The skeletal architecture which follows from this principle and from the
structure of the KADS model gives strong guidance for the design and implementation
process and can be the basis for powerful support tools.

Currently, there are a number of research programs that attempt to bridge the
gap between informal knowledge-level models and operational systems, namely (see also
Fig. 10.1):

o Language approach Informal knowledge-level descriptions are mapped onto dedi-
cated operational languages (OMOS, Model-K, etc.), possibly via intermediate for-
mal knowledge-level descriptions. The mapping is a partial one, because the opera-
tional languages limit the expressivity due to executability requirements.
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o Reusable-architecture approach The structure of the knowledge-level model is fixed
to a large extent. This skeletal model is operationalised through a predefined map-
ping onto a reusable, task-specific architecture. This architecture can be instantiated
by the knowledge engineer and/or the expert to derive the actual application.

o Configuration of reusable components and methods The knowledge-level model is
configured from a library of reusable, generic model components (tasks, inference
components, domain schemata). This model is mapped onto operational constructs
in an environment that is based on a structure-preserving skeletal architecture and
which contains a library of reusable pieces of code for implementing particular model
components.

This last approach is the most promising one because it combines the “best of both
worlds”: it facilitates flexibility, reusability as well as executability. The systematic-
diagnosis system (see Ch. 6) is a first step in this direction.

10.3 Applicability

In a methodological study such as this one it is difficult to provide sufficient empirical
evidence for the claims being made. We have made an effort to use as much as possible real-
life examples to illustrate applications of the ideas, principles and techniques presented.

The applications in the audio domain illustrate the general principles underlying KADS,
the proposed data modelling language, the refinement of inference structures and the
realisation of a dedicated support environment based on the structure-preserving principle.

The Sisyphus application illustrates the use of the DDL. It provides a detailed example
of a principled process of model construction. It also shows clearly how the structure-
preserving principle can be applied to build a working system that meets the requirements
set out in Ch. 6. The resulting system is a clear example of an instantiation of the skeletal
architecture defined in Sec. 6.4.

The model of heuristic classification, as realised in the NEOMYCIN, was used in many
places as a reference point: particularly in the description of model construction, but also
in the example operationalisation of the “abstract & specify” example.

The Fraudwatch application [Killin, 1992; Porter, 1992] illustrates the advantages of
the combination of knowledge-level modelling and structure-preserving design with respect
to the maintenance and refinement of the operational system.

The StatCons application [de Greef et al., 1987], although not described in detail in
this thesis, has served as a source of inspiration for many ideas presented.

10.4 Evidence for Newell’s Claim

In the introduction it was pointed out that Newell formulated his knowledge-level hypoth-
esis in response to confusion in the knowledge-representation community. The knowledge
level was his proposal for a platform on which one could discuss and compare the merits
of the various languages and applications.

We view this thesis as an attempt to put Newell’s hypothesis to work in the (more
restricted) domain of knowledge engineering. It makes clear that the knowledge-level
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view point is indeed useful in this context. Up till now, most KE theories were either
described informally or through example pieces of code with their inherent computational
biases. In our opinion, this study shows that the knowledge-level is indeed a medium for
discussing and comparing problem solving methods employed by knowledge-based systems
(cf. Ch.9). It also provides the necessary anchor points for describing a methodological
approach to knowledge engineering.

10.5 Perspectives for Knowledge Engineering

It is necessary and essential for the field to start working on comparing and unifying
the various approaches. Some initial efforts in this direction have been undertaken. At
the 1990 European Knowledge Acquisition Workshop the Sisyphus project was initiated,
aiming (amongst other things) at a comparison of approaches to modelling problem solving
by applying these to a standard data-set. Similar activities are also planned for the
1992 Banff Knowledge Acquisition Workshop. In the KADS-11 project the University of
Amsterdam and the Free University of Brussels are investigating a unification of KADS as
presented in this thesis and the Components of Expertise framework developed in Brussels,
while incorporating also ideas from other approaches.

In the short term, cross-validation studies could help in defining a common vocabulary
for describing models of problem solving for knowledge-based systems. This could pave
the way for an exchange of models between research groups and a standardisation of
ingredients of such models. In the longer term, we envisage a research effort aimed at
defining a comprehensive set of commonly shared problem solving methods and generic
domain structures. This is an important (if not the only) route towards improving the
state of the art in KBS development.

In our view, the knowledge-level is the appropriate level for theory development about
knowledge-based systems in general and thus should be a major focus of attention in KE
research. Such theories can be of various nature:

e The definition of the problem solving strategy for carrying out a task (the “problem
solving method”, see e.g. Ch. 9)

e The definition of the relation between input and output of a problem-solving task
(as for diagnosis, e.g. [Console & Torasso, 1990; Konolige, 1992]).

e Task-independent theories about problem solving (e.g. sOAR [Laird et al., 1987]).

Knowledge-level theories also provide a starting point for theory unification. Some
work on this last point has been carried out in the REFLECT project [van Harmelen et al.,
1992].

In summary, knowledge-level modelling in combination with structure-preserving op-
erationalisation offers both a principled approach to the engineering of knowledge-based
systems, as well as a theoretical platform for theory formation about knowledge engineer-

ing.






Appendix A

DDL Definition of the Sisyphus Domain
Knowledge

concept employee;
properties:
smoker: [true, false];
hacker: [true, false];

relation works-with;
argument-1: instance(employee);
argument-2: instance(employee);
semantics: symmetric;

relation smoker-and-non-smoker
argument-1: instance(employee);
argument-2: instance(employee);
semantics: symmetric;
axioms:
V E1,E2:employee
smoker-and-non-smoker(E1,E2)
«—
smoker(E1) = true AND
smoker(E2) = false;

relation on-different-projects
argument-1: instance(employee);
argument-2: instance(employee);
semantics: symmetric;
axioms:
VY E1,E2:employee, P1,P2:project
on-different-projects(E1,E2)
«—
works-on(E1, P1) AND
works-on(E1, P1)
A P1 # P2;
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relation hacker-and-non-hacker
argument-1: instance(employee);
argument-2: instance(employee);
semantics: symmetric;
axioms:
V E1,E2:employee
hacker-and-non-hacker(E1,E2)
«—
hacker(E1) = true AND
hacker(E2) = false;

concept project;
properties:
size: [small, medium, large]

relation works-on;
argument-1: instance(employee);
argument-2: instance(project);

relation head-of;
argument-1: instance(employee);
argument-2: instance(project);
cardinality: min 0 max 1;

concept department-role;
properties:
occupancy: single, shared ;

concept head-of-group;
sub-type-of: department-role;
axioms:
occupancy(head-of-group) = single;

concept head-of-project;
sub-type-of: department-role;
occupancy(head-of-project) = single;

concept researcher;
sub-type-of: department-role;
axioms:
occupancy(researcher) = shared ;

concept manager;
sub-type-of: department-role;
occupancy(manager) = single;
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concept secretary;
sub-type-of: department-role;
axioms:
occupancy(secretary) = shared ;

relation role-interaction;
argument-1: department-role;
argument-2: department-role;
properties:
level: universal:
semantics: symmetric;
axioms:
Level of interaction with
head of group in descending order:
secretary, manager, head of project

relation boss-of;
argument-1: department-role;
argiment-2: department-role;
semantics: transitive;
tuples:
< head-of-group, manager >
< head-of-group, head-of-project >
< manager, secretary >
< head-of-project, researcher >;

relation employee-role;
argument-1: instance(employee);
argument-2: department-role;
axioms:
V E;employee
employee-role(E, head-of-project)
—
3 P:project
boss-of(E, P) A size(P) = large

V E: employee
employee-role(E, researcher)
3 P:project works-on(E, P) AND
— employee-role(E, head-of-group) AND
— employee-role(E, head-of-project);

concept room;
properties:
floor: string;
number: nat;
size: [small, medium, large];
type: [office, other];
location: [central, peripheral];
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relation distance;
argument-1: instance(room);
argument-2: instance(room);
properties:
value: nat;
semantics: symmetric;

relation nexi-to;
argument-1: instance(room);
argument-2: instance(room);
semantics: symmetric;

relation room-preference;

argument-1: department-role;

argument-2: expression(room);

tuples:
< department-role, type(room) = office >
< head-of-group, location(room) = central >
< head-of-group, size(room) = large >
< head-of-project, size(room) = small >
< researcher, size(room) = large >
< manager, size(room) = small >
< secretary, size(room) = large >

relation near-to-preference;
argument-1: department-role;
argument-2: department-role;
properties:

strength: universal;

semantics: symmetric;
tuples:

< head-of-group, head-of-project >

< head-of-group, manager >

< head-of-group, secretary > ;

axioms:

V¥ R1,R2,R3:department-role
level(role-interaction(R1, R2) >
level(role-interaction(R1, R3)

—
strength(near-to-pref(R1, R2)) >
strength(near-to-pref(R1, R3));

structure floor-plan;
parts:
rooms:
set(instance(room));
room-relations:
set(tuple(distance));
set(tuple(next-to);

properties:
floor: string;
axioms:

¥ R1,R2:room € rooms



Appendix A. DDL Definition of the Sisyphus

value(distance(R1, R2)) =
|[number(R1) - number(R2)|

¥ R1,R2:room € rooms
next-to(R1, R2) —
value(distance(R1, R2)) = 1;

structure department;
parts:
employees:
set(instance(employee));
projects:
set(instance(project));
assignments:
set(tuple(works-on));
set(tuple(head-of));
employee-relations:
set(tuple(works-well-with));
set(tuple(head-of));
set(tuple(employee-role));
properties:
name: string;

structure requirements;
parts:

room-related:
set(tuple(room-pref));

positional:
set(tuple(near-to-pref));

interactions:
set(tuple(allocation-interaction));

Domain Knowledge
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Appendix B

Source Code Sisyphus Application

This appendix contains the source code for the example Sisyphus application. It constitutes an
operationalisation of the model of expertise of the office-planning problem described in Ch. 7. The
implementation follows the structure-preserving principles defined in Ch. 6.

B.1 Top-level module
Main
:- module (main, [off_plan/1]).

:— use_module (
[ ’task-interpreter.pl’
, ’domain-access.pl’

.

:= dynamic
trace/1,
trace/2.

:— assert(main:trace(task)).
:— assert(main:trace(inference)).

off_plan(Allocations) :-
domain_retrieval(find_all, component, Employees),
domain_retrieval (find_all, resource, Rooms),
exec_task (’propose allocations’,

[ ’components’ = Employees

, ’regources’ = Rooms

1,

’allocations’ = Allocations).

B.2 Task-level modules

B.2.1 Generic modules

Task interpreter
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:— module (’task-interpreter.pl’, [exec_task/3]).

:— use_module (
[ ’task-declarations.pl’
, ’task-working-memory.pl’
, ’inference-functions.pl’

.

)
% Task execution primitives

%

exec_task(Task, Input, Output) :-
ignore (write_task(start, Task, Input)),
task_interpreter(Task, Input, Output),
ignore (write_task (end, Task, Output)).

task_interpreter(Task, Input, Output) :-
init_task(Task, Input, Output),
init_task_procedure(Task),
once (task_procedure(Tasgk)),
retrieve_output (Task, Output).

init_task(Task, Input, Output) :-
init (input, Task, Input),
init (output, Task, Output),
init (control_term, Task), !.

init (Type, Task, Arg) :-
is_list(Arg), !,
checklist (init(Type, Task), Arg).
init (input, Task, Name = Value) :-
task_input (Task, Name),
data_type (Name, DataType),
data_operation(create, DataType, Name, Value).
init (input, Task, Name) :-
task_input (Task, Name).
init (output, Task, Name = _) :-
task_output(Task, Name),
data_type (Name, DataType),
data_operation(create, DataType, Name, []).
init (output, Task, Name) :-
task_output (Task, Name).
init (control_term, Task) :-
forall( control_term(Task, Name),
( data_type(Name, DataType)
, data_operation(create, DataType, Name, [])

).

init_task_procedure(Task) :-
( clause (task_procedure(Task), _)
; task_structure(Task, TaskStructure)
s assert ((task_procedure(Task) :- TaskStructure))

).

retrieve_output(Task, Output) :-
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is_list (Output), !,

checklist (retrieve_output (Task), Output).
retrieve_output(Task, Name = Value) :-

task_output(Task, Name),

data_operation(retrieve, Name, Value).
retrieve_output(Task, Name) :-

task_output (Task, Name).

%
% Inference execution

%

exec_inference(Inference, Input, Output) :-
maplist (map(input), Input, In),
invoke_inference(Inference, In, Out),
map (output, Output, Out).

map (input, Input, In) :-

nonvar (Input) ,

data_type(Input, _), !,

data_operation(retrieve, Input, In).
map (output, Output, Out) :-

nonvar (Output) ,

data_type (Output, _), !,

data_operation(store, Output, Out).
map(_, Arg, Arg).

0
A
% Control primitives

%

repeat (Body, until(Condition)) :-
repeat,
once (Body) ,
once (Condition), !

transfer_task (obtain, Attribute, Attribute = Value) :-
writef (’\n Please enter the value of %w: ’, [Attribute]),
read(Value),
nl.

%
% Trace info

%

write_task(start, Task, Input) :-
( main:trace(task) ; main:trace(task, Task) ) ->
(  writef(’\nActivating task "%w" \n’, [Task])
, write_arg(’input ’, Input)
).

write_task(end, Task, Output) :-
( main:trace(task) ; main:trace(task, Task) ) ->
( writef (’\nTask "%w" terminated \n’, [Task])
, uwrite_arg(output, Output)
).
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write_arg(Type, Arg) :-

is_list(Arg), !,

checklist (write_arg(Type), Arg).
write_arg(Type, Name = Value) :-

writef (> Y%w: %w = Jw\n’, [Type, Name, Value]).
write_arg(Type, Name) :-

data_operation(retrieve, Name, Value),

writef (> Y%w: %w = Jw\n’, [Type, Name, Value]).

Working memory

:— module (’task-working-memory.pl’,
[ data_operation/3
, data_operation/4

.
:— use_module([’task-declarations.pl’]).

:= dynamic
data_store/3.

0,
A
% Working memory primitives

%

data_operation(create, set, SetName, InitialValue) :-
retractall (data_store(set, SetName, _)),
assert(data_store(set, SetName, InitialValue)).

data_operation(create, list, ListName, InitialValue) :-
retractall (data_store(list, ListName, _)),
assert(data_store(list, ListName, InitialValue)).

data_operation(create, element, ElName, InitialValue) :-
retractall (data_store(element, ElName, _)),
assert(data_store(element, ElName, [InitialValue])).

data_operation(0Op, Name, Store) :-
nonvar (Store) ,
data_type(Store, _), !,
operation(retrieve, Store, Value),
operation(0Op, Name, Value),
ignore (write_operation(Op, Name, Value)).
data_operation(0Op, Name, Value) :-
operation(0Op, Name, Value),
ignore (write_operation(Op, Name, Value)).

0,

A

% Operations on all types (set, list, element)
% store

% retrieve

%

operation(store, SetName, Arg) :-
check_arg(Arg, Set),
retract (data_store(set, SetName, _)),
assert(data_store(set, SetName, Set)).
operation(store, ListName, Arg) :-
check_arg(Arg, List),
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retract (data_store(list, ListName, _)),
assert(data_store(list, ListName, List)).
operation(store, ElName, Element) :-
retract (data_store(element, ElName, _)),
assert(data_store(element, ElName, [Element])).
operation(retrieve, SetName, Set) :-
data_store(set, SetName, Set), !.
operation(retrieve, ListName, List) :-
data_store(list, ListName, List).
operation(retrieve, ElName, Element) :-
data_store(element, ElName, [Element]).

% Set operations:

%

% menber (returns a member randomly)
% select (idem)

% add

% subtract

% empty

operation(member, SetName, Member) :-
data_store(set, SetName, Set),
rnd_member (Member, Set).
operation(select, SetName, Member) :-
retract (data_store(set, SetName, Set)),
rnd_member (Member, Set),
select (Set, Member, NewSet),
assert(data_store(set, SetName, NewSet)), !.
operation(add, SetName, Arg) :-
check_arg(Arg, Additions),
retract (data_store(set, SetName, Set)),
union(Set, Additions, NewSet),
assert(data_store(set, SetName, NewSet)), !.
operation(subtract, SetName, Arg) :-—
check_arg(Arg, Deletions),
retract (data_store(set, SetName, Set)),
subtract(Set, Deletions, NewSet),
assert(data_store(set, SetName, NewSet)), !.
operation(empty, Store, Bool) :-

data_operation(retrieve, Store, []) -> Bool = true ; Bool = false.

% List operations:

%

% member (from first to last)

% gelect (idem)

% select random

% append

% delete

% empty (similar to set operation)

operation(member, ListName, Member) :-
data_store(list, ListName, List),
member (Member, List).

operation(select, ListName, Selection) :-
retract (data_store(list, ListName, List)),
select(List, Selection, NewList),
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assert(data_store(list, ListName, NewList)), !.
operation(’select random’, ListName, Member) :-

retract (data_store(list, ListName, List)),

rnd_member (Member, List),

select (List, Member, NewList),

assert(data_store(list, ListName, NewList)), !.
operation(append, ListName, Arg) :-

check_arg(Arg, Additions),

retract (data_store(list, ListName, List)),

append(List, Additions, NewList),

assert(data_store(list, ListName, NewList)), !.
operation(delete, ListName, Element) :-

retract (data_store(list, ListName, List)),

delete(Element, List, NewList),

assert(data_store(list, ListName, NewList)), !.

check_arg(Arg, Arg) :-
is_list(Arg), !.
check_arg(Arg, [Argl) :- !.

% Trace output

write_operation(Op, Store, Value) :-
main:trace (working_memory, Ops),
menber (Op, Ops)
-> write_op(0p, Store, Value).

write_op(0Op, Store, Value) :-
( (Op==select ; Op==’select random’ ; Op==member ; Op==empty)
, uwritef (’\nWorking memory operation "%uw" on "%w"\n’, [Op, Storel)
s writef (° with result: "%w'"\n’, [Value])
; writef (’\nWorking memory operation "%w %w" on "%w"\n’, [Op, Value, Storel)

B.2.2 Application-specific modules

Task declarations This module contains the model-of-expertise information about task
knowledge.

:— module (’task-declarations.pl’,
[ task/1
, task_input/2
, task_output/2
, control_term/2
, task_structure/2
, data_type/2

;- discontiguous
task/1,
task_input/2,
task_output/2,
control_term/2,
task_structure/2,
data_type/2.
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)
% Task knowledge
)

task( ’propose allocations’).

task_input( ’propose allocations’, ’components’) .
task_input( ’propose allocations’, ‘resources’).
task_output ( ’propose allocations’, ’allocations’).
control_term( ’propose allocations’, ’allocation plan’).
control_term( ’propose allocations’, ’plan element’).

task_structure (’propose allocations’,
( exec_task(’assemble plan’, ’components’, ’allocation plan’)
, forall(data_operation(member, ’allocation plan’, Element),
( data_operation(store, ’plan element’, Element)

, exec_task(’assign resources’, [’plan element’, ’resources’], ’allocations’)
))
).
task( ’assemble plan’).
task_input( ’assemble plan’, ’components’) .
task_output( ’assemble plan’, ’allocation plan’).
control_term( ’assemble plan’, ’component types’).

task_structure(’assemble plan’,

( exec_task(classify, ’components’, ’component types’)
, exec_task(order, ’component types’, ’allocation plan’)
).

task( classify).

task_input( classify, ’components’) .

task_output( classify, ’component types’).

task_structure(classify,
( forall( data_operation(member, components, C),
( exec_inference(classify, [C], CType)
, data_operation(add, ’component types’, CType)
))
).

task ( order) .

task_input( order, ’component types’).
task_output( order, ’allocation plan’).
control_term( order, ’sorted types’).
control_term( order, ‘prime’).

task_structure (order,

( exec_inference(select_1, [’component types’], ‘prime’)
, exec_inference(sort, [’component types’, ’prime’], ’sorted types’)
, data_operation(append, ’allocation plan’, ’prime’)
, data_operation(append, ’allocation plan’, ’sorted types’)
).
task ( ’assign resources’).
task_input( ’assign resources’, ’plan element’).

task_input( ’assign resources’, ‘resources’).
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task_output( ’assign resources’, ’allocations’).
control_term( ’assign resources’, ’groupings’) .
control_term( ’assign resources’, ’grouping’) .

task_structure(’assign regources’,
( exec_task(group, ’plan element’, groupings)
, data_operation(select, ’groupings’, Grouping)
, data_operation(store, ’grouping’, Grouping)
, forall( data_operation(member, ’grouping’, Unit),
exec_task(assign,
[’plan element’
, unit = Unit

, resources
, allocations
1,
allocations)
)
).
task ( group) .
task_input( group, ’plan element’).
task_output(  group, ’groupings’) .
control_term( group, ’possible groupings’).
control_term( group, ’selected groupings’).

task_structure(group,

( exec_inference(transform, [’plan element’], ’possible groupings’)

, exec_inference(select_2, [’possible groupings’
, criterion(minimise, major_conflict)
1,
>selected groupings’)

, exec_inference(select_2, [’selected groupings’
, criterion(maximise, major_synergy)
1,
>selected groupings’)

, exec_inference(select_2, [’selected groupings’
, criterion(maximise, minor_synergy)
1,
>selected groupings’)

, exec_inference(select_2, [’selected groupings’
, criterion(minimise, minor_conflict)
1,
’groupings’)

).

task ( assign) .

task_input( assign, ’plan element’).
task_input( assign, ‘unit?’) .

task_input( assign, ’allocations’).
task_input( assign, ‘resources’) .
task_output ( assign, ’allocations’).
task_output ( assign, ‘resources’) .
control_term( assign, ’suitable resources’).

task_structure(assign,
( exec_inference(select_3,
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[ ’plan element’

, ’resources’

]’

’suitable resources’)

, exec_inference(select_4,

[ ’plan element’
, ’suitable resources’
, ’allocations’

]’

’suitable resources’)

, data_operation(select, ’suitable resources’, Resource)

, data_operation(retrieve, ’unit’, Unit)
, data_operation(add, ’allocations’, [[Resource, Unit]])

, data_operation(subtract, ’resources’, Resource)

data_type (’components’,
data_type (’resources’,
data_type(’allocations’,
data_type(’allocation plan’,
data_type (’plan element’,
data_type (’component types’,
data_type(’sorted types’,
data_type (’prime’,
data_type(’groupings’,
data_type(’selected groupings’,
data_type(’possible groupings’,
data_type (’grouping’,

data_type (’unit’,
data_type(’suitable resources’,

B.3 Inference-level modules

B.3.1 Generic modules

set).
set).
set).
list).
element) .
set).
list).
element) .
set).
set).
set).
set).
element) .
set).

Generic inference activation primititves

invoke_inference (Inference, Input, Output) :-

(  once(inference_function(Inference, Input, Output))

s ignore (write_trace (Inference, Input, Output))

H Output = []
).

write_trace(Inference, Input, Output) :-

(  main:trace(inference)

; main:trace(inference, Inference)

) >
write_inf (Inference),
write_mc(Inference, Input),

write_mc(Inference, Output, output).

write_inf (Inf) :-
inference (Inf, String),

( String == [] -> Name = Inf

; Name

= String),

writef (’\nInvoking inference %w\n’, [Name]).

write_mc(Inference, Input) :-
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forall( nthl(Num, Input, MC), write_mc(Inference, MC, input(Num))).
write_mc(Inference, Value, input(Num)) :-

metaclass (Inference, input (Num), GenName, SpecName),

domain_retrieval(find_type, GenlName, DomainEntity),

(  var(SpecName) -> Name = GenName ; Name = SpeclName),

writef (° input : Yw "%w" (a %w)\n’, [Name, Value, DomainEntity]).
write_mc(Inference, Value, output) :-

metaclass (Inference, output, Genllame, SpecName),

domain_retrieval(find_type, GenlName, DomainEntity),

(  var(SpecName) -> Name = GenName ; Name = SpeclName),

writef (° output: %w "%w" (a %w)\n’, [Name, Value, DomainEntity]).

B.3.2 Application-specific modules

Inference functions
:- module (’inference-functions.pl’, [ invoke_inference/3 ]).
:— ensure_loaded([’inference-activation.pl’]).

:— use_module (
[ ’inference-methods.pl’
, ’inference-declarations.pl’
, ’domain-access.pl’

.

;- discontiguous
inference_function/3.

inference_function(classify, [In], Out) :-
domain_retrieval(find_one, type_association, [In, Out]).

inference_function(select_1, _, Out) :-
domain_retrieval(find_all, hierarchy, Hierarchy),
hierarchy_search(Out, Hierarchy, is_root_node).

inference_function(sort, [In, Prime], Out) :-
delete(In, Prime, Rest),
predsort (compare_interaction(Prime), Rest, Out).

compare_interaction(Prime, C1, C2) :-
domain_retrieval (find_one, interaction_level, [V1, Prime, C1]),
domain_retrieval (find_one, interaction_level, [V2, Prime, C2]),
domain_retrieval (find_one, level, Values),
nthi(N1, Values, V1),
nthil (N2, Values, V2),
N1 > N2.

inference_function(transform, [Ctypel], Structures) :-
domain_retrieval(find_all, type_association, Ass),
f£indall(C, member ([C, Ctypel, Ass), Cset),
domain_retrieval(find_omne, structure, [StrucType, Ctypel),
( StrucType = single
s Structures = [Cset]
H StrucType = shared
, pair_permutations(Cset, Structures)
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inference_function(select_2, [Set, criterion(MinMax, CritType)], SubSet) :-

partition_set (Set, SubSet, MinMax, _, grouping_criterion(CritType),
(grouping_criterion(Criterion, Structure, Num) :-
findall (Pair,

( member (Pair, Structure)
, ’inference-functions.pl’:domain_retrieval(find_one, Criterion, Pair)
),
Pairs),
length(Pairs, Num)

inference_function(select_3, [Type, Resources], SubSet) :-
partition_set (Resources, SubSet, minimise, 0, resource_criterion,
(resource_criterion(Res, Num) :-
’inference-functions.pl’:domain_retrieval (find_all,
resource_requirement,
Regs),
assert (number_of_conflicts(0)),
forall (member ([Type, Expression], Reqgs),
(  Expression =.. [equal, Prop, Value]
s ’inference-functions.pl’:domain_retrieval (find_one,
resource_expr,
[Res, Prop, Valuel)
; Expression =.. [not_equal, Prop, Value]
s ’inference-functions.pl’:domain_retrieval (find_one,
resource_expr,
[Res, Prop, Valuel)
; retract (number_of_conflicts (01dNum))
s succ (01dNum, NewNum)
s assert (number_of_conflicts (NewlNum))

)’

retract (number_of_conflicts (Num))

inference_function(select_4, [Type, Resources, Allocations], SubSet) :-
partition_set (Resources, SubSet, minimise, _, positional_criterion(Allocations),
(positional_criterion(Allocations, Res, Num) :-
( ’inference-functions.pl’:domain_retrieval (find_one,
positional_requirement,
[Type, C1)
, ’inference-functions.pl’:domain_retrieval (find_all,
type_association,
Ass)
, member ([I, C], Ass)
, ( member([IRes, I], Allocations)
; member ([IRes, Is], Allocations)
, member (I, Is)
)
, ’inference-functions.pl’:domain_retrieval (find_one,
position,
[Num, Res, IRes])
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; Num = 0

Inference declarations This module contains the model-of-expertise information about
inference knowledge.

:- module (’inference-declarations.pl’,
[ inference/2
, metaclass/4
, domain_view/2

.

;- discontiguous
inference/2,
metaclass/4,
domain_view/2.

inference( classify, ’Classify components’).

metaclass( classify, input(1), component, ).

metaclass( classify, output, component_type, _).
domain_view(classify, relation(type_association, component, component_type)).
inference( select_1, ’Select prime’).

metaclass( select_1, input(1), set (component_type), all_types).
metaclass( select_1, output, component_type, prime).
domain_view(select_1, relation(hierarchy, component_type, component_type)).
inference( sort, >Sort types’).

metaclass( sort, input (1), set (component_type), unsorted_types).
metaclass( sort, input (2), component, sort_criterion).
metaclass( sort, output, list (component_type), sorted_types).
domain_view(sort, relation(interaction_level,

level,
component_type,
component_type)) .

inference( transform, ’Transform into possible groupings’).

metaclass( transform, input(l), component_type, _).

metaclass( transform, output, set (structure (component)) , groupings).
domain_view(transform, relation(structure, structure_type, component_type)).
domain_view(transform, relation(type_association, component, component_type)).

inference( select_2, ’Select suitable groupings’).
metaclass( select_2, input(1l), set(structure(component)),

’current groupings’).
metaclass( select_2, input(2), criterion,

’selection criterion’).
metaclass( select_2, output, set (structure (component)),

>subset of groupings’).
domain_view(select_2, relation(major_conflict, component, component)).
domain_view(select_2, relation(minor_conflict, component, component)).
domain_view(select_2, relation(major_synergy, component, component)).
domain_view(select_2, relation(major_synergy, component, component)).
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inference( select_3, ’Select on resource requirements’).
metaclass( select_3, input(1), component_type, _).
metaclass( select_3, input (2), set (resource),

’available resources’).
metaclass( select_3, output, set (resource),

’suitable resources’).
domain_view(select_3, relation(resource_requirement,

component_type, expression(resource))).

inference( select_4, ’Select on positional requirements’).

metaclass( select_4, input(1), component_type, _).

metaclass( select_4, input (2), set (resource),
’available resources’).

metaclass( select_4, input (3), structure(resource, list (component)),
’current positions’).

metaclass( select_4, output, set (resource),

’suitable resources’).
domain_view(select_4, relation(positional_requirement,

component_type, compoenent_type)).
domain_view(select_4, relation(position, integer,

instance (resource),

instance (resource))).

Inference methods This module defines the inference methods for realising particluar
inferences. The partition;et method is used by three inference functions, but for different purposes.

:— module (’inference-methods.pl’,
[ hierarchy_search/3
, partition_set/6
, pair_permutations/2

.

% Computational techniques useed by inferences
% (NB. the sort method is a built-in SWI-Prolog method}

hierarchy_search(Root, Hierarchy, is_root_node) :-
member ([Root, _], Hierarchy),
\+ member ([_, Root], Hierarchy).

partition_set (Set, SubSet, MinMax, Rating, CritHead, CritClause) :-
assert (CritClause),
findall (Num/E,
( member(E, Set)
, CritHead =.. Head
, append(Head, [E, Num], TermList)
, Pred =.. TermList
, once(Pred)

Rated),

keysort (Rated, Sorted),

( MinMax == minimise

s first (Rating/Element, Sorted)
; MinMax == maximise

s last (Rating/Element, Sorted)
),
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retract (CritClause),
findall(E, member (Rating/E, Sorted), SubSet).

first(E, L) :-
member (E, L), !.

pair_permutations (Set, Perms) :-
findall(Perm, pair_perm(Set, Perm), Perms).

pair_perm(Set, [E | Rest] ):-
length(Set, L),
odd(L), !,
select(Set, E, SubSet),
pair_perm2(SubSet, Rest).
pair_perm(Set, Perm) :-
pair_perm2(Set, Perm).

pair_perm2([1, [1).

pair_perm2(Set, [[El, E2] | Rest]) :-
select (Set, E1, Tmp), !,
select (Tmp, E2, SubSet),
pair_perm2(SubSet, Rest).

odd(N) :-
Rem is N mod 2,
Rem == 1.
even(N) :-
\+ odd(N).

B.4 Domain-level modules

B.4.1 Generic modules

Domain access This module defines the access functions that can be used by the inference
functions to retrieve domain knowledge from the knowledge base. The module uses indices defined
in the module domain-indexr to to map the inference-level names onto domain-specific queries.

module (’domain-access.pl’, [domain_retrieval/3]).

;- discontiguous
concept/1, concept/2, set/2, structure/2, relation/3, property/3,
semantics/2, instance/3, value/3, tuple/2.

:= dynamic

concept/1, concept/2, set/2, structure/2, relation/3, property/3,

semantics/2, instance/3, value/3, tuple/2.

:— multifile
value/3, tuple/2.

:— use_module([ ’domain-index.pl’ ]).

:— ensure_loaded( [ ’domain-data.pl’, ’domain-theory.pl’]).

%
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% Domain-knowledge access primitives

%

domain_retrieval (find_one, InfRelation, Tuple) :-
domain_index(relation, InfRelation, DomainKnowTypes),
menber (Type, DomainKnowTypes),
get_relation(Type, Tuple), !.

domain_retrieval (find_one, InfObject, 0bj) :-
domain_index(entity, InfObject, DomainKnowTypes),
menber (Type, DomainKnowTypes),
get_entity(Type, Obj), !.

domain_retrieval (find_one, InfExpr, Expr) :-
domain_index (expression, InfExpr, DomainKnowTypes),
menber (Type, DomainKnowTypes),
get_expression(Type, Expr), !.

domain_retrieval (find_all, InfRelation, Knowledge) :-
domain_index(relation, InfRelation, DomainKnowTypes), !,
findall (KnowElement,
( member (Type, DomainKnowTypes)
, get_relation(Type, KnowElement)
)
Knowledge) .
domain_retrieval (find_all, InfObject, Knowledge) :-
domain_index(entity, InfObject, DomainKnowTypes), !,
findall (KnowElement,
( member (Type, DomainKnowTypes)
, get_entity(Type, KnowElement)
)
Knowledge) .

domain_retrieval (find_type, structure(Il, I2), structure(Dl, D2)) :-
domain_retrieval(find_type, I1, D1),
domain_retrieval(find_type, I2, D2).

domain_retrieval (find_type, structure(InfName), structure (DomainEntity))

domain_retrieval(find_type, InflName, DomainEntity).
domain_retrieval (find_type, set(InfName), set(DomainEntity)) :-
domain_retrieval(find_type, InflName, DomainEntity).
domain_retrieval (find_type, list(InfName), list(DomainEntity)) :-
domain_retrieval(find_type, InflName, DomainEntity).
domain_retrieval (find_type, InflName, one_of (Defs)) :-
domain_index(def, InfName, Defs).
domain_retrieval (find_type, InfName, DomainEntity) :-
domain_index(_, InfName, DomainEntity).

get_relation(relation(RelationName), Tuple) :-—
get_tuple(RelationName, Tuple).

get_relation(property(Prop, ObjectType), [Value, Object]) :-
get_object (ObjectType, Object),
get_value(Object, Prop, Value).

get_relation(property(Prop, relation(RelType)), [Value, Objl, 0Obj2])
get_value (tuple(RelType, [0bjl, 0bj2]), Prop, Value).

get_entity(instance(C), I) :-
get_instance(C, I).
get_entity(concept(C), SubC) :-
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get_concept (C, SubC).
get_entity(value_set (Prop, Type), Values) :-

property(Type, Prop, Values).
get_entity (A, A) :-

atom(A) .

get_expression(expression(0bjType), [Obj, Prop, Value]) :-
get_object (0bjType, 0bj),
get_value(0Obj, Prop, Value).

get_object (Type, Object) :-—
get_instance (Type, Object).

get_object (Type, Object) :-—
get_concept (Type, Object).

get_instance(C, I) :-
instance(C, I, _).

get_concept (C1, C2) :-
sub_concept (C2, C1).

sub_concept (C1, C2) :-
concept (C1, Supers),
memberchk (C2, Supers).

sub_concept (C1, C2) :-
concept (C1, Supers),
member (C, Supers),
sub_concept (C, C2).

get_value(Object, Property, Value) :-
value(Object, Property, Value).

get_value(Object, Property, Value) :-
instance(_, Object, PropValues),
memberchk (Property = Value, PropValues).

get_tuple(Relation, Tuple) :-
tuple(Relation, Tuple).

get_tuple(Relation, [Argl, Arg2]) :-
semantics(relation(Relation), symmetric),
tuple(Relation, [Arg2, Argll).

get_tuple(Relation, [Argl, Arg2]) :-
semantics(relation(Relation), transitive),
tuple(Relation, [Argl, Tmpl),
get_tuple(Relation, [Tmp, Arg2]).

B.4.2 Application-specific modules

Domain index The domain index defines the mapping from inference-level terms (meta-
classes, domain views) onto domain-specific terminology.

:- module (’domain-index.pl’, [domain_index/3]).

domain_index(entity, component , [instance (employee)]).
domain_index(entity, component_type, [concept (department_role)]).
domain_index(relation, type_association, [relation(employee_role)]).
domain_index(relation, hierarchy, [relation(boss_of)]).

domain_index(relation, interaction_level, [property(
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domain_index(entity,
domain_index(entity,
domain_index(relation,

domain_index(expression,

domain_index(relation,
domain_index(relation,
domain_index(entity,
domain_index(relation,
domain_index(relation,
domain_index(relation,
domain_index(relation,
domain_index(relation,
domain_index(def,

level,

resource,
resource_requirement,
resource_expr,
positional_requirement,
position,
structure_type,
structure,
major_conflict,
major_synergy,
minor_conflict,
minor_synergy,
criterion,
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level,

relation(interaction))]).
[value_set(level, interaction)]).
[instance (room) 1).
[relation(room_preference)]).
[expression(room)]).
[relation(nearto_preference)]).
[property(value, relation(distance))]).
[value_set (occupancy, department_role)]).
[property(occupancy, department_role)]).
[relation(smoker_and_non_smoker)]).
[relation(on_different_projects)]).
[relation(hacker_and_non_hacker)]).
[relation(works_with) 1).
[ minimise(major_conflict)
, minimise (minor_conflict)
, maximise(major_synergy)
, maximise(minor_synergy)

.

Domain theory This file contains the operationaled version of the Sisyphus domain knowl-
edge defined in Appendix A.

concept (employee) .
property (employee,
property (employee,
relation(employee_role,
relation(works_on,
relation(head_of,
relation(allocation,

relation(works_with,

relation(on_different_projects, instance(employee),
relation(hacker_and_non_hacker, instance (employee),

hacker,
smoker,

instance (employee),
instance (employee),
instance (employee),
gset (instance (employee)),

instance (employee),
relation(smoker_and_non_smoker, instance (employee),

semantics(relation(works_with),
semantics (relation(smoker_and_non_smoker),

semantics(relation(on_different_projects),
semantics (relation(hacker_and_non_hacker),

tuple (smoker_and_non_smoker, [Empl, Emp2]) :-
get_value (Empl, smoker, false),
get_value (Emp2, smoker, true).
tuple (hacker_and_non_hacker, [Empl, Emp2]) :-
get_value (Empl, hacker, false),
get_value (Emp2, hacker, true).
tuple(on_different_projects, [Empl, Emp2]) :-

bool) .

bool) .
department_role).
instance(project)).
instance(project)).
instance (room)) .

instance (employee)).
instance (employee)).
instance (employee)).
instance (employee)).

symmetric) .
symmetric) .
symmetric) .
symmetric) .

get_tuple(works_on, [Empl, Projectl]),
get_tuple(works_on, [Emp2, Project2]),
Projectl \== Project2.

concept (department_role) .
concept(head_of_group,
concept (manager,

concept (secretary,

[department_role]).
[department_role]).
[department_role]).
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concept (head_of_project,
concept (researcher,
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[department_role]).
[department_role]).

property(department_role, occupancy, [single, shared]).
relation(boss_of, department_role, department_role).
semantics(relation(boss_of), transitive).

tuple(boss_of, [head_of_group, manager]).
tuple(boss_of, [head_of_group, head_of_project]).
tuple(boss_of, [manager, secretary]).
tuple(boss_of, [head_of_project, researcher]).
tuple (employee_role, [Employee, head_of_project]) :-

get_instance (project, Project),

get_value(Project, size, large),

tuple (head_of, [Employee, Project]).
tuple (employee_role, [Employee, researcher])

tuple (works_on, [Employee, _SomeProject]),

\+ tuple(employee_role, [Employee, head_of_project]),

\+ tuple(employee_role, [Employee, head_of_groupl).

value (head_of _group, occupancy, single).

value (head_of _project, occupancy, single).
value (manager, occupancy, single).
value (secretary, occupancy, shared).
value (researcher, occupancy, shared).

relation(interaction, department_role, department_role).

property(interaction, level, [normal, above_normal, high, very_high]).

value (tuple (interaction,
value (tuple (interaction,
value (tuple (interaction,
value (tuple (interaction,

concept (project).

property(project,
concept (room) .
property(room, floor,
property(room, number,
property(room, size,
property(room, type,
property(room, location,

relation(next_to,
relation(distance,
property(distance,

[head_of_group, secretaryl), level, very_high).
[head_of_group, manager]), level, high).
[head_of _group,head_of_project]),level, above_normal).
[head_of_group, researcher]), level, normal).

size, [small, medium, large]).

string) .

nat) .

[small, medium, large]).
[office, other]).
[central, peripherall).
instance (room),

instance (room),

value, nat) .

instance (room)) .
instance (room)) .

semantics (relation(next_to),
semantics(relation(distance),

symmetric) .
symmetric) .

tuple (next_to, [Rooml, Room2])
get_value (Rooml, number, Numl),
get_value (Room2, number, Num2),
Diff = Numl - Num2,
abs (Diff) ==

value (tuple(distance, [Rooml, Room2]), value, Distance)
get_value (Rooml, number, Numl),
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get_value (Room2, number, Num2),

Diff = Numl - Num2,

Distance is abs(Diff).

relation(room_preference, department_role, expr(room)).

tuple (room_preference,
tuple (room_preference,
tuple (room_preference,

tuple (room_preference,
tuple (room_preference,

tuple (room_preference,
tuple (room_preference,

tuple (room_preference,
tuple (room_preference,

tuple (room_preference,
tuple (room_preference,

[head_of_group,
[head_of_group,
[head_of_group,

[manager,
[manager,

[secretary,
[secretary,

[head_of_project,
[head_of_project,

[researcher,
[researcher,

equal (location,
equal (type,
equal (size,

equal (size,
equal (type,

equal (size,
equal (type,

equal (size,
equal (type,

equal (size,
equal (type,

central)]).

office)]).
large)]).

small)]).
office)]).

large)]).
office)]).

small)]).
office)]).

large)]).
office)]).

relation(nearto_preference, department_role, department_role).

semantics (relation(nearto_preference), symmetric).

property(nearto_preference, strength, [normal, above_normal, high, very_highl).

tuple (nearto_preference, [head_of_group, secretaryl]).

tuple(nearto_preference, [head_of_group, manager]).

tuple (nearto_preference, [head_of_group, head_of_project]).
value (nearto_preference(Rolel, Role2), strength, Value)
get_value(role_interaction(Rolel, Role2), level, Value).

Domain data This file contains the Sisyphus example data

instance(employee, ’Werner L.’,
instance(employee, ’Marc M.’,
instance (employee, ’Angi W.’,
instance (employee, ’Juergen L.’,
instance(employee, ’Andy L.’,
instance(employee, ’Michael T.’,
instance(employee, ’Harry C.’,
instance(employee, ’'Uwe T.’,
instance(employee, ’Thomas D.’,
instance (employee, ’Monika X.’,
instance(employee, ’Ulrike U.’,
instance(employee, ’Hans W.’,
instance(employee, ’'Eva I.’,
instance(employee, ’Joachim I.’,
instance(employee, ’Katharina N.’,

tuple (employee_role, [’Thomas D.’,
tuple (employee_role, [’Eva I.’,

tuple (employee_role, [’Monika X.’,
tuple (employee_role, [’Ulrike U.’,

instance(project, ’BABYLON Product’,
instance(project, ’ASERTI’,

[smoker = false,

[smoker = false,
[smoker = false,
[smoker = false,
[smoker = true,

[smoker = false,
[smoker = false,
[smoker = true,

[smoker = false,
[smoker = false,
[smoker = false,
[smoker = true,

[smoker = false,
[smoker = false,

[smoker = true,

head_of _group]
manager]) .
secretary]) .
secretary]) .

[size = largel).
[size = largel).

hacker

hacker =
hacker =
hacker =

hacker
hacker

hacker =
hacker =
hacker =

hacker

hacker =
hacker =

hacker

hacker =

hacker

).

set.

= true]).
true]).

true]).

= false]).

= true]).
true]).
true]).

= true]).

false]).

false]).
= false]).
false]).
false]).
= false]).
false]).
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instance(project, ’MLT’, [size = largel).
instance(project, *RESPECT’, [size = medium]).
instance(project, ’EULISP’, [size = medium]).
instance(project, ’KRITON’, [size = small]).
instance(project, ’TUTOR2000’, [size = small]).
instance(project, ’Autonomous systems’, [size = small]).

Pragmatics of the

tuple (head_of, [’Hans W.’,

’BABYLON Product’]).

Knowledge Level

.
.
.
.

tuple (head_of, [’Joachim I.’, >ASERTI’]).

tuple (head_of, [’Katharina N.’, ’HMLT’]).

tuple(head_of, [’Angi W.’, "RESPECT’]).

tuple (head_of, [’Thomas D.’, "EULISP’]).

tuple(works_on, [’Werner L.’, "RESPECT’]) .

tuple (works_on, [’Marc M.’, ’KRITON’]).

tuple(works_on, [’Angi W.’, "RESPECT’]) .

tuple(works_on, [’Juergen L., ’EULISP’]).

tuple(works_on, [’Harry C.’, ’BABYLON Product’]).

tuple (works_on, [’Thomas D.’, ’EULISP’]).

tuple (works_on, [’Michael T.’, ’BABYLON Product’]).

tuple(works_on, [’Andy L.’, >TUTOR2000°]) .

tuple (works_on, [’Uwe T.’, ’Autonomous systems’]).

tuple (works_on, [’Hans W.’, ’BABYLON Product’]).

tuple (works_on, [’Joachim I.’, >ASERTI’]).

tuple(works_on, [’Katharina N.’, ’HMLT’]).

tuple (works_with, [’Werner L.’, ’Angi W.’]).

tuple (works_with, [’Werner L.’, ’Marc M.’]).

tuple(works_with, [’Angi W.’, ’Marc M.’]).

tuple(works_with, [’Angi W.’, "Werner L.’]).

tuple(works_with, [’Michael T.’, ’Hans W.’]).

tuple (works_with, [’Thomas D.’, "Harry C.’]1).

tuple (works_with, [’Thomas D.’, >Juergen L.’]).

tuple (works_with, [’Harry C.’, >Juergen L.’]).

tuple (works_with, [’Eva I.’, >Thomas D.’]).

tuple (works_with, [’Eva I.’, ’Monika X.’]).

tuple (works_with, [’Eva I.’, "Ulrike U.’]).

tuple (works_with, [’Monika X.’, >Thomas D.’]).

tuple (works_with, [’Monika X.’, "Ulrike U.’]).

tuple (works_with, [’Thomas D.’, "Ulrike U.’]).

instance (room, ’C5-113’, [number = 113, size = small, type office
instance (room, ’C5-114’, [number = 114, size = small, type office
instance (room, ’C5-115’, [number = 115, size = small, type office
instance (room, ’C5-116’, [number = 116, size = small, type office
instance (room, ’C5-117’, [number = 117, size = large, type = office
instance (room, ’C5-118’, [number = 118, size = large, type = other
instance (room, ’C5-119’, [number = 119, size = large, type = office
instance (room, ’C5-120’, [number = 120, size = large, type = office
instance (room, ’C5-121’, [number = 121, size = large, type = office
instance (room, ’C5-122’, [number = 122, size = large, type = office
instance (room, ’C5-123’, [number = 123, size = large, type = office

value(’C5-117’, location, central).
value(’C5-118’, location, central).
value(’C5-119’, location, central).
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B.5 Example output
B.5.1 Full task-level trace
4 7- off_plan(_).

Activating task "propose allocations"
input : components = [Werner L.,Marc M.,Angi W.,Juergen L.,Andy
L.,Michael T.,Harry C.,Uwe T.,Thomas D.,Monika X.
,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina N.]
input : resources = [C5-113,C5-114,C5-115,05-116,C5-117,C5-118
,C5-119,C5-120,C5-121,C5-122,C5-123]

Activating task "assemble plan"
input : components = [Werner L.,Marc M.,Angi W.,Juergen L.,Andy
L.,Michael T. ,Harry C.,Uwe T.,Thomas D.,Monika
X. ,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina N.]

Activating task "classify"
input : components = [Werner L.,Marc M.,Angi W.,Juergen L.,Andy
L.,Michael T. ,Harry C.,Uwe T.,Thomas D.,Monika
X. ,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina N.]

Task '"classify'" terminated
output: component types =
[manager,head_of_group,head_of_project,secretary,researcher]

Activating task "order"
input : component types =
[manager,head_of_group,head_of_project,secretary,researcher]

Task "order" terminated
output: allocation plan =
[head_of_group,secretary,manager,head_of_project,researcher]

Task '"assemble plan'" terminated
output: allocation plan =
[head_of_group,secretary,manager,head_of_project,researcher]

Activating task "assign resources"
input : plan element = head_of_group
input : resources = [C5-113,C5-114,C5-115,05-116,C5-117,C5-118
,€5-119,€5-120,C5-121,C5-122,C5-123]

Activating task "group"
input : plan element = head_of_group

Task "group" terminated
output: groupings = [[Thomas D.]]

Activating task "assign"
input : plan element = head_of_group
input : unit = Thomas D.
input : resources = [C5-113,C5-114,C5-115,05-116,C5-117,C5-118
,€5-119,€5-120,C5-121,C5-122,C5-123]
input : allocations = []
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Task "assign" terminated
output: allocations = [[C5-117,Thomas D.]]

Task "assign resources' terminated
output: allocations = [[C5-117,Thomas D.]]

Activating task "assign resources"
input : plan element = secretary
input : resources = [C5-113,C5-114,C5-115,05-116,C5-118,C5-119
,€5-120,C5-121,C5-122,C5-123]

Activating task "group"
input : plan element = secretary

Task "group" terminated
output: groupings = [[[Monika X.,Ulrike U.]]]

Activating task "assign"
input : plan element = secretary
input : unit = [Monika X.,Ulrike U.]
input : resources = [C5-113,C5-114,C5-115,05-116,C5-118,C5-119
,€5-120,C5-121,C5-122,C5-123]
input : allocations = [[C5-117,Thomas D.]]

Task "assign" terminated
output: allocations = [[C5-117,Thomas D.],[C5-119, [Monika X.,Ulrike U.]]]

Task "assign resources' terminated
output: allocations = [[C5-117,Thomas D.],[C5-119, [Monika X.,Ulrike U.]]]

Activating task "assign resources"
input : plan element = manager
input : resources = [C5-113,C5-114,C5-115,05-116,C5-118,C5-120
,€5-121,C5-122,C5-123]

Activating task "group"
input : plan element = manager

Task "group" terminated
output: groupings = [[Eva I.]]

Activating task "assign"
input : plan element = manager
input : unit = Eva I.
input : resources = [C5-113,C5-114,C5-115,05-116,C5-118,C5-120
,€5-121,C5-122,C5-123]
input : allocations = [[C5-117,Thomas D.],[C5-119, [Monika X.,Ulrike U.]]]

Task "assign" terminated
output: allocations =
[[C5-117,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.]]

Task "assign resources' terminated
output: allocations =
[[C5-117,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.]]
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Activating task "assign resources"
input : plan element = head_of_project
input : resources = [C5-113,C5-114,C5-115,C5-118,C5-120,C5-121,C5-122,C5-123]

Activating task "group"
input : plan element = head_of_project

Task "group" terminated
output: groupings = [[Hans W.,Joachim I.,Katharina N.]]

Activating task "assign"
input : plan element = head_of_project
input : unit = Joachim I.
input : resources = [C5-113,C5-114,C5-115,C5-118,C5-120,C5-121,C5-122,C5-123]
input : allocations =[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.]]

Task "assign" terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.]]

Activating task "assign"
input : plan element = head_of_project
input : unit = Katharina N.
input : resources = [C5-113,C5-114,C5-118,C5-120,C5-121,C5-122,C5-123]
input : allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.]]

Task "assign" terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.]]

Activating task "assign"
input : plan element = head_of_project
input : unit = Hans W.
input : resources = [C5-113,C05-118,C5-120,05-121,C5-122,C5-123]
input : allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.]]

Task "assign" terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.]]

Task "assign resources' terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.]]

Activating task "assign resources"
input : plan element = researcher
input : resources = [C5-118,C5-120,C5-121,C5-122,C5-123]
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Activating task "group"
input : plan element = researcher

Task "group" terminated
output: groupings = [
[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]]]

Working memory operation "select" on "groupings"
with result: "
[[Werner L.,Michael T.],[Marc M.,Angi W.], [Juergen L. ,Harry C.],[Andy L.,Uwe T.]1]"

Activating task "assign"
input : plan element = researcher
input : unit = [Andy L.,Uwe T.]
input : resources = [C5-118,C5-120,C5-121,C5-122,C5-123]
input : allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.]]

Task "assign" terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L. ,Uwe T.11]

Activating task "assign"
input : plan element = researcher
input : unit = [Marc M.,Angi W.]
input : resources = [C5-118,C05-121,C5-122,C5-123]
input : allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L. ,Uwe T.11]

Task "assign" terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L. ,Uwe T.]]1,[C5-122,[Marc M.,Angi W.]11]

Activating task "assign"
input : plan element = researcher
input : unit = [Werner L.,Michael T.]
input : resources = [C5-118,C5-121,C5-123]
input : allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L. ,Uwe T.]]1,[C5-122,[Marc M.,Angi W.]11]

Task "assign" terminated
output: allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L.,Uwe T.11,[C5-122, [Marc M.,Angi W.11,
[C5-121, [Werner L.,Michael T.]]]



Appendix B. Source Code Sisyphus Application 221

Activating task "assign"
input : plan element = researcher
input : unit = [Juergen L.,Harry C.]
input : resources = [C5-118,C5-123]
input : allocations =
[[C5-117 ,Thomas D.],[C5-119, [Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L.,Uwe T.11,[C5-122, [Marc M.,Angi W.11,
[C5-121, [Werner L.,Michael T.]]]

Task "assign" terminated
output: allocations =
[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115, Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L.,Uwe T.11,[C5-122, [Marc M.,Angi W.1],
[c5-121, [Werner L.,Michael T.]],[C5-123, [Juergen L. ,Harry C.]1]]

Task "assign resources' terminated
output: allocations =
[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115, Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L.,Uwe T.11,[C5-122, [Marc M.,Angi W.1],
[c5-121, [Werner L.,Michael T.]],[C5-123, [Juergen L. ,Harry C.]1]]

Task "propose allocations" terminated
output: allocations =
[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],
[C5-115, Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],
[C5-120, [Andy L.,Uwe T.11,[C5-122, [Marc M.,Angi W.1],
[c5-121, [Werner L.,Michael T.]],[C5-123, [Juergen L. ,Harry C.]1]]

B.5.2 Tracing the grouping of researchers

Activating task "group"
input : plan element = researcher

Invoking inference Transform into possible groupings
input : component_type "researcher" (a [concept (department_role)])
output: groupings < 105 groupings, not listed to save space (GS) >
(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings
input : current groupings < 105 groupings, not listed to save space (GS) >
(a set(structure([instance(employee)])))
input : selection criterion "criterion(minimise, major_conflict)"
(a one_of ([major_conflict,major_synergy,minor_conflict,minor_synergyl))
output: subset of groupings

"[[[Werner L.,Angi W.],[Marc M.,Harry C.], [Juergen L.,Michael T.],[Andy L.,Uwe T.]],
[[Werner L.,Angi W.],[Marc M.,Juergen L.],[Harry C.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Angi W.],[Marc M.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Harry C.],[Marc M.,Angi W.],[Juergen L. ,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Harry C.],[Marc M., Juergen L.],[Angi W.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Harry C.],[Marc M.,Michael T.],[Angi W.,Juergen L.],[Andy L. ,Uwe T.]1],
[[Werner L.,Juergen L.],[Marc M.,Angi W.],[Harry C.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Juergen L.],[Marc M.,Harry C.],[Angi W.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Juergen L.],[Marc M.,Michael T.],[Angi W.,Harry C.],[Andy L. ,Uwe T.]1],
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[[Werner L.,Marc M.],[Angi W.,Harry C.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Marc M.],[Angi W.,Juergen L.],[Harry C.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Harry C.],[Angi W.,Juergen L.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Juergen L.],[Angi W.,Harry C.],[Andy L.,Uwe T.]1]1"

(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings
input : current groupings < see output previous inference (GS) >
(a set(structure([instance(employee)])))
input : selection criterion "criterion(maximise, major_synergy)"
(a one_of ([major_conflict,major_synergy,minor_conflict,minor_synergyl))
output: subset of groupings
" [[[Werner L.,Harry C.],[Marc M.,Angi W.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]1],

[[Werner L.,Harry C.],[Marc M., Juergen L.],[Angi W.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Harry C.],[Marc M.,Michael T.],[Angi W.,Juergen L.],[Andy L. ,Uwe T.]1],
[[Werner L.,Juergen L.],[Marc M.,Harry C.],[Angi W.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Juergen L.],[Marc M.,Michael T.],[Angi W.,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Marc M.],[Angi W.,Harry C.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]1],
[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Harry C.],[Angi W.,Juergen L.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Juergen L.],[Angi W.,Harry C.],[Andy L.,Uwe T.]1]1"

(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings
input : current groupings < see output previous inference (GS) >
(a set(structure([instance(employee)])))
input : selection criterion "criterion(maximise, minor_synergy)"
(a one_of ([major_conflict,major_synergy,minor_conflict,minor_synergyl))
output: subset of groupings
[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L. ,Harry C.],[Andy L.,Uwe T.]1]1"
(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings
input : current groupings < see output previous inference (GS) >
(a set(structure([instance(employee)])))
input : selection criterion "criterion(minimise, minor_conflict)"
(a one_of ([major_conflict,major_synergy,minor_conflict,minor_synergyl))
output: subset of groupings
[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L. ,Harry C.],[Andy L.,Uwe T.]1]1"
(a set(structure([instance(employee)])))

Task "group" terminated
output: groupings =
[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L. ,Harry C.],[Andy L. ,Uwe T.]1],
[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L. ,Harry C.],[Andy L.,Uwe T.]1]1"

B.5.3 Tracing the room selection inferencing

Activating task "assign"
input : plan element = manager
input : unit = Eva I.
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input : resources = [C5-113,C5-114,C5-115,C5-116,05-118,
C5-120,C5-121,C5-122,C5-123]
input : allocations = [[C5-117,Thomas D.],[C5-119, [Monika X.,Ulrike U.]]]

Invoking inference Select on resource requirements
input : component_type "manager'" (a [concept (department_role)])
input : available resources "[C5-113,C5-114,C5-115,C5-116,05-118,
€5-120,C5-121,C5-122,C5-123]"
(a set([instance(room)]))
output: suitable resources "[C5-113,C5-114,C5-115,C5-116]"
(a set([instance(room)]))

Invoking inference Select on positional requirements
input : component_type "manager'" (a [concept (department_role)])
input : available resources "[C5-113,C5-114,C5-115,C5-116]"
(a set([instance(room)]))

input : current positions "[[C5-117,Thomas D.],

[C5-119, [Monika X.,Ulrike U.]11]"

(a structure( [instance (room)], list([instance (employee)])))

output: suitable resources " [C5-116]" (a set([instance(room)]))

Working memory operation "select'" on "suitable resources"

with result: "C5-116"
Working memory operation "add [[C5-116,Eva I.]]" on "allocations"
Working memory operation "subtract C5-116" on "resources"

Task "assign" terminated
output: allocations = [[C5-117,Thomas D.],
[C5-119, [Monika X.,Ulrike U.]1],
[C5-116,Eva I.]]






Appendix C

Example Implementation: Abstract &
Specify

In this appendix only the application-specifc modules are listed. The generic modules can be found
in Appendix B.

C.1 Application-specific modules
Task declarations

:— module (’task-declarations.pl’,
[ task/1
, task_input/2
, task_output/2
, control_term/2
, task_structure/2
, data_type/2
.

;- discontiguous
task/1,
task_input/2,
task_output/2,
control_term/2,
task_structure/2.

%

% Task knowledge

%

% task( Task name) .

% task_input( Task name, Input name).
% task_output( Task name, Output name).
% control_term(Task name, Term name).
%

% task_structure(Task name, Procedure).

task ( ’Abstract new evidence’).
task_input( ’Abstract new evidence’, ‘new evidence’).
task_output ( ’Abstract new evidence’, 'new findings’).
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control_term( ’Abstract new evidence’, >focus set’).

task_structure(’Abstract new evidence’,
( data_operation(store, ’focus set’, ’new evidence’),

repeat ((
data_operation(select, ’focus set’, Focus),
exec_inference(abstract, [Focus], NewFinding),
data_operation(add, ’focus set’, NewFinding),
data_operation(add, ’new findings’, NewFinding)),

until(data_operation(empty, ’focus set’, true)))

).

task ( ’Clarify finding’).
task_input ( >Clarify finding’, ’finding’).
task_output( ’Clarify finding’, ’new observation’).

task_structure (’Clarify finding’,
( exec_inference(specify, [’finding’], Observable)
, transfer_task(obtain, Observable, Observation)
, data_operation(store, ’'new observation’, Observation)

).

data_type (’new evidence’, set).
data_type(’new findings’, set).
data_type (’focus set’, set).
data_type(’finding’, element) .
data_type (’new observation’, element) .

Inference declarations

:- module (’inference-declarations.pl’,
[ inference/2
, metaclass/4
, domain_view/2

.

;- discontiguous
inference/2,
metaclass/4,
domain_view/2.

% inference(Internal name, External name)

% metaclass(Inference, Input/Output, General name, Specialised name).
% domain_view(Inference, , Inference knowledge).

inference( abstract, ’Abstract’).

metaclass( abstract, input(l), finding, ’Specific finding’).
metaclass( abstract, output, finding, ’General finding’).

domain_view(abstract, relation(abstraction, finding, finding)).

inference( specify, ’Specify’).

metaclass( specify, input(1), finding, ’Finding to be clarified’).
metaclass( specify, output, observable, ’Dependent observable’).
domain_view(specify, relation(specification, finding, finding)).

Inference functions

:- module (’inference-functions.pl’, [ invoke_inference/3]).
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:— ensure_loaded( [’inference-activation.pl’] ).

:— use_module (
[ ’inference-methods.pl’
, ’inference-declarations.pl’
, ’domain-access.pl’

.

inference_function(abstract, [In], Out) :-
domain_retrieval (find_all, abstraction, Rules),
rule_interpreter(Rules, In, Out, forward, single_pass, find_one).

inference_function(specify, [In], Out) :-
domain_retrieval(find_all, specification, Rules),
rule_interpreter(Rules, In, Out, backward, multi_pass, find_one).

Inference methods

:— module (’inference-methods.pl’,
[ rule_interpreter/6

.

0,
A
% Computational techniques useed by inferences

%

rule_interpreter (Rules, In, Out, forward, single_pass, find_one) :-—
member ([Premise, Conclusion], Rules),
consistent (In, Premise),
Out = Conclusion.

rule_interpreter (Rules, In, Out, backward, multi_pass, find_one) :-
member ([Premise, Conclusion], Rules),
consistent (In, Conclusion),
operand_of (Premise, 0Op),

( rule_interpreter (Rules, Premise, Out, backward, multi_pass, find_one)

H Out = Op
).

consistent(X =Y, X =Y

consistent(X = Y, X Z -
Y > Z.

consistent(X =Y, X >= Z) :-
Y >= Z.

consistent(X =Y, X < Z) :-
Y < Z.

consistent(X =Y, X =< Z) :-
Y =< Z.

operand_of (X = _, X).

operand_of (X > _, X).

operand_of (X >= _, X).

operand_of (X < _, X).
operand_of (X =< _, X).

Domain index

227
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:- module (’domain-index.pl’, [domain_index/3]).

% Inference -> domain mappings

%

domain_index(expression, finding, [expr(patient_data)]).
domain_index(entity, observable, [property(patient_data)l).
domain_index(relation, abstraction, [relation(qual_abstraction),
relation(definition)]).
domain_index(relation, specification, [relation(qual_abstraction),

relation(definition)]).

Domain theory

% Domain knowledge format

%

% concept (Concept name, Supertyes)

% property(Concept, Property name, Valueset)

% relation(Relation name, Type first argument, Type second argument)
% tuple(Relation name, [First argument, Second argument])
concept (patient_data, [1.

concept (quantitative_data, [patient_datal).
concept (qualitative_data, [patient_datal).

property(quantitative_data, temperature, numberrange (35.0, 42.0)).
property(quantitative_data, diastolic_pressure, numberrange(0, 300)).
property(qualitative_data, fever, [present, absent]).
property(qualitative_data, blood_pressure, [normal, elevated]).
property(qualitative_data, hypertension, [present, absent]).

relation(qual_abstraction, expr(quantitative_data), expr(qualitative_data)).

relation(definition, expr(qualitative_data), expr(qualitative_data)).
tuple(qual_abstraction, [temperature >= 38.0, fever = present]).
tuple(qual_abstraction, [temperature < 38.0, fever = absent]).

tuple(qual_abstraction, [diastolic_pressure >= 95, blood_pressure = elevated]).
tuple(qual_abstraction, [diastolic_pressure < 95, blood_pressure = normal]).
tuple(definition, [blood_pressure =elevated, hypertension = present]).
tuple(definition, [blood_pressure = normal, hypertension = absent]).

C.2 Example output
3 7- abstract_example(_).

Activating task "Abstract new evidence"
input : new evidence = [temperature = 40,diastolic_pressure = 100]

Invoking inference Abstract
input : Specific finding "diastolic_pressure = 100" (a [expr(patient_data)l)
output: General finding "blood_pressure = elevated" (a [expr(patient_data)l)

Invoking inference Abstract
input : Specific finding "blood_pressure = elevated" (a [expr(patient_data)l)
output: General finding "hypertension = present" (a [expr(patient_data)])
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Invoking inference Abstract
input : Specific finding "temperature = 40" (a [expr(patient_data)])
output: General finding "fever = present" (a [expr(patient_data)l)

Task "Abstract new evidence" terminated
output: new findings = [blood_pressure = elevated,hypertension = present,fever = present]

Yes
4 7- specify_example(_).

Activating task "Clarify finding"
input : finding = hypertension = present

Invoking inference Specify
input : Finding to be clarified "hypertension = present" (a [expr(patient_data)])
output: Dependent observable "diastolic_pressure" (a [property(patient_data)l)

Please enter the value of diastolic_pressure: 100.

Task "Clarify finding" terminated
output: new observation = diastolic_pressure = 100

Yes
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Samenvatting

De vraag of het mogelijk is intelligente, “denkende” machines te bouwen wordt tegenwoor-
dig veelvuldig gesteld. Het onderzoek naar kunstmatige intelligentie (artificial intelligence
ofwel Al) houdt zich bezig met deze vraagstelling. In de Al gaat men ervan uit dat het mo-
gelijk is intelligent gedrag te simuleren middels formele manipulaties van symbolen in een
computerprogramma. Fen bekend voorbeeld van Al systemen zijn de zgn. kennissystemen,
soms ook wel ‘expertsystemen” genoemd. Een kennissysteem is een computerprogramma
dat in staat is om bepaalde probleemoplostaken uit te voeren, zoals het stellen van een
diagnose bij een patient of het ontwerpen van een apparaat. Een kennissysteem bestaat
uit een kennisbank, die een of andere expliciete symbolische representatie van kennis in
een bepaald domein (bv. ischaemische hartziekten) bevat, en uit redeneermechanismen die
deze kennis gebruiken om een bepaald probleem op te lossen.

De eerste kennissystemen, die in de jaren zeventig ontwikkeld werden, hadden een
simpele organisatiestructuur. Het systeem bestond uit een verzameling van brokjes kennis
in eenzelfde formaat (meestal zgn. ALS /DAN regels) en één standaard redeneermechanisme.
Aan deze aanpak bleken echter een aantal fundamentele problemen te kleven. Zo was het
moeilijk, zo niet onmogelijk, om de benodigde kennis te vergaren, omdat er een wereld
van verschil bestaat tussen de kennis zoals een expert die (verbaal of schriftelijk) uit
en de voorgeschreven representatie van kennis in een systeem. Ook het onderhoud van
de kennisbank en het geven van adequate uitleg over het gevolgde redeneerspoor bleek
problematisch.

Deze beperkingen van de eerste kennissystemen waren in feite een uiting van een breder
probleem van het Al onderzoek in de jaren zeventig. Men hield zich voornamelijk bezig
met hoe men kennis kan representeren in een symbolische vorm, zonder zich af te vragen
wat men nu eigenlijk wilde representeren en waarom. Als antwoord hierop formuleerde
Newell (1982) zijn kennisnivo-hypothese (“knowledge-level hypothesis”). Het kennisnivo
beschrijft de rationaliteit van een systeem (de “agent”) in termen van doelen, acties en
kennispartities, onafhankelijk van de feitelijke realisatie in bv. ALS/DAN regels of logica
(het symbolische nivo ofwel ‘symbol level”).

Kennisnivo-beschrijvingen spelen tegenwoordig een belangrijke rol bij het ontwikkelen
van kennissystemen. Het centrale thema van dit onderzoek is de vraag hoe Newell’s idee
van een kennisnivo op een principiele manier toegepast kan worden in dit ontwikkelpro-
ces. Centraal daarin staat het “kennismodel”. Een kennismodel beschrijft de organisatie
van kennis en de rol die de verschillende kenniselementen spelen tijdens het probleem-
oplosproces, in een implementatie-onafhankelijk en voor mensen begrijpelijk vocabulair.
Kennismodellen kunnen gezien worden als een concretisering van Newell’s conceptie. Uit-
gangspunt van dit onderzoek is dat de KADS modellen van expertise zoals beschreven door
Wielinga en Breuker (1986) beschouwd kunnen worden als dergelijke kennismodellen.

De rol van kennisnivo-beschrijvingen bij het bouwen van kennissystemen is niet on-
omstreden. Als punten van kritiek worden onder meer genoemd de onmogelijkheid om
controle-kennis te beschrijven, de mogelijke computationele inadequaatheid, het ontbre-
ken van voorschriften voor ontwerp en implementatie en het feit dat de modellen geen
voorspellingen kunnen genereren over het verwachte gedrag van het systeem. In Hoofd-
stuk 2 worden deze kritiekpunten besproken en verworpen. Zo wordt beargumenteerd dat
kennismodellen noodzakelijk ondergespecificeerd zijn t.a.v. het te bouwen systeem. Ook
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biedt de uitgebreide typering in het kennismodel voldoende garanties m.b.t. de computa-
tionele adequaatheid. Tevens wordt duidelijk gemaakt dat een kennismodel gebruikt kan
worden om relevante voorspellingen te doen over het verwachte gedrag van het systeem en
dus in zekere zin gezien kunnen worden als de theorie die aan een systeem ten grondslag
ligt.

Hoofdstuk 3 geeft een overzicht van de aard van de kennismodellen zoals die in KADS
gebruikt worden. KaDs kennismodellen bestaan uit een viertal categorien van kennis, die
gezien kunnen worden als kennislagen met onderling een beperkte interactie. De domein-
laag bevat een declaratieve beschrijving van alle domeinspecifieke kennis voor een bepaalde
applicatie, zoals de concepten, attributen, relaties en structuren die onderscheiden wor-
den. De inferentielaag beschrijft alle basale redeneerstappen die men wil maken tijdens
het probleemoplossen. Elke redeneerstap wordt beschreven in een domeinonafhankelijk
vocabulair, waarbij voor elke inferentieterm, ook wel “rol” genoemd, wordt aangegeven
welke delen van de domeinkennis deze rol kunnen vervullen. Inferentiekennis kan gra-
fisch worden gerepresenteerd in een zgn. inferentiestructuur. Deze inferentiestructuur be-
schrijft de afhankelijkheden tussen de verschillende basale redeneerstappen. De taaklaag
beschrijft vervolgens hoe redeneerstappen dynamisch gecombineerd kunnen worden om
bepaalde probleemoplostaken of -subtaken uit te voeren. Deze taakprocedures kunnen
gezien worden als standaard-strategien om een (sub-)probleem op te lossen. De strategie-
laag tenslotte beschrijft hoe het systeem eventueel toch tot een oplossing kan komen in
het geval dat de standaard-strategien zoals beschreven op de taaklaag falen.

Een belangrijk kenmerk van de KaDS kennismodellen is dat de beschrijving van het
probleemoplosproces, op de domeinkennis na, terminologie gebruikt die onafhankelijk is
van het specifieke domein. Dit opent de mogelijkheid om delen van een kennismodel te her-
gebruiken voor andere domeinen, waarin een vergelijkbare taak moet worden uitgevoerd.
Dergelijke partiele, generieke kennismodellen, die typisch bestaan uit en beschrijving van
inferentiekennis en taakkennis, beschrijven in feite een bepaalde methode om een probleem
zoals diagnose op te lossen. Deze modellen worden wel interpretatiemodellen genoemd,
omdat deze veel gebruikt worden om het probleemoplosgedrag van een domein-expert te
interpreteren. Herbruikbare elementen van kennismodellen zorgen ervoor dat een kenni-
singenieur (een term, die gebruikt wordt om degenen, die kennissystemen ontwikkellen,
aan te duiden) niet steeds opnieuw het wiel hoeft uit te vinden.

In Hoofdstuk 4, 5 en 6 wordt nader ingegaan op een aantal meer gedetailleerde onder-
werpen met betrekking tot kennismodellen. Hoofdstuk 4 beschrijft een modelleertaal voor
het specificeren van de structuur van de domeinkennis. In een kennisnivo-analyse van de
domein-specifieke kennis is men met name geinteresserd in een schematische beschijving
van de structuur van de kennis: het “domein schema”. De invulling van de kennis in deze
structuur kan dan in een latere verfijningsfase geschieden. In de literatuur wordt voor
dit soort beschrijvingen gewoonlijk éfwel een specifieke kennisrepresentatietaal 6fwel een
conventionele datamodelleertaal gebruikt. De eerste oplossing is sub-optimaal, omdat het
vereist dat men zich vastlegt op een bepaalde symbolische representatie. De tweede op-
lossing is evenmin bevredigend, omdat kennissystemen een aantal specifieke eisen stellen,
waarvoor deze conventionele talen geen oplossing bieden. Een belangrijke eis is bijvoor-
beeld dat de modelleertaal primitieven bevat om de structuur van een groep ALS/DAN
regels te beschrijven. De domeinmodelleertaal, die in Hoofdstuk 4 beschreven wordt, is
gebaseerd op bestaande modelleertalen, maar bevat een aantal additionele primitieven, die
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voor kennissystemen noodzakelijk zijn. We laten zien dat deze taal gezien kan worden als
een generalisatie van een aantal “symbol-level” kennisrepresentatietalen, hetgeen precies
is wat men zou willen van een kennisnivo-beschrijving van domeinkennnis. Een aantal
aspecten van de formele semantiek van deze taal moeten echter nog verder uitgezocht
worden.

Hoofdstuk 5 bevat een conceptuele beschrijving van het specificeren van inferentie-
kennis in kennismodellen. Zoals reeds opgemerkt, is de inferentiekennis het eerste nivo
waarop men abstraheert van het applicatie-domein en vervult dus een cruciale rol in het
hergebruik van modellen. Een interpretatiemodel verschaft vaak wel een eerste versie van
een inferentiestructuur, maar meestal moet deze enigzins aangepast worden om geschikt te
zijn voor een nieuw domein. Een aantal technieken en methoden worden beschreven, die
gebruikt kunnen worden tijdens dit proces, zoals kennisdifferentiatie en taakdecompositie.
Ook wordt een voorbeeld gegeven van een volledige “top-down” specificatie van een infe-
rentiestructuur, waarbij een eenvoudig initieel hypothetico-deductief model stap-voor-stap
verfijnd wordt. Dit soort verfijning kan ondersteund worden door generieke modelcompo-
nenten van een kleiner omvang dan complete interpretatiemodellen. Dergelijke generieke
componenten worden voor het voorbeeld-model beschreven.

Als eenmaal een kennismodel gebouwd is, rijst de vraag hoe men op basis hiervan
een systeem kan construeren. Men staat dan feitelijk voor het probleem een adequate
symbolische realisatie te vinden van de elementen van het kennismodel door het kie-
zen van geschikte computationele en representatie-technieken. Dit operationalisatie-proces
moet ervoor zorgdragen dat het uiteindelijke systeem voldoet aan een aantal voorwaarden
met betrekking tot onderhoud, aanpasbaarheid, herbruikbaarheid en uitlegfaciliteiten. In
Hoofdstuk 6 worden de verschillende stappen en beslissingen in het ontwerp- en implemen-
tatieproces besproken. De notie van structuur-behoudend ontwerp wordt geintroduceerd
als een centraal principe voor de transformatie van een kennisnivo-beschrijving naar een
beschrijving op symbolisch nivo. Met structuur-behoud wordt hier bedoeld dat zowel de
inhoud als de structuur van informatie in een kennismodel bewaard blijven in het uiteinde-
lijke artefact. Met behulp van dit principe kan men een prototypische systeem-architectuur
specificeren die logisch volgt, maar niet identiek is aan, de structuur van het kennismodel.
Deze architectuur wordt geillustreerd middels een voorbeeld.

Ook wordt de ondersteuning, die gegeven kan worden d.m.v. gespecialiseerde pro-
grammeeromgevingen, besproken. Daarbij wordt geconstateerd dat de meeste van deze
omgevingen 6fwel de kennisingenieur teveel inperken in zijn/haar mogelijkheden om het
gewenste systeem te realiseren, 6fwel te weinig ondersteuning bieden. Een alternatieve
aanpak wordt voorgesteld, geillustreerd door een prototype-omgeving, die gezien kan wor-
den als een poging om de kennisingenieur zowel flexibiliteit als maximale ondersteuning
te bieden d.m.v. kleine herbruikbare code-modules,

Hoofdstuk 7 beschrijft een applicatie van de beschreven technieken in een domein
waarin kamers aan werknemers moeten worden toegewezen. Dit domein is gebruikt als
voorbeeld-domein in het “Sisyphus” project, met als doelstelling de verschillende aanpak-
ken voor kennismodellering te vergelijken. Dit hoofdstuk bevat een gedetailleerd voorbeeld
van een KADS kennismodel en laat zien hoe de ontwerpprincipes beschreven in Hoofdstuk 6
gebruikt kunnen worden om op basis van dit model een systeem te bouwen. In Appendices
A en B zijn respectievelijk de beschrijving van de structuur van de domeinkennis en de
uiteindelijke systeemcode te vinden.
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In Hoofdstuk 8 wordt de Kaps aanpak vergeleken met twee vooraanstaande metho-
dieken voor het ontwikkelen van conventionele systemen, te weten de functionele aanpak
van Yourdon en de object-georienteerde aanpak. Dit soort vergelijkingen zijn belangrijk,
omdat kennissystemen meestal niet geisoleerd worden toegepast, maar in combinatie met
meer conventionele applicaties. De verschillende aanpakken worden vergeleken door aan
te geven welke modelleerprimitieven elke aanpak biedt voor het beschrijven van drie ge-
zichtspunten die men kan innemen op een systeem, te weten het funtionele, het data- en
het dynamische (of controle-) gezichtspunt. Ondanks de verschillen in terminologie blij-
ken er veel overeenkomsten te zijn. De gevonden overeenkomsten en verschillen worden
besproken.

Er zijn momenteel een aantal verschillende methoden voor kennismodellering. Er be-
staat dan ook een groeiende behoefte om te komen tot een unificatie van de verschillende
aanpakken, zodat modellen onderling uitgewisseld kunnen worden. Daarvoor zijn aller-
eerst vergelijkende studies nodig. Hoofdstuk 9 beschrijft een dergelijke studie. Hierin
wordt een kennismodel geconstrueerd van de “cover & differentiate” probleemoplosme-
thode. Dit model wordt vervolgens vergeleken met het heuristische-classificatie model.
Hierbij komen een aantal verschillen aan het licht, die bij een informele of computatio-
nele beschrijving gemakkelijk over het hoofd gezien kunnen worden. De modelleertaal,
die in dit hoofdstuk gebruikt wordt, is een vroege versie van een formele taal voor de
representatie van KADS modellen.

Hoofdstuk 10 tenslotte vat de conclusies van dit onderzoek samen.
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