
Pragmatics of the Knowledge Level

A. Th. (Guus) Schreiber

University of Amsterdam, Department of Social Science Informatics

Roetersstraat 15, NL-1018 WB Amsterdam, The Netherlands

Tel: +31 20 525 6792; Fax: +31 20 525 6896

E-mail: schreiber@swi.psy.uva.nl

Pragmatics of the Knowledge Level

(Gebruiksaspecten van het Kennisnivo)

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magni�cus

prof. dr. P. W. M. de Meijer

in het openbaar te verdedigen in de Aula van de Universiteit

(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),

op woensdag 28 oktober 1992 te 13.00 uur.

door

August Theodoor Schreiber

geboren te Heerlen

Promotor: Prof. dr. B. J. Wielinga

Faculteit Psychologie

Cover design: A. H. Schreiber

To Wilma, Niels & Judith

Contents

Preface v

1 Introduction 1

1.1 Symbolic AI and the Field of Knowledge Engineering : : : : : : : : : : : : : 1

1.2 Context and Theme of this Thesis : 3

1.3 Structure of this Thesis : 4

2 On Problems with the Knowledge-Level Perspective 7

2.1 Introduction : 7

2.2 The Knowledge-level Hypothesis Debate : 8

2.3 Representing Control in Knowledge-level Models : : : : : : : : : : : : : : : 11

2.4 Epistemological and Computational Adequacy : : : : : : : : : : : : : : : : 12

2.5 Do Knowledge-level Models Yield Predictions? : : : : : : : : : : : : : : : : 14

2.6 System Building on the Basis of Knowledge-level Models : : : : : : : : : : : 16

2.7 Conclusions : 17

3 KADS: A Modelling Approach to KBS Development 19

3.1 Introduction : 19

3.2 Views on Knowledge Acquisition : 20

3.3 Principle 1: Multiple Models : 22

3.4 Principle 2: Modelling Expertise : 28

3.5 Principle 3: Reusable Model Elements : 40

3.6 The Knowledge Acquisition Process : 45

3.7 Relation to Other Approaches : 48

3.8 Experiences : 50

3.9 Future Developments & Conclusions : 51

4 A KADS Domain Description Language 53

4.1 Introduction : 53

4.2 Existing Approaches to Data/Knowledge Modelling : : : : : : : : : : : : : : 54

4.3 Requirements for a Domain Description Language : : : : : : : : : : : : : : 57

4.4 De�nition of the Domain Description Language : : : : : : : : : : : : : : : : 59

4.5 Discussion : 69

ii Pragmatics of the Knowledge Level

5 Model Construction 73

5.1 Introduction : 73

5.2 Disambiguating the Graphical Representation of Inference Structures : : : : 74

5.3 Model-Construction Process : 77

5.4 Tuning the Inference Structure for Systematic Diagnosis : : : : : : : : : : : 80

5.5 Top-down Construction : 81

5.6 A KADS Inference Structure for Heuristic Classi�cation : : : : : : : : : : : 91

5.7 Discussion: Generic Model Components : 93

6 Operationalising Models of Expertise 99

6.1 Introduction : 99

6.2 The Design Process : 100

6.3 Structure-Preserving Design : 104

6.4 Structure-Preserving Design: A Skeletal Architecture : : : : : : : : : : : : : 109

6.5 Structure-Preserving Design: Computational Decisions : : : : : : : : : : : : 113

6.6 Existing Approaches to Computerised Support : : : : : : : : : : : : : : : : 119

6.7 Maximising Support and Flexibility: An Example : : : : : : : : : : : : : : : 124

6.8 Discussion : 127

7 Applying KADS to the Sisyphus Domain 129

7.1 Introduction & Approach : 129

7.2 Statement of the Sample Problem : 130

7.3 Modelling the O�ce Assignment Problem : : : : : : : : : : : : : : : : : : : 132

7.4 Initial Observations : 135

7.5 Domain schema : 135

7.6 Task classi�cation and model selection : 137

7.7 Model construction : 138

7.8 Operationalising the Model of Expertise : 149

7.9 Discussion : 154

8 Comparing KADS to Conventional Software Engineering 157

8.1 Introduction : 157

8.2 Models Distinguished : 158

8.3 Modelling Framework : 161

8.4 Modelling Techniques : 162

8.5 The Role of the Analysis Model in Design : : : : : : : : : : : : : : : : : : : 167

8.6 Conclusions : 168

9 Di�erentiating Problem-Solving Methods 171

9.1 Introduction : 171

9.2 Framework for Speci�cation of PSM's : 173

9.3 A Model of Cover-and-Di�erentiate : 174

9.4 Analysing Cover-and-Di�erentiate : 182

9.5 Conclusions : 184

Contents iii

10 Conclusions 185

10.1 Explication of Assumptions behind KADS : : : : : : : : : : : : : : : : : : : 185

10.2 Principles and Techniques Developed : 186

10.3 Applicability : 187

10.4 Evidence for Newell's Claim : 187

10.5 Perspectives for Knowledge Engineering : 189

A DDL De�nition of the Sisyphus Domain Knowledge 191

B Source Code Sisyphus Application 197

B.1 Top-level module : 197

B.2 Task-level modules : 197

B.3 Inference-level modules : 205

B.4 Domain-level modules : 210

B.5 Example output : 217

C Example Implementation: Abstract & Specify 225

C.1 Application-speci�c modules : 225

C.2 Example output : 226

Bibliography 229

Samenvatting 237

Curriculum Vitae 241

Preface

During the past years I have received help and support from many people. At Leiden

University, Koos Mars taught me the �rst principles of science and raised my interest for

the �eld of arti�cial intelligence. In Amsterdam I learned that research is in fact to a large

extent team work. Many parts of this thesis have been in
uenced by work I have done

together with colleagues at swi. The work described in Ch. 3 is based on research of the

whole kads team anno 1986, in particular Joost Breuker and Bob Wielinga. I learned

many things from the development of the StatCons system together with Paul de Greef

and Jan Wielemaker. Part of the work on design described in Ch. 6 is based on research

in the kads project in which Bert Bredeweg, Massoud Davoodi, Peter Terpstra and Bob

Wielinga participated. Ch. 2 arose from discussions about the knowledge level with Hans

Akkermans and Bob Wielinga. Also, my work together with the colleagues of the reflect

project has served as an important source of inspiration. The formal speci�cation language

used in Ch. 9 is the result of work of a group of people, in particular Hans Akkermans,

John Balder, Frank van Harmelen and Bob Wielinga.

I am grateful to Ton de Jong and Jacobijn Sandberg, with whom I shared an o�ce

during �ve years, for the pleasant and stimulating working atmosphere. I have pro�ted

from many discussions with Hans Akkermans, Frank van Harmelen, Werner Karbach,

Marc Linster and Angi Vo�. My supervisor Bob Wielinga has coached me all along the

way and his prying questions (and answers) provided the basis for this thesis. I also

like to thank Anjo Anjewierden, Manfred Aben, Robert de Hoog and Jan Treur for their

comments on earlier versions. of this thesis. All �gures in this book are created with the

pcedraw program developed by Jan Wielemaker.

The research reported in this thesis has been supported by a number of projects partially funded

by the esprit Programme of the Commission of the European Communities, notably projects P1098,

P3178 and P5248. The partners in the P1098 (kads) project were stc Technology Ltd. (UK), sd-scicon
plc. (UK), Polytechnic of the South Bank, (UK), Touche Ross MC (UK), scs GmbH (Germany), nte

NeuTech (Germany), Cap Gemini Innovation (France), and the University of Amsterdam (The Nether-

lands). The partners in the P3178 (reflect) project were the University of Amsterdam (The Netherlands),
the German National Research Institute for Computer-Science gmd (Germany), the Netherlands Energy

Research Foundation ecn (The Netherlands), and bsr-consulting (Germany). The partners in the P5248

(kads-ii) project are Cap Gemini Innovation (France), Cap Gemini Logic (Sweden), Netherlands Energy
Research Foundation ecn (The Netherlands), entel sa (Spain), ibm France (France), Lloyd's Register

(UK), Swedish Institute of Computer Science (Sweden), Siemens ag (Germany), Touche Ross mc (UK),
University of Amsterdam (The Netherlands) and Free University of Brussels (Belgium). This thesis re
ects

the opinions of the author and not necessarily those of the consortia.

Chapter 1

Introduction

1.1 Symbolic AI and the Field of Knowledge Engineering

In this age of technological advances, the question whether one can build a \thinking

machine" has become a popular topic, both in scienti�c circles and in social conversations.

Leibniz was probably one of the �rst to come up with the idea of mechanising human

thought through a calculus [Russell, 1961; Mars, 1987]. The goal of his concept of a

Characteristica Universaliswas to de�ne a generalised version of mathematics which would

enable the resolvement of philosophical debates through computations. More than two

hundred years later, Turing de�ned the concept of a universal, programmable machine,

and the \computer" (at least in theory) was born. When, after the second world-war, the

�rst programmable computers became available, researchers started to work on computer

programs that could do something \intelligent", e.g. translate sentences from one language

into another. This research �eld has become known as arti�cial intelligence (ai).

A critical assumption behind much ai research is the hypothesis that it is possible

to simulate intelligent behaviour through formal manipulations of symbols in a computer

program. Smith has summarised this assumption elegantly in his knowledge-representation

hypothesis [Smith, 1985; p. 33]:

\Any mechanically embodied intelligent process will be comprised of struc-

tural ingredients that a) we as external observers naturally take to represent a

propositional account of the knowledge that the overall process exhibits, and b)

independent of such external semantical attribution, play a formal but causal

and essential role in engendering the behaviour that manifests that knowledge."

This hypothesis, especially in its strong form (\all intelligent behaviour can be simu-

lated"), has given rise to many debates within and outside the �eld of ai. We agree with

Smith that, although we are not even in a position to commit ourselves fully to the weak

version of the knowledge representation hypothesis, \it deserves our attention".

One of the areas in ai which builds heavily on the knowledge representation hypothesis

is the �eld of knowledge-based systems. A knowledge-based system (kbs) is a system that

is capable of carrying out problem-solving tasks, such as diagnosing diseases or con�guring

2 Pragmatics of the Knowledge Level

device components.1. A kbs employs a symbolic representation of domain-speci�c knowl-

edge in carrying out its task (hence the name knowledge-based). Knowledge-based systems

were �rst developed in the sixties as a reaction to the so-called \general-purpose" or

\weak" problem solving programs such as gps [Newell & Simon, 1963]. Weak systems em-

ployed one general method such as means-end analysis for solving problems. Such general

methods were however considered by many as inadequate for solving non-toy problems.2

In contrast, a kbs was said to rely on large amounts of domain-speci�c knowledge and

domain-speci�c strategies, which would enable it to achieve problem-solving capability.

Given the focus in current kbs research on explicating the general problem solving strat-

egy behind a system, the truth probably lies somewhere in the middle.

The �rst generation knowledge-based systems employed one relatively simple inference

engine working on a knowledge base in a particular representational format, usually pro-

duction rules. [Clancey, 1983] showed in his analysis of the prototypical system of this

generation, mycin, that such a knowledge base hides various important properties of the

reasoning process and of the structure of the knowledge in the application domain. Cer-

tain rules, or parts of rules, ful�ll particular roles in the reasoning process which remain

implicit in such a kbs organisation. This implicitness of underlying structures impairs the

acquisition and re�nement of knowledge for the kbs as well as the reuse of the system, its

explanatory power and the assessment of its relation with other systems.

It is fair to say, that this problem was not speci�c for the �eld of knowledge engineering

(ke, the more or less standard term for the process of kbs development). Similar prob-

lems were being identi�ed in the broader area of knowledge representation. The clearest

evidence of this was brought forward by Brachman and Smith through the results of their

sigart questionnaire [Brachman & Smith, 1980]. The aim of this questionnaire was to

get data on various knowledge representation approaches in order to perform a compara-

tive study. About the results of their analysis of the huge amount of data received, they

remark:

\Perhaps more than anything else, it has emerged as a testament to an as-

tounding range and variety of opinions held by many di�erent people in many

di�erent places." [Brachman & Smith, 1980; p. 1]

Everyone seemed to be speaking a di�erent language: a true Babel.

In response to this confusion, Newell coined, in his presidential address to aaai-80,

the `knowledge-level hypothesis". The key point underlying his argument was that the

confusion arose because ai research was too much focused on detailed representational

issues. What was missing was a description of the rationality behind the use of ai tech-

niques. He pleaded for a shift of emphasis in ai research from the \how" questions to the

\why" questions. The knowledge-level was his proposal for realising a description of an ai

system in terms of its rational behaviour: why does the system (the \agent") perform this

\action", independent of its symbolic representation in rules, frames or logic (the \symbol

level").

1The term \expert systems" is also sometimes used to denote such systems, as problem-solving tasks

are often carried out by experts in particular �eld, e.g. a doctor, an engineer.
2The recent successes of chess systems has made clear that at least for one type of application of weak

methods this objection does not hold. The statement of Boden that \there is no prospect of a chess

master being beaten by a program in the near future" [Boden, 1977; p. 353] has certainly turned out to

be incorrect.

Chapter 1. Introduction 3

During the eighties, this idea of introducing a knowledge-level description was taken on

in knowledge engineering research to solve the problems mentioned earlier. The purpose

of a knowledge-level model of a kbs is to make the organisation of knowledge in the

system explicit. It should provide an implementation-independent description of the role

that various knowledge elements play during the problem-solving process of the system. A

knowledge-level model should be able to explain the rationale behind the way in which the

system carries out a task in a vocabulary understandable for humans. This makes such a

model an important vehicle for communicating about the system both during development

and during system execution.

The central topic of this thesis is to study how Newell's idea of a knowledge-level can

be put into use in a principled way to support knowledge engineering.

1.2 Context and Theme of this Thesis

The research described in this thesis was carried out in the context of the development

of the kads3 approach to kbs development. kads has been and is being developed in

a series of esprit projects. The major actors in the development of the original ideas

behind kads were Bob Wielinga and Joost Breuker [Wielinga & Breuker, 1984; Breuker

& Wielinga, 1984; Wielinga & Breuker, 1986].

Fundamental to the kads approach is the use of \models of expertise" to analyse and

specify the required problem-solving behaviour in a kbs application domain. kads models

of expertise have a cognitive
avour in the sense that they are aimed at human interpreters.

The vocabulary in which they are expressed is that of experts and/or potential users of

the system. kads models of expertise are not cognitive models in the true sense of the

word: their purpose lies in supporting a structured engineering process of knowledge-based

systems.

The early kads-related work in the �rst half of the eighties has developed into a rather

broad �eld of research issues concerning a methodology for kbs development, including

topics such as organisational embedding, life-cycle models, user interaction, formal speci-

�cation and executable languages. The core of the approach however still has remained to

be the nature and role of conceptual models of expertise in the knowledge engineering pro-

cess. Although this was not an articulate assumption behind the kads models of expertise

as presented in [Wielinga & Breuker, 1986], these models can be seen as a rei�cation of

the knowledge-level hypothesis for practical use in knowledge engineering. Their aim is

similar: providing an implementation-independent speci�cation of the required problem-

solving behaviour in the target kbs, which is intelligible for humans.

The general theme of this thesis is a theoretical and practical investigation of kads

models of expertise as knowledge-level descriptions. We study the nature of the relation

between kads models and Newell's knowledge hypothesis. We investigate a number of

important questions, notably:

� What is an adequate language for describing the structure of domain-speci�c knowl-

edge?

3The interpretation of this acronym has evolved over the years: from \Knowledge Acquisition Docu-

mentation System" via \Knowledge Acquisition Documentation Structuring" to \Knowledge Analysis and

Design Structuring".

4 Pragmatics of the Knowledge Level

� What are principles underlying the model construction process?

� How should knowledge-level descriptions be transformed into symbol-level descrip-

tions?

We describe a sample application of KADS. We also compare the kads approach with

two leading software engineering approaches and describe the use of kads in a comparative

study between two knowledge-level models developed outside the scope of kads.

1.3 Structure of this Thesis

The body of this thesis consists of eight chapters. Each chapter represents a self-contained

piece of work. Some chapters constitute papers that have been published elsewhere. Every

chapter addresses particular research topics within the general theme of this thesis. This

section gives an overview of these research topics.

KADS and the knowledge-level hypothesis Ch. 2 contains an investigation of

a number of general issues related to Newell's knowledge level. This paper was triggered

by Sticklen's criticism of the knowledge-level hypothesis [Sticklen, 1989]. We relate kads

models of expertise to Newell's original hypothesis and to other interpretations of the

knowledge-level. We discuss criticisms such as the predictive power of knowledge-level

models and the inability to represent control. In the process, we try to explicate a number

of assumptions behind kads such as the distinction between analysis and design and the

computational adequacy of models of expertise.

Fundamentals of KADS models of expertise The purpose of Ch. 3 is to give a

comprehensive and consistent description of the fundamentals of kads. Over many years,

people have complained about the lack of such a description. We present these funda-

mentals through three cornerstones underlying the kads approach: (i) the introduction of

various models as a means of coping with the complexity of the knowledge engineering pro-

cess, (ii) the kads framework for modelling the required expertise, and (ii) the reusability

of generic model components as templates supporting top-down knowledge acquisition.

We also relate kads to other knowledge engineering approaches.

Of course, much of the material discussed in this chapter is the product of research of

a group of people, notably the co-authors of this chapter, Wielinga and Breuker. However,

it is probably fair to say that one of the reasons that an overview article such as this had

not been written earlier was that some issues were not worked out in su�cient detail. In

this chapter we describe:

� The introduction of the notion of a domain schema as a structural description of the

domain-speci�c knowledge.

� An exploration of one of the key parts of the modelling framework: the relation

between domain and inference knowledge.

� A re�nement of the formulation of task knowledge.

� A (brief) overview of knowledge modelling activities.

� The description of a non-toy \running example".

The paper from which this chapter is derived was the basis for the special issue on

kads of the Knowledge Acquisition Journal [Schreiber, 1992].

Chapter 1. Introduction 5

Models of expertise: related research topics Ch. 4, Ch. 5 and Ch. 6 address

three research topics that have proven to be of vital importance when using models of

expertise in knowledge engineering:

Domain-knowledge modelling Traditionally, kads was very functionally oriented: the

emphasis was on notions like inference structures, which specify the basic functions

(from a knowledge-level point of view) of the target system. The descriptive vocab-

ulary for the domain-speci�c data manipulated by inferences consisted of \concepts

and relations". The goal of Ch. 4 is to develop a more expressive data modelling

framework that meets the speci�c requirements posed by knowledge engineering.

The idea of the proposed language is to provide the knowledge engineer with a no-

tation that allows generalisations over various knowledge representation techniques.

This is in line with the idea of a knowledge-level perspective, where one does not

want to commit oneself to a particular, \symbol-level", representation. The use

of the proposed data modelling language, which is partly based on ideas proposed

in semantic database modelling research, is illustrated through its application to a

sample domain.

Model construction An often-heard criticism of the kads approach is that it only pro-

vides a descriptive framework. Apart from the set of interpretation models, there

is little support for the actual model-construction process. In Ch. 5 we discuss the

construction of inference structures: a crucial ingredient of kads models of exper-

tise. We show how an initial inference structure can be gradually re�ned into an

inference structure that meets the requirements of the application domain at hand.

Model construction can be supported by generic model components of a smaller grain

size than interpretation models. We illustrate the approach with an example showing

how a kads version of Clancey's heuristic classi�cation model can be constructed.

We also compare this inference structure with Clancey's latest observations about

heuristic classi�cation [Clancey, 1992].

In addition, we discuss a number of ambiguities in the graphical representation of

inference structures and propose some extensions to cope with these problems.

From knowledge-level to symbol-level In Ch. 6 the operationalisation problem is dis-

cussed: how does one transform a knowledge-level description into a symbol-level

description that can be implemented on a machine? We discuss the various types

of decisions that have to be made in this design and implementation process. The

notion of structure-preserving design is discussed as the leading principle that should

underly this process. A skeletal architecture for \kads" systems is presented, which

supports a structure-preserving design. We also discuss various existing support

environments for operationalising knowledge-level models and present an example

environment that we developed.

A sample application Ch. 7 contains a sample application of kads in a domain

of allocating o�ces to employees. This application was built in the context of the Sisy-

phus'91 project \Models of Problem Solving". This project was initiated at the European

Knowledge Acquisition Workshop 1990. The aim of the enterprise was to apply various

6 Pragmatics of the Knowledge Level

knowledge modelling approaches to the same application domain in order to get a common

understanding of these approaches. This was felt to be a necessary �rst step in arriving at

generally-shared theories about the nature an role of knowledge-level models in knowledge

engineering.

KADS and conventional software engineering A question that frequently

arises, especially in discussions with people from the software-engineering community,

is how kads relates to developments in software engineering. The aim of Ch. 8 is to com-

pare the kads approach with two leading software-engineering methodologies: Modern

Structured Analysis [Yourdon, 1989b] and Object-Oriented Analysis [Rumbaugh et al.,

1991; Coad & Yourdon, 1991]. We discuss both similarities and di�erences with respect

to three perspectives from which a system can be viewed: the data perspective, the func-

tional perspective and the control perspective. A major common theme that arises, also

for future research, is the issue of reusability.

The future { a �rst comparative study Currently, all knowledge-level models

are described either in an informal way or through the systems that implement these

models. This type of description often leads to ambiguities and/or misunderstandings. In

Ch. 9 an attempt is made to describe the cover-and-di�erentiate method for diagnosis in

a more formal way and to compare this method to heuristic classi�cation. We identify

considerable di�erences between the two methods, although in the original literature cover-

and-di�erentiate was said to be a specialised form of heuristic classi�cation.

We are not claiming that the model presented is the only correct one. However, the

account given in this chapter can be a starting point for a precise de�nition of what

methods like cover-and-di�erentiate actually do. We think this type of comparison can

be a prelude for much further work which should ultimately lead to a shared library of

generic models and model components.

In the last chapter we summarise the conclusions of the research described in this

thesis. We also discuss open questions with respect to kads as well as in the broader

context of knowledge enginnering research. Some possible future developments are brie
y

addressed.

Chapter 2

On Problems with the Knowledge-Level

Perspective

In this chapter some points of criticism on Newell's Knowledge-level Hypothesis are investigated. Among

those are: the inability to represent control, the potential computational inadequacy, the lack of predic-

tive power and the non-operational character (the problem of 'how to build it'). We discuss Sticklen's

Knowledge-level Architecture Hypothesis in which he tries to overcome these problems. On the basis of
general arguments as well as speci�c insights from our KADS knowledge level modelling approach we reject

the points of criticism. We also argue that the extension Sticklen proposes is not necessary and partly also

unwanted.

This chapter was �rst presented as a paper at the Ban�'90 Knowledge Acquisition Workshop and later

invited for presentation at the AISB'91 conference on Simulation of Behaviour. It is co-authored by Hans

Akkermans and Bob Wielinga. Reference: G. Schreiber, H. Akkermans, and B. Wielinga. On problems
with the knowledge-level perspective. In L. Steels and B. Smith, editors, AISB91: Arti�cial Intelligence

and Simulation of Behaviour, pages 208{221, London, 1991. Springer Verlag. Also in: Proceedings

Ban�'90 Knowledge Acquisition Workshop, J.H. Boose and B.R. Gaines (editors), SRDG Publications,
University of Calgary, pages 30-1 { 30-14.

2.1 Introduction

The introduction of the knowledge-level hypothesis by Newell has attracted considerable

attention and stimulated new lines of research. It claims that there exists a distinct

computer systems level that lies immediately above the symbol or program level. This

knowledge level characterises the behaviour of problem solving agents in terms of their

goals and actions, with knowledge serving as the medium, using a simple principle of

rationality saying that an agent will carry out a certain action if it has knowledge that

one of its goals can be achieved by that action [Newell, 1982].

It was Clancey who �rst showed the importance of this idea for the theory of knowledge-

based reasoning [Clancey, 1983; Clancey, 1985b]. Since then, various authors have elabo-

rated on the viewpoint that the knowledge level is the right level of abstraction for knowl-

edge acquisition and engineering [Wielinga et al., 1989; Bylander & Chandrasekaran, 1988;

McDermott, 1988; Alexander et al., 1988; Musen et al., 1987; Steels, 1990]. This research

has focused on the conceptual, implementation-independent aspects of knowledge and,

8 Pragmatics of the Knowledge Level

on this basis, has contributed to generic models of problem solving and to more solid

methodologies for kbs development.

Evidently, the knowledge-level hypothesis has been a very fruitful one. On the other

hand, it has also attracted strong criticism. This is well exempli�ed in a recent paper by

Sticklen and the associated commentaries [Sticklen, 1989]. In brief, from discussions like

these we single out as basic problems related to the knowledge-level hypothesis:

1. Computational inadequacy : Due to the high level conceptual bias of knowledge-level

models, a real danger is their potential computational inadequacy.

2. Non-operational character : knowledge-level models do describe knowledge that is

necessary for problem solving, but give no clue as to how to build computational

systems embodying and exploiting that knowledge.

3. Inability to represent control : knowledge-level models capture knowledge used in

problem solving actions, but they do not provide ways to express the control of

problem solving.

4. Lack of predictive power : knowledge-level models are useful to explain |in retro-

spect the behaviour of certain problem solving agents (such as ai programs), but are

unable to generate empirically testable predictions about that behaviour.

Interestingly, most of this criticism on the knowledge-level hypothesis appears to be

inspired by what is seen by some as its greatest advantage: moving away from imple-

mentational issues in favour of the conceptual aspects of knowledge. In the present work,

which is basically a position paper, the knowledge-level hypothesis and its problems will be

investigated in some detail. On the basis of general arguments as well as speci�c insights

from our kads knowledge-level approach to kbs development [Wielinga et al., 1989], we

will consider |and reject| the points of criticism raised above.

2.2 The Knowledge-level Hypothesis Debate

2.2.1 The knowledge-level hypothesis The \knowledge-level hypothesis" (klh)

was put forward by Newell in his presidential address to aaai-80 [Newell, 1982]. Newell

discusses in this address the notions of knowledge and representation which in his view

are central to ai. Newell signals that most of the work in ai is centred on representation.

Representation refers here to the actual data structures and processes in an (ai) program.

He suggests that the confusions in ai research on representation may (partly) be due

to the limited attention the research community has given to the study of the nature of

knowledge. The Knowledge-level Hypothesis is aimed at providing a platform for studying

knowledge independent of its representation in a programming language. Newell phrases

the klh as follows:

\There exists a distinct computer systems level, lying immediately above the

symbol level, which is characterised by knowledge as the medium and the

principle of rationality as the law of behaviour."

Chapter 2. On Problems with the Knowledge-Level Perspective 9

Representations (data structures and processes) are part of the the symbol level,

whereas knowledge is the prime ingredient (the medium) at the knowledge level. Newell

sketches the structure of the knowledge level as an agent that has a physical body (con-

sisting of a set of actions), a body of knowledge, and a set of goals (goals are bodies of

knowledge about the state of the environment). The principle of rationality that governs

the behaviour of the agent is formulated as follows:

If an agent has knowledge that one of its actions will lead to one of its goals,

then the agent will select this action.

The central issue now becomes: what is the nature of the knowledge the agent has?

Newell characterises knowledge as a\competence-like notion, being a potential for gener-

ating action" and as \entirely functionally in terms of what it does, not structurally in

terms of physical objects". A representation is de�ned as a \symbol system that encodes

a body of knowledge".

As an example of the usefulness of a distinction between knowledge level and symbol

level, Newell points to the work of Schank on conceptual dependency structures [Schank,

1975]. He argues that the main contribution of this work is at the knowledge level {

namely by providing a quite general way of describing knowledge of the world. Although

ai researchers felt that this work was incomplete without an implementation, the actual

program added little to the theoretical work: it was just a large ai program with the usual

ad hoc constructions.

2.2.2 Knowledge-level modelling in knowledge acquisition One of the areas

where the knowledge-level hypothesis has received considerable attention is the �eld of

knowledge acquisition. Experience with the �rst generation of knowledge-based systems

(mycin and its derivatives) showed that the transfer approach to knowledge acquisition

was simply inadequate. In the transfer approach the knowledge engineer tries to extract

knowledge from a domain expert in the form of the representation in the system (e.g.

as production rules). The problems with this approach are manifold: the mapping from

elicited expertise-data onto the required representation is di�cult and often not possible;

systems with a large knowledge base become di�cult to maintain; explanation facilities are

poor; etc. The main reason for this is that the gap between the observed problem solving

behaviour and the target application is just too wide. What is needed is an intermediate

description of the expertise in a task domain at a more abstract level. The knowledge

level provides precisely this intermediate level of description. The introduction of this

intermediate model implies a di�erent approach to knowledge acquisition. In contrast to

the transfer approach, expert data are not transferred directly into machine symbols, but

serve as input for a modelling process.

Broadly speaking, two approaches can be identi�ed to the use of the idea of a

knowledge-level description in knowledge acquisition, In the �rst approach the starting

point is an implementation of (parts of) a problem solver. Here, knowledge-level notions

are introduced by providing abstract, implementation-free, descriptions of the knowledge

elements required by the problem solver. Examples of this approach are the Generic Task

approach [Bylander & Chandrasekaran, 1988] and the work of McDermott et al. on mole,

salt and other systems [Marcus, 1988]. In the second approach, exempli�ed in the kads

10 Pragmatics of the Knowledge Level

methodology [Wielinga & Breuker, 1986], the knowledge-level descriptions are part of a

conceptual model of a task domain. The conceptual model serves as a speci�cation of the

(knowledge) requirements for a particular knowledge-based application. The conceptual

model is not directly linked with the actual implementation.

2.2.3 Criticism of the knowledge-level hypothesis The introduction of the klh

has led to criticism both of the klh itself and also of the application of knowledge-

level descriptions in the development of knowledge-based systems. In a recent article,

Sticklen [Sticklen, 1989] phrases these points of criticism in the form of an extension of

the Knowledge-level Hypothesis: the \Knowledge-level Architecture Hypothesis". We will

go through his argument in some detail, as his discussion is in a sense typical for critics

of the klh.

First, Sticklen acknowledges that the notion of a knowledge-level description is a useful

one. He points to the work of Clancey on Heuristic Classi�cation [Clancey, 1985b] as a

prototypical example of a knowledge-level description of a problem solving agent (process).

In his article, Sticklen apparently views the \horse shoe" inference structure of heuristic

classi�cation as a complete knowledge-level description. He then concludes that this type

of description is unable to yield veri�able predictions of the problem solving behaviour

of an agent and that thus the knowledge-level hypothesis is incomplete. This conclusion

is based on the assumption that a scienti�c theory has two necessary components: (i)

the theory must account for known phenomena and (ii) the theory must make (veri�able)

predictions about phenomena that will be observed in the future. He argues that the

lack of predictive power of knowledge-level descriptions is due the fact that there is no

way in Newell's knowledge level to specify problem solving control. In his Knowledge-level

Architecture Hypothesis he proposes to extend the klh with the possibility of decomposing

an agent (task) into sub-agents (sub-tasks) and allow speci�cation of ordering among sub-

agents. This extension seems harmless enough. Newell himself is not very clear whether

decomposition of agents is allowed. A requirement for the decomposition is that the

resulting sub-agents are 'knowledgeable', i.e. that they can be described in knowledge-

level terms. Sticklen is however not very clear on how this can be ensured.

Given a decomposition of an agent into sub-agents, Sticklen de�nes the corresponding

knowledge-level architecture through two ingredients: (i) a speci�cation of the communi-

cation paths between sub-agents, and (ii) the speci�cation of the message protocols for

inter-agent communication.

Sticklen claims that a knowledge-level architecture description provides a

\blueprint for how to build a problem solver that may be used as a simulator."1

The simulator provides the required predictive part of the theory, The role of the simulator

can be compared with the role of numeric simulations in physics.

In his article, Sticklen tries to cope with some {highly interrelated{ points of criticism

of the knowledge-level approach,. He mentions two points explicitly: the inability to

represent control and the lack of predictive power. Two other points of criticism are:

� Computational inadequacy When a knowledge-level description is transformed into

1Italicisation by the authors

Chapter 2. On Problems with the Knowledge-Level Perspective 11

a symbol level description, what kind of guarantees does one have that the resulting

system is computationally adequate?

� Non-operational character A knowledge-level model gives no clues about how to

build an operational system, i.e. it does not solve the 'design problem'.

These last two points are also covered by the knowledge-level architecture hypothesis

through the blueprint for building a simulator (i.e. a knowledge-based application).

In the rest of this chapter we discuss the various points of criticism. We will argue

that the extension that Sticklen proposes is not necessary and partly also unwanted.

2.3 Representing Control in Knowledge-level Models

Sticklen's Knowledge-level Architecture Hypothesis encompasses an extension of the

knowledge level with respect to the description of problem solving control. In our view

knowledge about task (agent) decompositions and dependencies is indeed just another

type of knowledge with its own speci�c characteristics that should |and can{ be de-

scribed in a knowledge-level model. The description in [Clancey, 1985a] of the diagnostic

strategy developed for neomycin is a good example of what we would call a knowledge-

level description of problem solving control. Clancey calls this a \competence model" of

diagnostic strategy, which already indicates that the description has the knowledge-level

avour Newell is aiming for in his klh.

In our opinion, the question whether this type of (competence-like) control knowledge

is or is not present in the Knowledge-level Hypothesis, as originally stated by Newell,

is not very important or interesting. From our experience it is clear that the above-

mentioned type of control knowledge is a necessary and important ingredient of a practical

knowledge-level theory of problem solving. In addition to the task decompositions and

inter-dependencies (the task knowledge in the kads model, see Ch. 3) we would also add

meta-knowledge about a problem solving agent as a separate kind of control knowledge

(somewhat confusingly termed \strategic knowledge" in kads). This strategic or tactical

knowledge is an important ingredient for building more
exible knowledge-based systems.

The problem of ensuring that the decomposition results in 'knowledgeable' sub-agents

can be handled by providing a knowledge-level typology of canonical inferences (the low-

est level of sub-agents), thereby ensuring that such agents can indeed be described in

knowledge level terms. Examples of canonical inferences are the three steps in the Heuris-

tic Classi�cation inference structure (abstraction, association and re�nement) [Clancey,

1985a] and the set of knowledge sources de�ned in kads (see Table 3.2). Clearly, much

work still needs to be done in this area to arrive at a coherent and more or less complete

typology.

What worries us in the Knowledge-level Architecture idea is that it should provide a

blueprint for building a simulator. Whereas we think that it is very well possible to de�ne

structured ways of building a knowledge-based system from a knowledge-level speci�cation

(see Sec. 2.6), we do not believe, that a knowledge-level model should {and can{ contain

all information necessary for building the implementation. In fact, by nature it should

not! In the process of implementing a system it will always be necessary to add speci�c

information. The design process is constrained by the knowledge level speci�cation, but

12 Pragmatics of the Knowledge Level

a large number of design decisions concern issues that are not relevant at the knowledge

level.

We think that the confusion arises from the way in which the word \control" is used.

There is a di�erence between what we would call respectively knowledge-level control and

symbol level control. The description of the diagnostic strategy of neomycin in [Clancey,

1985a] is a clear example of knowledge-level control. This type of knowledge concerns

task decompositions of and orderings between knowledgeable agents and possibly also

meta-knowledge about agents. Symbol level control is concerned with the control issues

that arise when a particular representation or ai technique is selected to realise a problem

solving agent. A similar distinction between these two types of control is made by Gruber

[Gruber, 1989; p. 5].

Although symbol level control is not an issue at the knowledge level, it does pose several

problems that have to have solved in the implementation of a particular application. One

only has to look at the vast amount of \symbol level" ai research to conclude that these

problems are by no means trivial. Thus, speci�cation of knowledge-level control does not

provide a blueprint for building a simulator.

2.4 Epistemological and Computational Adequacy

Knowledge-level models give a high level description of the knowledge as it is utilised in

problem-solving reasoning. Although terminology is di�erent, a common view appears to

be emerging in the literature based on the idea that the knowledge level is constituted

by di�erent types and components of knowledge, and that these forms of knowledge play

di�erent roles in the reasoning process and have inherently di�erent structuring principles.

In addition, the knowledge-level approach attempts to demonstrate that many of these

knowledge types and components have a generic character, i.e., they are applicable to a

broad class of tasks and/or domains. In this sense, generic knowledge components can be

viewed as intermediate in the continuum from weak to strong methods.

The advantage of knowledge-level models lies in yielding a high level and intuitive

explanation of reasoning behaviour. Moreover, generic models at the knowledge level

are important vehicles for knowledge acquisition, because they provide the knowledge

engineer with reusable interpretation `templates' that guide the analysis and organisation

of elicitation data.

As a consequence of the high-level conceptual nature, a major objection to the use of

knowledge-level models in the kbs development process is their potential computational

inadequacy. Since knowledge-level models do not specify the operational control regime in

full detail they are apt to potential combinatorial explosive behaviour. The generic task

approach by Chandrasekaran et al. takes the view that the knowledge-level description

and the operational problem-solving method as employed in the computational system

cannot be separated. In contrast, the choice of computational techniques to realise a

certain knowledge-level function is seen in kads as part of the design activity in knowledge

engineering (further discussed in Sec. 2.6). An important criticism of the kads-type

of conceptual models is therefore that |although they are very useful from a practical

epistemological viewpoint| they do not guarantee computational tractability.

Chapter 2. On Problems with the Knowledge-Level Perspective 13

2.4.1 The knowledge level: role limitations In this very broad and general way

of speaking, the criticism above is correct: knowledge-level models do not make state-

ments about computational adequacy as such. However, we claim that the structure of

knowledge-level models as outlined previously provides important safeguards against the

computational inadequacy. The combinatorial complexity at the computational level is

caused in our view by the unrestricted applicability of and access to knowledge as present

in the knowledge base. The underlying principle of knowledge-level modelling is imposing

structure through knowledge di�erentiation. This is achieved by distinguishing within the

body of knowledge involved di�erent types and components that play specialised roles in

the totality of the problem-solving process.

An example is the cover-and-di�erentiate method [Eshelman et al., 1988] for diagnosis

which takes the following steps:

1. Determine events (hypotheses) that potentially explain symptoms.

2. Identify information that can di�erentiate between candidate explanations by ruling

out, providing support for candidates, providing preferences.

3. Get this di�erentiating information and apply it.

4. If new symptoms become available, go to step 1.

In this example, several types of knowledge are speci�ed in an informal way. First,

the domain should provide concepts like: event, symptom, explanation link, preference,

rule-out relations etc. Second, a number of basic inference types (similar to kads knowl-

edge sources, see Ch. 3) are de�ned: generating a hypothesis, matching a hypothesis to

the available data, selection or ordering, compute preferences. In addition there is con-

trol knowledge that indicates that all possible candidates are generated given a set of

symptoms, and that di�erentiating information is obtained in a backward manner. These

aspects of knowledge would be categorised as task knowledge in kads.

The di�erentiating requirements and constraints as laid down in the knowledge model

express the speci�c role that the considered knowledge plays in the problem-solving pro-

cess. This limits the use that can be made of that knowledge. For instance, a logical

implication sentence of a certain type can be speci�ed to be usable only for matching

inferences, and not for other types of inference steps (like, say, a selection). kads notions

such as knowledge sources, metaclasses and task structures (see Ch. 3) generally yield the

possibility of selecting speci�c rules or theories needed to produce a certain inference. In

this way the knowledge-level model provides role-limiting constraints [McDermott, 1988]

to the use of knowledge.

2.4.2 The computational level: access limitations Thus, an essential epistemo-

logical feature of knowledge-level models is that they specify role limitations of knowledge.

The corresponding notion at the computational level is that of access limitations2 . The

knowledge that is speci�ed in a kads conceptual model cannot be used in arbitrary ways:

it has to ful�ll certain typing requirements and can only be applied in accordance with the

2Cf. Newell's slogan: representation = knowledge+ access

14 Pragmatics of the Knowledge Level

constraints speci�ed by the model. Given that knowledge components can only be selec-

tively used due to speci�ed role-limiting constraints, the consequence will be a restricted

access to the computational representation of those components in a knowledge-based

system. Assuming that (as said) the computational complexity results from unrestricted

applicability of and access to knowledge, the structure of a knowledge model has a pro-

found e�ect on the computational adequacy. If the knowledge model su�ciently re�nes

the various knowledge types and explicitly indicates what inferences access what domain

structures, the computational complexity will be greatly reduced.

Our position is supported by experiences from ai. Here, a common method to achieve

computational tractability is to introduce structural di�erentiations that at the knowledge

level can be characterised as adding new role specialisations and limitations of knowledge.

As a matter of fact, this attitude is quite clearly exempli�ed in the work on generic tasks.

Also heuristic classi�cation is a good specimen: if direct association between data and

solutions results in a computationally inadequate model, a possible method to obtain a

more tractable model is the introduction of additional inference steps, viz., abstraction

and re�nement. The associated knowledge can now be speci�ed to be accessible only in a

restricted part of the `horse-shoe' inference structure, whereas this is impossible in a simple

direct-association model. Yet another interesting example is provided by the work of Patil

on medical diagnosis [Patil, 1988], showing that complicated forms of diagnosis can be

gradually built up by starting from a simple generate-and-test method and subsequently

introducing new elements of knowledge di�erentiation, so as to preserve the computational

adequacy with increasing task complexity.

In conclusion, we suggest that epistemological role limitations as described by a

knowledge-level model are connected to computational access limitations. Computational

adequacy cannot be strictly guaranteed, but the knowledge-level approach does provide

signi�cant handles on the computational tractability by means of the role and access

limitations ensuing from knowledge di�erentiation.

2.5 Do Knowledge-level Models Yield Predictions?

Sticklen puts forward as a central objection to the knowledge-level hypothesis in Newell's

form its lack of predictive power. In his view, knowledge-level models are capable of

explanatory analysis of the reasoning behaviour of intelligent systems in retrospect, but

the do not generate empirically veri�able predictions. He discusses this in the context of

the broad question whether ai can be considered to be a science when it does not contain

a predictive component.

First of all, Sticklen's equation of science with predictive power needs some quali�ca-

tion. On this score, we basically agree with the critical commentaries on his position. Re-

stricting ourselves to physics |Sticklen's favourite example of an \established science"|

it is clear that explanatory and predictive power constitute much more subtle ingredients

of science than he suggests. Especially in branches of physics that are close to engineering

we encounter phenomenological models that have strong predictive power but no explana-

tory status. This is the case if such models numerically express important regularities

of experimental data without referring to more fundamental laws of physics (this may

be achieved by, simply speaking, a linear regression analysis of a certain large amount

of data that happens to be successful in the general case). Conversely, there are models

Chapter 2. On Problems with the Knowledge-Level Perspective 15

that are based upon basic physical principles (and so are felt to be relevant in providing a

physically intuitive picture of a process) but refer to phenomena that are far beyond any

experimental test (such as processes on time scales that are orders-of-magnitude shorter

than can be measured)3. In general, physical theory is an iceberg of which only a tiny

part is visible for empirical veri�cation. An important aspect is that physical theories

only yield predictions at a certain level and within a certain regime. For instance, macro-

physical theories such as hydrodynamics do make predictions about, say,
uid pressure

and waves, but not about microphysical entities like atomic interaction potentials within

water molecules. The latter notions do not even exist at the macro-physical level, whereas

in the microphysical theory there is no place for concepts like
uid, waves and pressure.

Thus, each level of physical description generates its own type of predictions.

This parallel carries over to modelling for knowledge-based systems. A knowledge-level

model describes what types of reasoning steps an agent that is being modelled is expected

to take in performing a certain task. In addition it makes certain claims about the struc-

ture of the domain-speci�c knowledge involved, and it speci�es the strategic elements of

the reasoning. For example, the cover-and-di�erentiate knowledge model outlined ear-

lier tells us that certain hypotheses will be discarded in a rule-out inference step. How

such an inference will operationally manifest itself depends on the system under investi-

gation. An ai program may print out the removal of a hypothesis from the list of current

candidates, while a human expert may utter a natural language sentence implying that

the hypothesis is no longer considered. Although the operational form may di�er, in

both cases the ruling-out of a hypothesis is in principle empirically veri�able. Similarly,

the heuristic-classi�cation model would predict that much of the reasoning e�ort would

be concentrated in data reduction and not in hypothesis handling, as is the case in the

cover-and-di�erentiate method.

Thus, a knowledge-level model may be applied to both human and arti�cial problem

solvers. In either case, however, it is hard to see why knowledge models as we have sketched

them possess no predictive power, as seems to be Sticklen's complaint. But it has to be

acknowledged that the corresponding predictions are of a certain kind only, namely, on

the level of the reasoning steps |which type, under what knowledge conditions| that we

expect an agent to perform. No predictions are made concerning the detailed, operational

or symbol-level of observation. As corroborated by much of the literature concerning

the philosophy of science, testing a theory requires an interpretation of the observations

that we make concerning the real world. Evidently, the regime of prediction (and, thus,

of validity) of knowledge-level models is limited | in this case to the type of and the

conditions for inference steps to be carried out by an intelligent agent. Nevertheless, as

pointed out, a limited regime or level at which predictions can be made is standard not

only in ai but also in physics. Consequently, we disagree with Sticklen's criticism on the

predictive power of knowledge level models.

3Our examples are based upon personal experience in mainstream nuclear physics and engineering. If we

accept as a simple operational de�nition of what may count as science: the publication of work in refereed

international journals on a regular basis (the latter to rule out incidental mistakes of reviewers), all these
examples must be accepted as science. We can provide the interested reader with pertinent references to

the literature.

16 Pragmatics of the Knowledge Level

2.6 System Building on the Basis of Knowledge-level Models

Knowledge-level models do not contain all information necessary for the implementation of

a system. In the kads approach to developing knowledge-based systems, a separate design

model is introduced [Schreiber et al., 1988] (see Ch. 3). In this design model appropriate

ai techniques and representations are selected to realise the problem solving behaviour

speci�ed in the knowledge-level model. The design model is thus a speci�cation of the

symbol level notions such as data structures and processes. The design model is also the

place where additional, symbol level, control (cf. Sec. 2.3) is speci�ed.

problem solving
behaviour

conceptual
model

transformation

system
design model

Observer

Interpretational
Framework

Phenomena Models

AI System
Implementation

Designer

AI Techniques

FIGURE 2.1: Role of the conceptual (knowledge-level) model and of the design (symbol level) model in

the development of knowledge-based systems

Fig. 2.1 provides a graphical representation of the di�erent roles that the knowledge-

level model and the design model in our view play in the development process of a

knowledge-based system. The knowledge-level model is constructed by an observer of

problem solving phenomena (e.g. human expertise). The observer (knowledge analyst) is

aided in this task by an interpretational framework, that should consist of two parts: (i) a

vocabulary for describing various knowledge types, such as the categorisations in the kads

conceptual model, and (ii) generic knowledge components. These generic components are

partial instantiations of knowledge reoccurring in a class of tasks and/or domains. Heuris-

tic classi�cation, cover-and-di�erentiate and the interpretation models in kads [Breuker

Chapter 2. On Problems with the Knowledge-Level Perspective 17

et al., 1987] are examples of such generic components.

The design model is constructed by transforming the knowledge-level descriptions into

symbol-level descriptions through the selection of appropriate ai techniques and represen-

tations, that realise the speci�ed problem solving behaviour. The design model provides

the basis for implementing the physical system. Although the designer is in principle free

to develop any design model that meets the requirements of the knowledge-level model,

we are strongly in favour of a structure-preserving design. With this we mean that there is

a structural correspondence between knowledge-level elements and symbol level elements.

Structural correspondence paves also the way for explaining the computation of a pro-

gram at various levels of abstraction. Thus, design should basically be a process of adding

symbol level information, such as operational control, to the knowledge-level model (see

Ch. 6).

2.7 Conclusions

In this chapter we have investigated some points of criticism on Newell's Knowledge-level

Hypothesis: the inability to represent control, the potential computational inadequacy,

the lack of predictive power and the non-operational character (the problem of 'how to

build it').

We have pointed at a possible confusion between two types of control. We have indi-

cated that in our view there is a need to model in a practical knowledge theory of problem

solving a particular type of control knowledge with a strong knowledge-level
avour as for

example decompositions of knowledgeable agents and meta-knowledge about agents. If this

type of knowledge-level control was not part of Newell's original hypothesis, we feel that

it should be extended in this respect. We disagree with an extension such as Sticklen's

Knowledge-level Architecture Hypothesis, as it requires a type of control speci�cation

that inherently belongs to the symbol level. We have argued that the role-limitations in

knowledge-level descriptions give rise to access limitations at the symbol level. Together

they provide important safe-guards against potential computational inadequacy. We have

also explained that knowledge-level models as we propose them allow limited forms of

prediction { namely at the level of the type of and the conditions for inference steps car-

ried out by an intelligent agent. We have shown that this is not di�erent from the role

of formal theories in predicting physical phenomena. Finally, we have argued that in the

process of system building there is a place for a separate design model. We view design

as a process of adding symbol level information to a knowledge-level model. Notational

devices, catalogues, and shelli�cations can support the design and implementation, but by

nature these activities are open-ended, i.e. the solution space is large.

Although we feel that the original Knowledge-level Hypothesis still stands, much work

still needs to be done to \make it work": to arrive at a practical knowledge-level theory of

problem solving. Looking at the various approaches to knowledge-level modelling it is clear

that the terminology used to describe the knowledge level is confusing and ambiguous. In

our opinion there is a clear need for a formal framework for describing knowledge-level

models. We fully agree with Newell that the major role of logic in ai should be to support

the analysis of the knowledge level [Newell, 1982; pp. 121-122]. In [Akkermans et al., 1992]

a �rst e�ort is made to devise a logical framework for knowledge-level analysis. Although

this work can only be seen as a �rst start, we feel that this is one important research

18 Pragmatics of the Knowledge Level

direction for improving the state of the art in knowledge acquisition.

Acknowledgement Frank van Harmelen provided useful comments on an earlier

version of this chapter.

Chapter 3

KADS: A Modelling Approach to KBS

Development

This chapter discusses the KADS approach to knowledge engineering. In KADS, the development of a

knowledge-based system (KBS) is viewed as a modelling activity. A KBS is not a container �lled with

knowledge extracted from an expert, but an operational model that exhibits some desired behaviour that
can be observed in terms of real-world phenomena. Three basic principles underlying the KADS approach

are discussed, namely (i) the introduction of partial models as a means to cope with the complexity of the

knowledge engineering process, (ii) the KADS four-layer framework for modelling the required expertise,

(iii) the reusability of generic model components as templates supporting top-down knowledge acquisition,

The actual activities that a knowledge engineer has to undertake are brie
y discussed. We compare the

KADS approach to related approaches and discuss experiences and future developments. The approach is

illustrated throughout the chapter with examples in the domain of troubleshooting audio equipment.

This chapter represents a shortened and slightly revised version of an article published in the Knowledge

Acquisition Journal. It is co-authored by Bob Wielinga and Joost Breuker. Reference: B. J. Wielinga,
A. Th. Schreiber, and J. A. Breuker. KADS: A modelling approach to knowledge engineering. Knowledge

Acquisition, 4(1):5-53, 1992. Special issue \The KADS approach to knowledge engineering".

3.1 Introduction

This chapter gives an overview of results of a European research project, in Europe com-

monly known as the kads project (esprit-i P1098). This project aimed at the develop-

ment of a comprehensive, commercially viable methodology for knowledge-based system

(kbs) construction. When the kads project was conceived, sometime in 1983, little in-

terest in methodological issues existed in the ai community. The prevailing paradigm for

building knowledge-based systems was rapid prototyping using special purpose hard- and

software, such as lisp machines, expert system shells etc. Since then, many organisa-

tions have become aware of the fact that kbs development from an organisational point

of view does not di�er much from the development of other types of information systems.

Aspects of kbs development such as information analysis, application selection, project

management, user requirement capture, modular design, reusability etc, are similar to

those encountered in conventional system development. Problems that frequently occur

in conventional information system development projects are ampli�ed in the case of kbs

20 Pragmatics of the Knowledge Level

development. The wider capabilities of kbs technology allow more complex applications,

which have a stronger impact on organisational structure than most conventional sys-

tems and often require a more sophisticated user-system interaction than is the case with

conventional systems. Additionally, kbs development poses a number of problems of its

own.

An often cited problem in kbs construction is the knowledge acquisition bottleneck. It

turns out to be very di�cult to extract the knowledge that an expert has about how to

perform a certain task e�ciently in such a way that the knowledge can be formalised in

a computer system. The actual realisation of a kbs system often poses problems as well.

The reasoning methods that are used in kbs's are not always fully understood. Although

the ai literature abounds in methods and techniques for modelling reasoning processes,

their description is not uniform and unambiguous. So, the need for a sound methodology

for kbs development has become recognised over the last few years.

In this chapter we will discuss some principles that comprise the framework on which

the kads methodology is founded and describe its main ingredients.

3.2 Views on Knowledge Acquisition

During the knowledge acquisition process the knowledge that a knowledge-based system

(kbs) needs in order to perform a task, is de�ned in such a way that a computer pro-

gram can represent and adequately use that knowledge. Knowledge acquisition involves

in our view at least the following activities: eliciting the knowledge in an informal | usu-

ally verbal | form, interpreting the elicited data using some conceptual framework, and

formalising the conceptualisations in such way that the program can use the knowledge.

In this chapter we will mainly focus on the interpretation and formalisation activities in

knowledge acquisition. Elicitation techniques have been the subject of a number of re-

cent papers and their role in the knowledge acquisition process is now reasonably well

understood [Neale, 1988; Breuker et al., 1987; Diaper, 1989; Meyer & Booker, 1991].

Traditionally the knowledge acquisition process was viewed as a process of extracting

knowledge from a human expert and transferring the extracted knowledge into the kbs.

In practice this often means that the expert is asked what rules are applicable in a certain

problem situation and the knowledge engineer translates the natural language formulation

of these rules into the appropriate format. Several authors [Hayward et al., 1987; Morik,

1989] have pointed out that this transfer-view of knowledge acquisition is only applicable

in very few cases. The expert, the knowledge engineer and the kbs should share a common

view on the problem solving process and a common vocabulary in order to make knowledge

transfer a viable way of knowledge acquisition. If the expert looks at the problem or

the domain in a di�erent way than the knowledge engineer, asking for rules or similar

knowledge structures and translating them into the knowledge representation formalism

of the system, does not work.

A di�erent view on knowledge acquisition is that of a modelling activity. A kbs is not

a container �lled with knowledge extracted from an expert, but an operational model that

exhibits some desired behaviour observed or speci�ed in terms of real-world phenomena.

The use of models is a means of coping with the complexity of the development process.

Constructing a kbs is seen as building a computational model of desired behaviour.

This desired behaviour can coincide with some behaviour as exhibited by an expert. If one

Chapter 3. KADS: A Modelling Approach to KBS Development 21

wants to construct a kbs that performs medical diagnosis, the behaviour of a physician

in asking questions and explaining the problem of a patient may be a good starting point

for a description of the intended problem-solving behaviour of the kbs. However, a kbs is

hardly ever the functional and behavioural equivalent of an expert. There are a number

of reasons for this. Firstly, the introduction of information technology often involves new

distributions of functions and roles of agents. The kbs may perform functions which

are not part of the experts repertory. Secondly, the underlying reasoning process of the

expert can often not be made fully explicit. Knowledge, principles and methods may

be documented in a domain, but these are aimed at a human interpreter and are not

descriptions of how to solve problems in a mechanical way. Thirdly, there is an inherent

di�erence between the capabilities of machines and humans. For example, in an experiment

in a domain of con�guring moulds [Barth�elemy et al., 1988] a decision was made to generate

all possible solutions instead of the small set generated by experts. The decision was guided

by the fact that for a machine it presents no problem to store a large number of hypotheses

in short-term memory, whereas for humans this is impossible.

So, in the modelling view knowledge acquisition essentially is a constructive process

in which the knowledge engineer can use all sorts of data about the behaviour of the

expert, but in which the ultimate modelling decisions have to be made by the knowledge

engineer in a constructive way. In this sense knowledge engineering is similar to other

design tasks: the real world only provides certain constraints on what the artefact should

provide in terms of functionality, the designer will have to aggregate the bits and pieces

into a coherent system.

In kads we have adopted the modelling perspective on knowledge acquisition. The

kads approach can be characterised through a number of principles that underlie the

process to building knowledge-based systems, namely:

� The introduction of multiple models as a means to cope with the complexity of the

knowledge engineering process.

� The kads four-layer framework for modelling the required expertise.

� The reusability of generic model components as templates supporting top-down

knowledge acquisition.

� The process of di�erentiating simple models into more complex ones.

� The importance of structure-preserving transformation of models of expertise into

design and implementation.

The �rst three principles are discussed in this chapter, respectively in Sec. 3.3, Sec. 3.4

and Sec. 3.5. The fourth principle is discussed in more detail in Ch. 5; the �fth principle

in Ch. 6.

Although a description of the use of kads on practical kbs projects is outside the scope

of this chapter, we look brie
y at the actual knowledge engineering process (Sec. 3.6). We

also compare the kads approach to other approaches (Sec. 3.7). Finally we discuss

experiences and future developments (Sec. 3.8 and Sec. 3.9).

The approach is illustrated throughout this chapter with examples, most of them in

the domain of diagnosing and correcting malfunctions of an audio system.

22 Pragmatics of the Knowledge Level

3.3 Principle 1: Multiple Models

The construction of a knowledge-based system is a complex process. It can be viewed as

a search through a large space of knowledge-engineering methods, techniques and tools.

Numerous choices have to be made with regard to elicitation, conceptualisation and for-

malisation. Knowledge engineers are thus faced with a jungle of possibilities and �nd it

di�cult to navigate through this space.

The idea behind the �rst principle of kads is that the knowledge-engineering space

of choices and tools can to some extent be controlled by the introduction of a number

of models. A model re
ects, through abstraction of detail, selected characteristics of

the empirical system in the real world that it stands for [DeMarco, 1982]. Each model

emphasises certain aspects of the system to be built and abstracts from others. Models

provide a decomposition of knowledge-engineering tasks: while building one model, the

knowledge engineer can temporarily neglect certain other aspects. The complexity of the

knowledge-engineering process is thus reduced through a divide-and-conquer strategy.

In this section we discuss a number of models, namely (i) the organisational model, (ii)

the application model, (iii) the task model, (iv) the model of cooperation, (v) the model

of expertise, (vi) the conceptual model, and (vii) the design model.

We use the term knowledge engineering in a broad sense to refer to the overall process of

kbs construction (i.e. the construction of all these models and the artefact) and the term

knowledge acquisition in a more restricted sense to refer to those parts of this construction

process that are concerned with the information about the actual problem solving process.

The scope of the present chapter is limited to the knowledge acquisition aspects. Other

knowledge engineering aspects are only brie
y addressed.

3.3.1 Organisational model, application model and task model In kads we

distinguish three separate steps in de�ning the goals of kbs construction, namely:

1. De�ning the problem that the kbs should solve in the organisation.

2. De�ning the function of the system with respect to future users (which can be either

humans or possibly other systems).

3. De�ning the actual tasks that the kbs will have to perform.

In this section we discuss three models that address parts of this three-step process. The

�rst two are discussed brie
y as these are outside the scope of this chapter.

Organisational model An organisational model provides an analysis of the socio-

organisational environment in which the kbs will have to function. It includes a description

of the functions, tasks and bottlenecks in the organisation. In addition, it describes (pre-

dicts) how the introduction of a kbs will in
uence the organisation and the people working

in it. This last activity can be viewed as a type of technology assessment [de Hoog et al.,

1990]. We have experienced [de Hoog, 1989; van der Molen & Kruizinga, 1990] that it is

dangerous to ignore the impact of the interaction between the construction of a kbs and

the resulting changes in the organisation. Neglecting this aspect may lead to a system that

is not accepted by its prospective users. It is also important to realise that the process of

kbs construction itself can, by its nature (for instance, through extensive interviewing),

change the organisation in such a way that it becomes a moving target [van der Molen &

Chapter 3. KADS: A Modelling Approach to KBS Development 23

Kruizinga, 1990]. The result may be that the �nal system is aimed at solving a problem

that does not exist any more in the organisation. We are convinced that the organisational

viewpoint is important throughout the kbs construction process.

Application model An application model de�nes what problem the system should

solve in the organisation and what the function of the system will be in this organisation.

For example, the daily operation and fault handling of an audio system can pose serious

problems for people who are not familiar with or just not interested in more than the

super�cial ins-and-outs of such a system. A potential solution to this problem could be

the development of a knowledge-based system. The function of this system would be

to ensure that the owner of the audio system is supported in the process of correcting

operational malfunctions of the audio system.

In addition to the function of the kbs and the problem that it is supposed to solve, the

application model speci�es the external constraints that are relevant for the development

of the application. Examples of such constraints are the required speed and/or e�ciency

of the kbs and the use of particular hardware or software.

Task model A task model speci�es how the function of the system (as speci�ed in

the application model) is achieved through a number of tasks that the system will perform.

Establishing this relation between function and task is not always as straightforward as

it may seem. For example, consider a problem such as the medical care of patients with

acute infections of the bloodstream. One approach to solve this problem is to perform the

following tasks: (i) determine the identity of the organism that causes the infection and

(ii) select on the basis of that diagnosis the optimal combination of drugs to administer

to the patient. In real life hospital practice however, the recovery of the patient is the

primary concern. So, if identi�cation of the organism proves di�cult, e.g. because no

laboratory data are available, a therapy will be selected on other grounds. In fact, some

doctors show little interest in the precise identity of the organism causing an infection

as long as the therapy works. Stated in more general terms: given a goal that a system

should achieve, there may be several alternative ways in which that goal can be achieved.

Which alternative is appropriate in a given application depends on characteristics of that

application, on availability of knowledge and data, and on requirements imposed by the

user or by external factors.

With respect to the content of the task model, we distinguish three facets: (i) task

decomposition, (ii) task distribution, and (iii) task environment:

Task decomposition A task is identi�ed that would achieve the required functionality.

This task is decomposed in sub-tasks. A technique such as rational task analysis

is often used to achieve such a decomposition. We call the composite top-task a

\real-life task", as it often represents the actual task that an expert solves in the

application domain. The sub-tasks are the starting point for further exploration,

such as the modelling of expertise and cooperation. A simple decomposition of a

real-life task in the audio domain is shown in Fig. 3.1.

Each separate task is described through an input/output speci�cation, where the

output represents the goal that is achieved with the task and the input is the in-

formation that is used in achieving this goal. What constitutes the goal of a task

24 Pragmatics of the Knowledge Level

audio
troubleshooting

diagnose

real-life task

act

reconfigure remedy

sub-tasks

FIGURE 3.1: Task decomposition for the audio example

is not always self-evident. Even for a seemingly well understood task such as diag-

nosis, it is not always clear what a diagnosis of a faulty system means. A diagnosis

could be the identi�cation of a subsystem (a component of an audio system) that

malfunctions, or it could be a full causal model of how a malfunction came about.

Similarly the result of a design task could be a detailed description of the structure

of a system (e.g. a device for monitoring patients in an intensive care unit) or it

could be a description of the functionality, structure and use of the device.

Task distribution The task distribution is the assignment of tasks to agents. Example

agents are the kbs, the user or some other system. The last two agents are called

external agents. Given the task decomposition the knowledge engineer has to decide

what subtasks to assign to the system and what tasks to the user. These decisions

constitute essentially cognitive engineering problems [Roth & Woods, 1989]: they

should be made on the basis of an analysis of the user requirements and expecta-

tions, the knowledge and skills that the user has, and the potential capabilities and

limitations of the system.

Task environment The nature of the task-domain itself usually enforces a number of

constraints on how the task can be performed. We call these constraints the task

environment. For example, the task environment of a support system for handling

malfunctions in an audio system could consist of the following constraints:

� The kbs is not a physical part of the audio system.

� It has no sensors to make observations (and thus depends on the user to do

this).

� It has no robot arm to perform recon�gurations and/or repairs (and thus again

depends on the user to do this),

� The kbs users will be novices, who are not expected to be able to understand

technical terms or to examine the interiors of the audio system.

The constraints posed by the task environment in
uence both the scope and the

nature of the models of expertise and cooperation (see further).

Chapter 3. KADS: A Modelling Approach to KBS Development 25

The task model and its role in specifying system-user interaction is discussed in more

detail in [de Greef & Breuker, 1992]

3.3.2 Model of cooperation The task model consists of a decomposition of the real-

life task into a number of primitive tasks and a distribution of tasks over agents. The

model of cooperation contains a speci�cation of the functionality of those sub-tasks in

the task model that require a cooperative e�ort. These tasks can for instance be data

acquisition tasks activated during problem solving or various types of explanation tasks.

Such tasks are called transfer tasks, as they involve transferring a piece of information

from the system to an external agent or vice versa.

There is thus a clear dependency between the model of cooperation and the model of

expertise. Some of the sub-tasks will be achieved by the system, others may be realised

by the user. For example, in a diagnostic task in the audio example, the system may

suggest certain tests to be performed by the user, while the user will actually perform the

tests and will report the observed results back to the system. Alternatively, the user may

want to volunteer a solution to the diagnostic problem while the system will criticise that

solution by comparing it with its own solutions.

The result is a model of cooperative problem solving in which the user and the system

together achieve a goal in a way that satis�es the various constraints posed by the task

environment, the user and the state of the art of kbs technology. The modelling of

cooperation is outside the scope of this chapter, but is discussed in more detail in [de Greef

& Breuker, 1992; de Greef et al., 1988a; de Greef & Breuker, 1989].

3.3.3 Model of expertise Building a model of expertise is a central activity in the

process of kbs construction. It distinguishes kbs development from conventional system

development. Its goal is to specify the problem solving expertise required to perform the

problems solving tasks assigned to the system.

One can take two di�erent perspectives on modelling the expertise required from a

system. A �rst perspective { one that is often taken in ai { is to focus on the computational

techniques and the representational structures (e.g. rules, frames) that will provide the

basis of the implemented system. A second perspective focuses on the behaviour that

the system should display and on the types of knowledge that are involved in generating

such behaviour, abstracting from the details of how the reasoning is actually realised in

the implementation. These two perspectives correspond to the distinction Newell makes

between respectively the symbol level and the knowledge level [Newell, 1982].

We take the second perspective and view the model of expertise as being a knowledge-

level model. The model of expertise speci�es the desired problem solving behaviour for

a target kbs through an extensive categorisation of the knowledge required to generate

this behaviour. The model thus ful�lls the role of a functional speci�cation of the problem

solving part of the artefact. As stated previously, it is not a cognitive model of the human

expert. Although the construction of the model of expertise is usually guided by an

analysis of expert behaviour, it is biased to what the target system should and can do.

In modelling expertise we abstract from those sub-tasks that specify some form of

cooperation with the user. For example, in the audio domain we could identify two tasks

that require such interactions: performing a test and carrying out a recon�guration. In

the model of expertise, such interaction or transfer tasks are speci�ed more or less as a

26 Pragmatics of the Knowledge Level

black box (see Sec. 3.4.3). The detailed study of the nature of these transfer tasks is the

subject of the modelling of cooperation.

As the model of expertise plays a central role in kbs development, its details are

discussed extensively in Sec. 3.4.

3.3.4 Conceptual model = model of expertise + model of cooperation To-

gether, the model of expertise and the model of cooperation provide a speci�cation of the

behaviour of the artefact to be built. The model that results from merging these two mod-

els is similar to what is called a conceptual model in database development. Conceptual

models are abstract descriptions of the objects and operations that a system should know

about, formulated in such a way that they capture the intuitions that humans have of

this behaviour. The language in which conceptual models are expressed is not the formal

language of computational constructs and techniques, but is the language that relates real

world phenomena to the cognitive framework of the observer. In this sense conceptual

models are subjective, they are relative to the cognitive vocabulary and framework of the

human observer. Within kads we have adopted the term \conceptual model" to denote

a combined, implementation-independent, model of both expertise and cooperation.

3.3.5 Design model The description of the computational and representational tech-

niques that the artefact should use to realise the speci�ed behaviour is not part of the

conceptual model. These techniques are speci�ed as separate design decisions in a design

model. In building a design model, the knowledge engineer takes external requirements

such as speed, hardware and software into account. Although there are dependencies be-

tween conceptual model speci�cations on the one hand and design decisions on the other

hand, we have experienced that building a conceptual model model without having to

worry about system requirements makes life easier for the knowledge engineer.

The separation between conceptual modelling on the one hand and a separate design

step on the other hand has been identi�ed as both the strength and the weakness of the

kads approach [Karbach et al., 1990].

The main advantage lies in the fact that the knowledge engineer is not biased during

conceptual modelling by the restrictions of a computational framework. kads provides

a more or less universal framework for modelling expertise (see the next section) and

although computational constraints play a role in the construction of such models (cf.

Ch. 5) experience1 has shown that this separation enables knowledge engineers to come

up with more comprehensive speci�cations of the desired behaviour of the artefact. The

disadvantage lies in the fact that the knowledge engineer, after having built a conceptual

model, is still faced with the problem of how to implement this speci�cation. In Ch. 6 we

discuss some principles that can guide the knowledge engineer in this design process.

Fig. 2.1 (see previous chapter) summarises the di�erent roles which the conceptual

model and the design model play in the knowledge engineering process. An observer

(knowledge engineer) constructs a conceptual, knowledge-level, model of the artefact by

abstracting from the behaviour of experts. This abstraction process is aided by the use of

an interpretational framework, such as generic models of classes of tasks or task-domains.

The conceptual model is real-world oriented in the sense that it is phrased in real-world

1See Sec. 3.8 for an overview of applications developed with the KADS approach

Chapter 3. KADS: A Modelling Approach to KBS Development 27

terminology and can thus be used as a communication vehicle between knowledge engineer

and expert. The conceptual model does not take detailed constraints with regard to the

artefact into account. The design model on the other hand is a model that is phrased in

the terminology of the artefact: it describes how the conceptual model is realised with

particular computational and representational techniques.

Fig. 3.2 shows the dependencies between the models discussed in this section. Con-

nections indicate that information from one model is used in the construction of another

model. The actual activities in the construction process do not necessarily have to follow

the direction from organisation model to system. In fact, several life-cycle models have

been developed, each de�ning various phases and activities in building these models. The

�rst life-cycle model developed in kads [Barth�elemy et al., 1987] was of the water-fall

type. At the end of the kads project, a new life-cycle was de�ned [Taylor et al., 1989]

based on the concept of a spiral model [Boehm, 1988].

organizational
model

task
model

model of
expertise

model of
cooperation

conceptual
model

design
model

application
model

system

FIGURE 3.2: Principle 1: Models provide a decomposition of the knowledge-engineering task

The nature of knowledge engineering thus becomes a process that bridges the gap

between required behaviour and a system that exhibits that behaviour through the creation

28 Pragmatics of the Knowledge Level

of a set of models. Summarising, we can say that the kads modelling view of knowledge

acquisition gives rise to a methodology that involves the construction of a variety of models

in the course of the knowledge engineering process. Each model represents a particular

view on the kbs. They allow the knowledge engineer to cope with the complexity of the

knowledge engineering process through a \divide & conquer" strategy.

The remainder of this chapter focuses mainly on the model of expertise, as it plays

such a central role in kbs development.

3.4 Principle 2: Modelling Expertise

The major challenge for any modelling approach to kbs construction is to �nd an ade-

quate answer to the question of how to model expertise. It is this aspect of the system

that distinguishes kbs development from the development of conventional systems. As

discussed previously, we require of the resulting model of expertise that it is independent

of a particular implementation. In this section a framework for modelling expertise is

outlined. Slightly di�erent versions of this kads approach to modelling expertise (usually

called the \four-layer model") have been presented in [Wielinga & Breuker, 1986; Hayward

et al., 1987; Schreiber et al., 1988; Breuker & Wielinga, 1989]

Two basic premises underly the ideas presented here. First, we assume that it is

possible and useful to distinguish between several generic types of knowledge according

to di�erent roles that knowledge can play in reasoning processes. Second, we assume

that these types of knowledge can be organised in several layers, which have only limited

interaction. A �rst distinction that is often made is the one between domain knowledge

and control knowledge. Here we will take such a separation of knowledge in two layers one

step further, and will argue for a re�ned distinction of di�erent types of control knowledge

at three levels.

The categories in which the expertise knowledge can be analysed and described are

based on epistemological distinctions: they contain di�erent types of knowledge. We

distinguish between:

1. Static knowledge describing a declarative theory of the application domain (domain

knowledge).

2. Knowledge of di�erent types of inferences that can be made in this theory (�rst type

of control knowledge).

3. Knowledge representing elementary tasks (second type of control knowledge).

4. Strategic knowledge (third type of control knowledge)

Each of these categories of knowledge is described at a separate level. The separation

re
ects di�erent ways in which the knowledge can be viewed and used. In the following

sections each of the four categories of knowledge distinguished in kads is discussed in

more detail.

The distinction between di�erent types of knowledge is not new. Several authors have

reported ideas which pertain to the separation of domain and control knowledge, and

have proposed ways to increase the
exibility of control in expert systems. The work of

Davis [Davis, 1980] introduced explicit control knowledge as a means to control inference

processes in a
exible way. In the neomycin system [Clancey, 1985a] di�erent functions

of knowledge are explicated by separating domain knowledge and control knowledge and

Chapter 3. KADS: A Modelling Approach to KBS Development 29

by introducing an explicit description of the strategies that the system uses. Pople (1982)

[Pople, 1982] has stressed the problem of the right task formulation. He considers it to

be a fundamental challenge for ai research to model the control aspects of the reasoning

process of expert diagnosticians which determines the optimal con�guration of tasks to

perform in order to solve a problem.

3.4.1 Domain knowledge The domain knowledge embodies the conceptualisation of

a domain for a particular application in the form of a domain theory. The primitives that

we use to describe a domain theory are based on the epistemological primitives proposed by

[Brachman & Schmolze, 1985]: concepts, properties, two types of relations, and structures:

Concept Concepts are the central objects in the domain knowledge. A concept is iden-

ti�ed through its name (e.g. amplifier).

Property/Value Concepts can have properties. Properties are de�ned through their

name and a description of the values that the property can take. For example,

amplifier has a property power with as possible values on/off.

Relation between concepts A �rst type of relation is the relation between concepts,

for example amplifier is-a component. The most common relations of this type are

the sub-class relation and the part-of relation. Several variants of these two relations

exist, each with its own semantics.

Relation between property expressions A second type of relation is the relation be-
tween expressions about property values. An expression is a statement about the
value(s) of a property of a concept, e.g. amplifier:power = on.2 Examples of this
type of relation are causal relations and time relations. An example of a tuple of a
causal relation in the audio domain could be:

amplifier:power-button = pressed CAUSES amplifier:power = on

Structure A structure is used to represent a complex object: an object consisting of a

number of objects/concepts and relations. For example, the audio system as a whole

can be viewed as a structure, consisting of several components and relations (part-of,

wire connections) between these components.3

The choice of this set of primitives is in a sense arbitrary and probably somewhat

biased by the types of problems that have been tackled with kads. The problem is to �nd

a subset that provides the knowledge-engineer with su�cient expressive power. One could

consider including additional special-purpose primitives such as mathematical formulae.

There is clearly a link here with research in the �eld of semantic database modelling (see

for an overview [Hull & King, 1987]).

The primitives are used to specify what we call a domain schema for a particular

application. A domain schema is a description of the structure of the statements in the

2We use the shorthand <concept>:<property> for \the <property> of <concept>"'.
3The term \structure" as used here should not be confused with the \structural descriptions" in KL-

ONE.

30 Pragmatics of the Knowledge Level

domain theory. It is roughly comparable to the notion of a signature in logic.4 For

example, in a domain schema we could specify that the domain theory contains part-of

relations between component concepts without worrying about the actual tuples of this

relation. We prefer to use the term \schema" rather than \ontology" to stress the fact

that the domain theory is the product of knowledge engineering and thus not necessarily

describes an inherent structure in the domain (as the word \ontology" would suggest).

The domain schema speci�es the main decisions that the knowledge engineer makes

with respect to the conceptualisation [Genesereth & Nilsson, 1987; Nilsson, 1991] of the

domain. For example, when a domain schema for a diagnostic domain is constructed, a

decision has to be made whether \correct" or \fault" models (or both) are part of the

domain theory. Parts of a domain schema often reappear in similar domains and could be

reused (see Sec. 3.5 for a more detailed discussion of reusability). The domain schema also

provides convenient handles for describing the way in which inference knowledge uses the

domain theory. Issues related to the interaction between domain knowledge and inference

knowledge are discussed in the next section. In Ch. 4 a language for describing domain

schemata is presented.

An example domain schema of a simple domain theory for diagnosing faults in an audio

system is shown in Table 3.1.5 Two types of concepts appear in this theory: components

and tests. Both components and tests can have properties: respectively a state-value and

a value. Two relations are de�ned between concepts of type \component": is-a and sub-

component-of. In addition, two relations between property expressions are de�ned: (i) a

causal relation between state values of components, and (ii) an indicates relation between

test values and state values.

Fig. 3.3 shows some domain knowledge in the audio domain. The domain knowledge

description follows the structure de�ned in the domain schema of Table 3.1.

Domain knowledge can be viewed as a declarative theory of the domain. In fact,

adding a simple deductive capability would enable a system in theory (but, given the

limitations of theorem-proving techniques, not in practice) to solve all problems solvable

by the theory. The domain knowledge is considered to be relatively task neutral, i.e.

represented in a form that is independent of its use by particular problem solving actions.

There is ample evidence [Wielinga & Bredeweg, 1988] that experts are able to use their

domain knowledge in a variety of ways, e.g. for problem solving, explanation, teaching

etc. Separating domain knowledge embodying the theory of the domain from its use in

a problem solving process, is a �rst step towards
exible use and reusability of domain

knowledge.

3.4.2 Inference knowledge At the �rst layer of control knowledge we abstract from

the domain theory and describe the inferences that we want to make in this theory. We

call this layer the inference layer. An inference speci�ed at the inference level is assumed

to be primitive in the sense that it is fully de�ned through its name, an input/output

4The relation between property expressions corresponds to an axiom schema; structures correspond to

a sub-theory.
5The description of the domain schema given here is rather informal. For example, nothing is said

about cardinality (e.g. can a property have one or more values at some point in time). Techniques exist

for describing these schemata in a more precise and formal way, e.g. [Davis & Bonnel, 1990; Hull & King,

1987].

C
h
a
p
ter

3
.
K
A
D
S
:
A
M
o
d
ellin

g
A
p
p
ro
a
ch

to
K
B
S
D
ev
elo

p
m
en
t

3
1

component

audio
system

tape
deck

speaker
system

left
speaker

is-a
deck:power = on and
deck:function = play and
cable-connection:deck-amplifier = present
 causes
amplifier:input-signal = deck

amplifier:input-signal = deck
amplifier:input-selection = deck
 causes
amplifier:output-signal = deck

........

causes

indicates

deck-power-switch = pressed
 indicates
deck-power = on

input-selector = X
 indicates
amplifier:input-selection = X

........

Properties
of tests:

deck-power-switch: {pressed, not-pressed}
input-selector {deck, tuner, CD, ...}
.......

Properties
of components:

deck:function {stop, play, rew, ff, pause}
deck:power {on, off}
amplifier:power {on, off}
amplifier:input-signal {deck, tuner, CD,}
.....

audio system

speaker
system

left
speaker

tape
deck

......

amplifier

sub-component-of

F
IG
U
R
E
3
.3
:
D
o
m
a
in

k
n
ow

led
g
e
o
f
th
e
a
u
d
io

sy
stem

u
sin

g
th
e
sch

em
a
d
escrib

ed
in

T
a
b
le
3
.1

32 Pragmatics of the Knowledge Level

Primitive Name Description

Concept component The elements of the audio system

Relation component Sub-type hierarchy of components

between IS-A of the audio system

concepts component

Relation component Part-of hierarchy of components
between SUB-COMPONENT-OF of the audio system

concepts component

Property component:state-value Components have properties describing the state

that components are in at some moment in time.

Relation component:state-value Causal relations that specify how normal state-values

between CAUSES of components are causally related to each other.

expressions component:state-value

Concept test Test that can be performed to establish

a state of an audio system.

Property test:value Possible outcomes of a test.

Relation test:value A relation describing which internal state

between INDICATES is indicated by a particular test outcome.

expressions component:state-value

TABLE 3.1: A domain schema for diagnosing faults in an audio-system

speci�cation and a reference to the domain knowledge that it uses. The actual way in

which the inference is carried out is assumed to be irrelevant for the purposes of modelling

expertise. From the viewpoint of the model of expertise no control can be exercised on

the internal behaviour of the inference. One could look upon the inference as applying a

simple theorem prover.

Note that the inference is only assumed to be primitive with respect to the model of

expertise. It is very well possible that such a primitive inference is realised in the actual

system through a complex computational technique.

In the kads model of expertise we use the following terms to denote the various aspects

of a primitive inference:

Knowledge source The entity that carries out an action in a primitive inference step

is called a knowledge source6. A knowledge source performs an action that operates

on some input data and has the capability of producing a new piece of information

(\knowledge") as its output. During this process it uses domain knowledge. The

name of the knowledge source is supposed to be indicative of the type of action that

it carries out.

Meta-class A knowledge source operates on data elements and produces a new data

element. We describe those data elements as meta-classes. A meta-class description

serves a dual purpose:

(i) it acts as a placeholder for domain objects, describing the role that these objects

play in the problem solving process, and

(ii) it points to the type(s) of the domain objects that can play this role.

6The term \knowledge source" was inspired by Clancey's [Clancey, 1983] use of this term as a process

that generates an elementary piece of information. Its intended meaning corresponds only roughly to the

meaning of the term in blackboard architectures.

Chapter 3. KADS: A Modelling Approach to KBS Development 33

Domain objects can be linked to more that one meta-class. For example, a particular

component of an audio system could play the role of a hypothesis at one point in time

and the role of solution at some other instant. The name \meta-class" is inspired

by the fact that it provides a \meta" description of objects in a domain \class".7

An input data element of a knowledge source is referred to as an input meta-class;

the output as an output meta-class. Each meta-class can be input and/or output of

more than one knowledge source.

Domain view The domain view speci�es how particular parts of the domain theory can

be used as a \body of knowledge" by the knowledge source.

Inference knowledge

Domain knowledge

decomposition
knowledge

input
meta-class knowledge source

output
meta-class

domain view

audio system
amplifier

SUB-COMPONENT-OF
audio-system

amplifier

system
model decompose hypothesis

FIGURE 3.4: A primitive inference performing an decomposition action.

Fig. 3.4 describes a primitive inference in the audio domain with example references

to domain knowledge. At the inference level a decomposition inference is speci�ed. The

action that is performed in this inference is the decomposition of a composite model of the

audio system into sub-models. System model and hypothesis are examples of meta-classes.

They describe the role that domain objects like audio-system and amplifier can play

in the problem solving process. The decompose knowledge source achieves its goal, the

generation of a new hypothesis, through the application of decomposition knowledge. The

domain view of this inference speci�es that tuples of the SUB-COMPONENT-OF relation in the

domain theory can be used as decomposition knowledge. Fig. 3.4 shows one applicable

tuple of this relation.

A somewhat more formal speci�cation of the decompose inference is given below. The

arrow speci�es how inference knowledge maps onto domain knowledge.

knowledge-source decompose
input-meta-class:

system-model ! component

output-meta-class:
hypothesis! component

domain-view:

decomposition(system-model, hypothesis) ! sub-component-of(component, component)

7It should not be confused with the meaning of this term in object-oriented systems.

34 Pragmatics of the Knowledge Level

Note that this speci�cation only refers to elements of the schema of the domain theory.

Both system model and hypothesis are place holders of objects of type \component" and

describe the role these objects play in the inference process. In this particular example

the domain view refers to just one type of knowledge in the domain theory, namely the

SUB-COMPONENT-OF relation. In principle however, there could be several of these mappings.8

There are distinct advantages of separating the domain theory from the way it is viewed

and used by the inferences:

� The separation allows multiple use of essentially the same domain knowledge. Imag-

ine for example a knowledge source aggregate, that takes as input a set of components

and aggregates them into one composite component. This knowledge source could

use the same SUB-COMPONENT-OF relation, but view it di�erently, namely as aggrega-

tion knowledge. Such an inference could very well occur in a system that performs

con�gurations of audio systems.

� Domain knowledge that is used in more that one inference is speci�ed only once. In

this way, knowledge redundancy is prevented.

� It provides a dual way to name9 domain knowledge: both use-independent and use-

speci�c. Knowledge engineers tend to give domain knowledge elements names that

already re
ect their intended use in inferencing and keep changing the names when

their usage changes. We would argue that both types of names can be useful and

should be known to the system, for example for explanation purposes.

� The scope of the domain theory is often broader than what is required for problem

solving. For example, explanatory tasks (in kads de�ned in the model of coop-

eration) often require deeper knowledge than is used during the reasoning process

itself.

This is not to say that we claim that a domain theory can in general be de�ned com-

pletely independent of its use in the problem solving process. The scope and the structure

of the domain knowledge has to meet the requirements posed by the total set of infer-

ences. In many applications there are interactions between the process of conceptualising

a domain and specifying the problem solving process. We are convinced however, that it

is useful to document them at least separately.

As stated previously, the primitive inference steps form the building blocks for an

application problem solver. They de�ne the basic inference actions that the system can

perform and the roles the domain objects can play. The combined set of primitive infer-

ences speci�es the basic inference capability of the target system. The set of inference

steps can be represented graphically in an inference structure. The inference structure

thus speci�es the problem solving competence of the target system.

Fig. 3.5 presents such an inference structure for the audio domain. The inferences

specify a top-down and systematic approach to �nd a sub-model of the audio system that

behaves inconsistently. The following inferences appear in the inference structure:

8We omit here the details of specifying the mapping between a domain view and a domain theory. See

for a more detailed discussion [Schreiber et al., 1989b].
9We would argue that the whole activity of knowledge acquisition is in fact for a large part a matter of

giving (meaningful) names.

Chapter 3. KADS: A Modelling Approach to KBS Development 35

complaint

system model

hypothesisobservable

finding norm

difference

select

decompose

specify

select

compare

FIGURE 3.5: An inference structure for diagnosing faults in an audio system. Rectangles represent meta-

classes; ovals represent knowledge sources. Arrows are used to indicate input-output dependencies.

� A selection of a a (sub-part) of the audio system (system model) on the basis of a

complaint.

� A decomposition of some part of the system into a number of sub-components that

play the role of hypothesis.

� A prediction of a norm-value for a hypothesis. The norm is a value of a test, that is

consistent with the normal state of the hypothesis.

� A speci�cation of an observable, for which a value is to be obtained (the �nding).

� A comparison of the observed �nding and the predicted norm.

The inference structure de�nes the vocabulary and dependencies for control10, but not

the control itself. This latter type of knowledge is speci�ed as task knowledge.

3.4.3 Task knowledge The third category contains knowledge about how elementary

inferences can be combined to achieve a certain goal. The prime knowledge type in this

category is the task. Tasks can achieve a particular goal. The relations between tasks

and goals are in principle many-to-many. Task knowledge is usually characterised by a

vocabulary of control terms, for instance indicating that a �nding has been processed or

a hypothesis has been veri�ed.

10We use the term control here to refer to the process of controlling the execution of knowledge sources.

We are not referring to more detailed, symbol-level forms of control such as search control in the application

of a computational technique. See [Schreiber et al., 1991a] for a more elaborate discussion on these di�erent

types of control.

36 Pragmatics of the Knowledge Level

Tasks represent �xed strategies for achieving problem solving goals. Several researchers

[Clancey, 1985a; Gruber, 1989] have pointed out that task knowledge is an important

element of expertise. The competence model of the diagnostic strategy of neomycin

[Clancey, 1985a] is an example of what we call task knowledge. Clancey describes the sub-

tasks of this strategy via meta-rules. The main di�erence approach between his approach

and our approach is that he refers directly in these meta-rules to the domain knowledge.

In kads, tasks only refer to inferences and not explicitly to domain knowledge.

We use the following constructs to describe task knowledge:

Task A task is a composite problem solving action. It implies a decomposition into

sub-tasks. The application of the task to a particular (sub-)problem results in the

achievement of a goal.

Control terms The control vocabulary used. A control term is nothing more than a

convenient label for a set of meta-class elements. The label represents a term used

in the control of problem solving, e.g. \di�erential" or \focus". Each control term is

de�ned through the speci�cation of a mapping of this term onto sets of meta-class

elements (e.g. the di�erential is the set of all active hypotheses).

Task structure A decomposition into sub-tasks and a speci�cation of the control depen-

dencies between these sub-tasks.11 The decomposition can involve three types of

sub-tasks:

1. Primitive problem solving tasks: inferences speci�ed in the inference layer.

2. Composite problem solving tasks: a task speci�ed in the task layer. In principle,

this could be a recursive invocation of the same task.

3. Transfer tasks: tasks that require interaction with an external agent, usually

the user.

The dependencies between the sub-tasks are described as a structured-English pro-

cedure such as used in conventional software engineering [DeMarco, 1978], with

selection and iteration operators.

The conditions in these procedures always refer to control terms and/or meta-class

elements, e.g. \if the di�erential is not empty then : : :".

There is interaction between the task knowledge in the model of expertise on the one

hand and the model of cooperation on the other hand with respect to the speci�cation of

the transfer tasks. Transfer tasks are more or less speci�ed as a black box in the model

of expertise. We distinguish four types of transfer tasks (for more details, see [de Greef &

Breuker, 1992]):

1. Obtain: the system requests a piece of information from an external agent. The

system has the initiative.

2. Present : the system presents a piece of information to an external agent. The system

has the initiative.

11We agree with [Steels, 1990] that \control structure" is a more appropriate term for this type of

structure. We stick here to the term \task structure" mainly for historical reasons.

Chapter 3. KADS: A Modelling Approach to KBS Development 37

3. Receive: the system gets a piece of information from an external agent. The external

agent has the initiative.

4. Provide: the system provides an external agent with a piece of information. The

external agent has the initiative.

An example task-knowledge speci�cation for our audio domain is shown below. It

consists of three tasks. The �rst task is systematic-diagnosis. The goal of this task is to

�nd a sub-system with inconsistent behaviour at the lowest level of aggregation. The task

works under the single-fault assumption. On the basis of a complaint, an applicable system

model is selected. This selection task corresponds to the knowledge source select speci�ed

in the inference layer. Subsequently, hypotheses in the di�erential are generated through

the generate-hypotheses sub-task. In the sub-task test-hypotheses these hypotheses are

then tested to �nd an inconsistent sub-system. This hypothesis then becomes the focus for

further exploration. The generate-and-test process is repeated, until no new hypotheses

are generated (i.e. the di�erential is empty).

task systematic-diagnosis

goal:

�nd the smallest component with inconsistent behaviour, if one.

input:
complaint

output:

inconsistent-sub-system: sub-part of the system with
inconsistent behaviour

control-terms:

di�erential: set of currently active hypotheses
task-structure:

systematic-diagnosis(complaint! inconsistent-sub-system) =

select(complaint! system-model)
generate-hypotheses(system-model ! di�erential)

REPEAT

test-hypotheses(di�erential! inconsistent-sub-system)

generate-hypotheses(inconsistent-sub-system! di�erential)

UNTIL di�erential = ;

For readability purposes, the names of knowledge sources are italicised in the task

structure. The arrows in the task structure describe the relation between input and output

of the sub-task. Note that all arguments of tasks and conditions are either explicitly

declared (di�erential) or are meta-class names.

The task generate-hypotheses is a very simple task. It just executes the decompose

knowledge source until it produces no more solutions.

task generate-hypotheses

goal:

generate new set of hypotheses through decomposition

input:

system model

output:

hypothesis-set: set of newly generated hypotheses

control-terms:

hypothesis: device component

38 Pragmatics of the Knowledge Level

task-structure:

generate(system-model ! hypothesis-set) =

REPEAT
decompose(system-model! hypothesis)

hypothesis-set := hypothesis [hypothesis-set

UNTIL no more solutions of decompose

The task test-hypotheses tests the hypotheses in the di�erential sequentially until an

inconsistency is found (di�erence = true). Testing is done through a kind of experimental

validation: a norm value is predicted and this value is compared with what is actually

observed. Obtain(observable, �nding) is an example of a transfer task, that starts an

interaction with the user to obtain a test value. How the transfer task is carried out,

should be speci�ed in the model of cooperation.

task test-hypotheses

goal:

test whether a hypothesis in the di�erential behaves inconsistently

input:

di�erential
output:

hypothesis: element of the di�erential with inconsistent behaviour

control-terms: -
task-structure:

test(di�erential! hypothesis) =

DO FOR EACH hypothesis 2 di�erential
specify(hypothesis! norm)

specify(hypothesis! observable)

obtain(observable ! �nding)
compare(norm + �nding ! di�erence)

UNTIL di�erence = true

If one abstracts from the control relations between sub-tasks and assumes a �xed task

decomposition, the set of task structures can be represented graphically as a tree. The

tree for systematic diagnosis is shown in Fig. 3.6. Such a decomposition of a task assigned

to the system is in fact a further re�nement of the decomposition speci�ed in the task

model (see Sec. 3.3).

3.4.4 Strategic knowledge The fourth category of knowledge is the strategic

knowledge.12 Strategic knowledge determines what goals are relevant to solve a partic-

ular problem. How each goal is achieved is determined by the task knowledge. Strategic

knowledge will also have to deal with situations where the afore-mentioned knowledge

categories fail to produce a partial solution. For example, the problem-solving process

may reach an impasse because information is not available or because contradictory infor-

mation arises. In such cases the strategic reasoning should suggest new lines of approach

or attempt to introduce new information e.g., through assumptions (cf. [Jansweijer, 1988;

Jansweijer et al., 1989]).

Strategic knowledge concerns, among other things, the dynamic planning of task ex-

ecution. However, most systems developed with the kads approach used only �xed task

12Gruber uses the term \strategic knowledge" in a di�erent way [Gruber, 1989]. His strategic knowledge

is in many aspects similar to the task knowledge in KADS.

Chapter 3. KADS: A Modelling Approach to KBS Development 39

systematic
diagnosis

select
system model;

generate
hypotheses

test
hypotheses

decompose
system model

specify
norm

select
observable

compare
difference

obtain
finding

FIGURE 3.6: Task tree of systematic diagnosis. The leaves of such a tree are either knowledge sources or

transfer tasks.

decompositions and had little or no strategic knowledge. In our opinion, this does not

mean that strategic knowledge is unimportant or super
uous. When knowledge engineers

have to construct more complex and
exible knowledge-based systems than presently is

usually the case, we think a much more detailed exploration of strategic knowledge will be

necessary. We have recently started to work on an esprit project named reflect where

the central topic is the exploration of strategic knowledge. Apart from dynamic planning,

strategic knowledge can also enable a system to answer questions such as \Can I solve

this problem?" [Vo� et al., 1990]. For the moment however, the study of the nature of

strategic knowledge remains mainly a research topic.

3.4.5 Synopsis of the model of expertise The four knowledge categories (domain,

inference, task and strategic knowledge) can be viewed as four levels with meta-like rela-

tions in the sense that each successive level interprets the description at the lower level.

In Fig. 3.7 these four levels and their interrelations are summarised.

The four-layer framework is a structured but informal framework. This means that

the speci�cations are sometimes not as precise as one might want them to be and thus

may be interpreted in more than one way. This has led to research aimed at de�ning

a formal framework for representing models of expertise [van Harmelen & Balder, 1992;

Wetter, 1990] The price paid for a greater amount of precision in formal speci�cations is

however a reduction in conceptual clarity. In our view, there is a place for both informal

and formal representations in the knowledge engineering process. The use of both informal

and formal model representations is a major topic of research in the kads-ii project.

The four-layer framework for knowledge modelling has been successfully used as a

basis for structured acquisition and description of knowledge at an intermediate level

between the expertise data obtained from experts, text books, etcetera and the knowledge

representation in an implemented system [de Greef & Breuker, 1985]. From a knowledge-

level viewpoint, the present four-layer model captures knowledge categories that are quite

similar to those encountered in other models in the literature. However, di�erences in

opinion exist about where to situate particular types of knowledge. This point will be

40 Pragmatics of the Knowledge Level

knowledge
category

organization knowledge
types

strategic

task

inference

domain

strategies

tasks

inference
structure

domain
theory

plans
meta-rules

goals
control terms
task structures

knowledge source
meta-class
domain view

concept
property
relations

controls

applies

uses

FIGURE 3.7: Synopsis of the KADS Four-Layer Model

discussed in more detail in Sec. 3.7.

3.5 Principle 3: Reusable Model Elements

There are several ways in which models of expertise can be used to support the knowledge

acquisition process. A potentially powerful approach is to reuse (structures of) model

elements. When one models a particular application, it is usually already intuitively clear

that large parts of the model are not speci�c for this application, but reoccur in other

domains and/or tasks. kads (as do most other approaches to knowledge modelling) makes

use of this observation by providing a knowledge engineer with prede�ned sets of model

elements. These libraries can be of great help to the knowledge engineer. They provide

her with ready-made building blocks and prevent her from \re-inventing the wheel" each

time a new system has to be built. In fact, we believe that these libraries are a conditio

sine qua non for improving the state of the art in knowledge engineering.

In this section, two ways of reusing elements of the model of expertise are discussed: (i)

typologies of primitive inference actions (knowledge sources) and (ii) interpretation models.

In principle however, the reusability principle holds for all models in the kbs construction

process.

3.5.1 Typologies of knowledge sources In [Breuker et al., 1987] we have de�ned

a tentative typology of primitive problem solving actions (knowledge sources) which has

been the basis of a considerable amount of models. The typology is based on the possible

operations one can perform on the epistemological primitives de�ned in kl-one [Brachman

& Schmolze, 1985]. This set of primitives consists of:

� concept

� attribute (of concept)

Chapter 3. KADS: A Modelling Approach to KBS Development 41

� value (of attribute)

� instance (of concept)

� set (of concepts)

� structure (of concepts)

In the typology of inferences we view these primitives not as data-structures but as

epistemological categories. Their actual representation in a system may be quite di�erent

(e.g. in terms of logical predicates rather than kl-one like constructs).

Operation type Knowledge source Arguments

Generate instantiate concept ! instance

concept/instance classify instance ! concept

generalise set of instances ! concept

abstract concept ! concept

specify concept ! concept

select set ! concept

Change concept assign-value attribute ! attribute-value

compute structure ! attribute-value

Di�erentiating compare value + value ! value

values/structures match structure + structure ! structure

Structure manipulation assemble set of instances ! structure

decompose structure ! set of instances

transform structure ! structure

TABLE 3.2: A Typology of Knowledge Sources

Table 3.2 gives an overview of the typology of knowledge sources used in kads. The

inferences are grouped on the basis of the type of operation that is carried out by the knowl-

edge source: generate concept/instance, change concept, di�erentiate values/structures and

manipulate structures. A detailed description of the inferences mentioned in Table 3.2 is

given in [Breuker & Wielinga, 1989].

Although this typology has been a useful aid in many analyses of expertise, it has a

number of important limitations:

� The selected set in Table 3.2 is in a sense arbitrary. For example, we could have

added other operations on sets such as join, union, or merge.

� The ontology on which the typology is based is of a very general nature and hence

weak. The operations are de�ned more or less independent of tasks and/or domains.

Often, it is di�cult for the knowledge engineer to identify how an inference in a

particular application task must be interpreted.

� A more serious limitation is that some inferences cannot be adequately classi�ed

because they require another ontological framework. For example, operations on

causal relations such as abduction and di�erentiation cannot be represented in a

natural way.

We consider the study of more adequate taxonomies of inferences to be a major research

issue. Potentially, taxonomies are very powerful aids for the knowledge engineer. In a

42 Pragmatics of the Knowledge Level

new research project (kads-ii) we are exploring the possibility of describing taxonomies

that are speci�c for classes of application domains such as technical diagnosis. These

taxonomies will be based on a much more task-speci�c ontology.

It is interesting to see that from a di�erent angle the \Fire�ghter" project [Klinker

et al., 1991] is aiming at similar results. An important goal of this project is to look at

what they call mechanisms that are used in various applications, detect commonalities

between these mechanisms, and construct a library of mechanisms that can be reused in

other applications. These mechanisms appear to have the same grain size as the knowledge

sources in kads. The main di�erence is that mechanisms have a computational
avour.

3.5.2 Interpretation models Typologies of elements of a model of expertise, such as

a typology of knowledge sources, represent a �rst step into the direction of reusability. A

further step would be to supply partial models of expertise such as models without all the

detailed domain knowledge �lled in. Such partial models can be used by the knowledge

engineer as a template for a new domain and thus support top-down knowledge acquisition.

In kads such models are called interpretation models, because they guide the interpretation

of verbal data obtained from the expert.

The kads interpretation models are models of expertise with an empty domain layer.

Interpretation models describe typical inference knowledge and task knowledge for a par-

ticular task. As these descriptions are phrased in domain-independent terminology, they

are prime candidates for reuse in other domains. For example, the inference and task

description of the audio domain could very well be applied to another domain where some

device is being diagnosed. In [Breuker et al., 1987] interpretation models for a large num-

ber of tasks are presented. One of these is the model for systematic diagnosis as presented

here.

Example interpretation model Another model in this library is that of the moni-

toring task. This model has been used in applications ranging from process control [Schri-

jnen & Wagenaar, 1988] to software project management [de Jong et al., 1988] It is also

interesting because it illustrates how di�erent tasks can apply the same set of inferences

in di�erent ways.

The inference structure of the interpretation model for the monitoring task (shown in

Fig. 3.8) depicts the following inferences:

� The selection of a system parameter.

� The instantiation of the normal value of the parameter (the norm).

� The selection of a corresponding observable.

� A comparison of observed and expected values leading to a di�erence description.

� A classi�cation of the di�erence into a discrepancy class, e.g. minor or major dis-

turbance. Often, data from previous monitoring cycles are used in this inference.

Two typical tasks (�xed strategies) were identi�ed for monitoring. One could view

them as two di�erent ways of \going through" the inference structure of Fig. 3.8.

The �rst task, model driven monitoring, describes a monitoring approach where the

system has the initiative. This type of task is usually executed at regular points in time.

The system actively acquires new data for some selected set of parameters and then checks

whether the observed values di�er from the expected ones.

Chapter 3. KADS: A Modelling Approach to KBS Development 43

compare

difference

classify
discrepancy

class
historical

data

observable

parameter

select

system
model

findingnorm

select

specify

FIGURE 3.8: Inference structure of the interpretation model for monitoring

task model-driven monitoring

goal:

execute a monitoring cycle in which the system actively acquires new data
input: -

output:

discrepancy
control-terms:

active-parameters:set of parameters

task-structure:

monitor(discrepancy) =

select(system-model, active-parameters)

DO FOR EACH parameter 2 active-parameters
specify(parameter ! norm)

select(parameter ! observable)

obtain(observable ! �nding)
compare(norm + �nding ! di�erence)

classify(di�erence + historical-data ! discrepancy)

The second task, data-driven monitoring, is initiated through incoming data. It con-

tains a receive statement representing a transfer task in which an external agent (a human

user or another system) has the initiative(see Sec. 3.4.3). The values received are checked

against expected values for the observables concerned. Resulting di�erences are subse-

quently classi�ed in discrepancy classes.

task data-driven-monitoring

44 Pragmatics of the Knowledge Level

goal:

execute a monitoring cycle when a new value of an observable

is received by the system
input: -

output:

discrepancy
task-structure:

monitor(discrepancy) =

receive(observable-set ! �nding)

DO FOR EACH observable 2 observable-set

select(observable + system-model ! parameter)

specify(parameter ! norm)

compare(norm + �nding ! di�erence)

classify(di�erence + historical-data ! discrepancy)

Selecting an interpretation model from the library The library of interpreta-

tion models consists of a number of models that can be used to describe the reasoning

process in various applications. The knowledge engineer is guided in deciding which in-

terpretation model to choose for a particular application through a decision tree. Part of

this tree is shown in Fig. 3.9. indexinterpretation model library, model selection

The decision tree is based on a taxonomy of task types. This taxonomy is a modi�ed

and extended version of the Clancey's description of problem types [Clancey, 1985b] which

in turn was derived from [Hayes-Roth et al., 1983; p. 14]. The decision points in this

tree concern features of the solution space, the problem space and the required domain

knowledge types.

The �rst decision point concerns the availability of information about the structure of

the system involved in a task. The term \system" refers here to the central entity in the

application domain, e.g. the audio system in the audio domain, the patient in a medical

domain, the device in a technical domain, etc. Other decision points concern for example

the type of solution (state, category, types of categories, etc.) and the nature of the domain

knowledge (fault-model or correct-model of the system). The leaves of the decision tree are

associated with one or more interpretation models that specify typical inference and task

knowledge for modelling this task. For example, the interpretation model for monitoring

presented earlier is associated with the monitoring task in Fig. 3.9. This model is chosen if

(i) the structure of the system is given, (ii) the solution is a category and (iii) this solution

category is not a fault category nor a decision class, but a simple discrepancy between

observed and expected behaviour.

It should be noted that in many real-life applications the task is a compound one: it

consists of several basic tasks. For example, in the model of expertise for the audio domain,

we focused only on the diagnostic sub-task. In actual practice the repair /remedy task

also needs to be addressed. This may result in a combination of (parts of) two or more

interpretation models. An example of this process of combining is described in [Hayward,

1987].

A number of researchers have developed knowledge acquisition tools that are based on

the notion of a generic model of the problem solving task. For example, roget [Bennet,

1985], mole [Eshelman et al., 1988] and burn [Klinker et al., 1991] are all systems that

drive the knowledge acquisition dialogue with an expert through a strong model of the

Chapter 3. KADS: A Modelling Approach to KBS Development 45

structure
of system

given

modified

constructed

solution
type

state(s) category

type of
category

decision
class

fault
category

discrepancy

(analysis)

(transformation)

(synthesis)

(predict) (identification)

(monitoring)

(assessment)
(diagnosis)

model type

correct
model

fault
model

(systematic diagnosis) (heuristic classification)
(cover & differentiate)

solution
type

sequence
of steps

physical
structure

(planning) (design)

FIGURE 3.9: Partial decision tree of interpretation models

problem solving process. This model prescribes what domain knowledge is needed to build

an actual expert system. In opal [Musen et al., 1987] this approach is taken one step

further. The conceptual model in opal is not just a model of the problem solving process

(i.e. the upper three layers in the kads framework) but also contains templates of the

domain knowledge needed. As a consequence opal can present the expert with detailed

forms that he or she can �ll in with the details of an application domain. Although this

approach is very powerful indeed, it has limitations in scope and applicability.

3.6 The Knowledge Acquisition Process

The description of the various models can be seen as the product of kbs construction,

With respect to the process of kbs construction, kads provides two ways of support:

46 Pragmatics of the Knowledge Level

(i) a description of phases, activities, and techniques for knowledge engineering, and (ii)

computerised support tools. Both are brie
y discussed in this section.

3.6.1 Phases, activities and techniques A phase represents a typical stage in the

knowledge engineering process. A phase is related to a number of activities, that are usu-

ally carried out in this phase. One particular activity can occur in more than one phase.

For example, \data collection" can occur in many di�erent phases. The activities are the

central entities in the process view on knowledge engineering. An activity is a piece of

work that has to be carried out by the knowledge engineer. An activity produces a result.

This result constitutes either directly a part of one or more models or it represents some

intermediate product, that is used by other activities. An activity applies one or more

techniques. For example, a \time estimation" activity can be carried out with an extrapo-

lation technique. Life cycle models prede�ne particular phases, activities, techniques and

products and also their interrelations. Life cycle models for kads have been described in

[Barth�elemy et al., 1987; Taylor et al., 1989] We limit the discussion here to those activ-

ities that are related to building a �rst model of expertise. We distinguish two phases in

building such a �rst model of expertise: knowledge identi�cation and knowledge modelling.

Knowledge identi�cation is more or less a preparation phase before the actual con-

struction of the model of expertise can begin. Relevant activities for this phase are shown

in Fig. 3.10 together with applicable products and techniques. The results include a task

model and also intermediate products that are used by activities in other phases, especially

the knowledge modelling phase. Example activities are glossary and lexicon construction.

A glossary and a lexicon provide a way of documenting the application domain without

committing to any formal conceptualisation.

Data collection

Task analysis

Task feature analysis

Lexicon construction

Concept identification

Relation identification

Glossary construction

Products Activities Techniques

Structured interview,

Rational task analysis

Work-flow analysis

Protocol segmentation

Lexical analysis techniques

Repertory grid

Card sort

Expertise data

Task model

Lexicon

Glossary

Draft domain theory

Frame edititing

FIGURE 3.10: Knowledge identi�cation activities and related products and techniques

In the knowledge modelling phase the knowledge engineer constructs a model of ex-

pertise. Fig. 3.11 summarises the main activities relevant for knowledge modelling. A

crucial one is the selection of an interpretation model. This activity is supported through

the decision tree discussed in Sec. 3.5. The model validation and model di�erentiation

activities often make use of protocol analysis techniques. Model validation can also be

supported by transformation of the model into a functional prototype. This prototype

can be seen as a simulator of the problem solving aspects of the artefact. The kads-ii

project is currently working on a tool to support this type of prototyping. Other activities

Chapter 3. KADS: A Modelling Approach to KBS Development 47

deal with the de�nition of the domain conceptualisation. In kads we usually assume that

in the resulting model the domain theory can be a partial one , but with a fully de�ned

domain schema. Re�nement and debugging of the domain theory is performed in a later

phase, possibly with the use of automised techniques.

Products Activities Techniques

Building domain
structures

Interpretation model
selection

Model assembly

Model validation

Model differentiation

Bottom-up model
construction

Frame editing

Tree diagramming

Domain schema
definition

Laddering

Data modelling techniques

Segment grouping

Functional prototyping

Protocol analysis
protocol segmentation,
protocol coding, matching,
segment naming,

Think-aloud protocols, ...Data collection

Participant observation

Goal regression

Forward scenario simulation

Decision tree

Generic sub-task substitution

Sub-task expansion

Expertise data

Model of expertise

inference

strategy

task

domain
connecting the IM with
the domain theory

FIGURE 3.11: Knowledge modelling activities and related products and techniques

3.6.2 Tools Within the kads project the Shelley workbench was developed to support

activities in the kbs life cycle. Shelley contains an integrated set of computerised support

tools. The user of the workbench is the knowledge engineer. Example support tools in

Shelley for the knowledge modelling phase are:

� A domain text editor: a tool that allows management and analysis of protocols or

other texts, for example through the creation of text fragments of a particular type.

These fragments can subsequently be linked to other objects, such as elements of

the model of expertise.

� A concept editor to create concepts and corresponding attributes.

� An interpretation model library from which models can be selected.

� An inference structure editor that supports the construction of the inference layer of

the model of expertise.

Fig. 3.12 shows an example of the use of Shelley in the audio domain. The knowledge

engineer has selected the interpretation model of systematic diagnosis from the library and

inserted it into the inference structure editor. A think-aloud protocol is being analysed.

48 Pragmatics of the Knowledge Level

FIGURE 3.12: Example session with the Shelley workbench

The link of a particular fragment of the protocol to a meta-class in the inference structure

editor is shown.

The Shelley workbench is described in more detail in [Anjewierden et al., 1992]

3.7 Relation to Other Approaches

We make no claim that all ideas underlying kads are new. On the contrary, work of other

researchers has heavily in
uenced the work on kads. In this section we discuss a number

of these approaches and relate them to the kads approach.

Brachman proposed �ve levels for describing knowledge [Brachman, 1979]: the linguis-

tic, the conceptual, the epistemological, the logical and the implementational level. Brach-

man and also Clancey [Clancey, 1983] showed that the epistemological level of Brachman

is the \missing" level in the description of knowledge-based systems. We interpret Newell's

knowledge level as a combined description of Brachman's conceptual and epistemological

level. In the kads model of expertise the domain knowledge roughly corresponds to the

conceptual level and the three other categories to the epistemological level. The kads

design description (Newell's symbol level) corresponds to the logical level.

The work of Clancey has had a large impact on kads. [Clancey, 1985b] introduced the

Chapter 3. KADS: A Modelling Approach to KBS Development 49

notion of an inference structure in the description of the model of heuristic classi�cation

(hc). In the work on neomycin [Clancey, 1985a] a similar type of task decomposition is

found as is used in the task layer in kads. The main di�erence is that there is no explicit

relation between the tasks in neomycin and the inferences in the hc model. These tasks

refer directly to the domain knowledge, whereas the tasks in kads reference the domain

knowledge only indirectly via primitive inferences.

In the approach taken at Ohio State University [Bylander & Chandrasekaran, 1988;

Chandrasekaran, 1988] the implementation environment consists of so called \generic

tasks". A generic task (gt) is a combination of a problem (e.g. classi�cation) and a

problem solving method (e.g. hierarchical classi�cation) with particular knowledge and

inference requirements. gt's can perform quite general information-processing tasks. The

assumption is that by combining a relatively small set of gt's one can solve a large number

of problems. The problem solving methods in the gt approach have a somewhat smaller

grain size than the interpretation models in kads.

In the approach taken at dec [McDermott, 1988; Marcus & McDermott, 1989; Eshel-

man et al., 1988] a number of systems were built that provide an operationalisation of a

particular problem solving method, such as ` `propose & revise" and \cover & di�erenti-

ate". The terminology used to describe these methods is such that during knowledge acqui-

sition the expert can be prompted for domain knowledge in a high-level, method-speci�c,

language, e.g. \What are symptoms that the system should be able to explain?". The

problem solving methods have a similar grain size as the kads interpretation models.

More recently [Klinker et al., 1991], the emphasis in this approach has shifted to the

construction of an integrated environment in which the knowledge engineer can con�gure

such single-task knowledge acquisition systems from a set of prede�ned mechanisms. As

remarked in Sec. 3.5.1, the research on a typology of mechanisms is very close to aims in

kads.

In the protege [Musen, 1989] approach the problem is addressed that experts �nd it

di�cult to enter knowledge in a method-speci�c format. In this approach two steps are

distinguished in building oncocin-like systems: the knowledge engineer uses protege to

specify the required domain knowledge in method-speci�c terms; protege then generates

a knowledge acquisition tool called p-opal that enables the expert to enter knowledge

in domain-speci�c terms. This dual way of naming domain knowledge is similar to the

approach advocated in kads. The protege system presupposes a single-task model,

based on the skeletal planning method of oncocin [Shortli�e et al., 1981]

All models used in these last three approaches are hard-wired to particular compu-

tational constructs. As stated earlier, compared to the kads approach this is both an

advantage and a disadvantage.

The \Components of Expertise" (CoE) approach [Steels, 1990] is in many aspects sim-

ilar to kads. The main di�erences with kads are the dynamic view on task decomposition

based on task features and the absence of an explicit description of inference knowledge

such as meta-classes. A dedicated computational framework has been developed for CoE

models [Vanwelkenhuysen & Rademakers, 1990]. Research aiming at a synthesis of kads

and CoE is in progress within the kads-ii project.

The \Ontological Analysis" approach [Alexander et al., 1988] describes knowledge

in three categories: (i) the static ontology describing the primitive objects, properties

and relations, (ii) the dynamic ontology describing the state space of the problem solver

50 Pragmatics of the Knowledge Level

and the actions that can make transitions in this space, and (iii) the epistemic ontology

describing methods that control the use of knowledge of the �rst two categories. These

three categories resemble closely the domain, inference and task knowledge in kads. The

formalisms used in Ontological Analysis are based on algebraic speci�cation languages.

Although terminology is di�erent, a common view appears to emerge based on the idea

that di�erent types of knowledge constitute the knowledge level and that these di�erent

types of knowledge play di�erent roles in the reasoning process and have inherently dif-

ferent structuring principles. One salient characteristic is that all approaches distinguish

between structural domain knowledge and control knowledge. In addition, various kinds

of control knowledge are distinguished, like global control of how to go about the task

as a whole, and local control knowledge specifying how and/or when to carry out certain

individual actions.

There are also relations between kads and conventional software engineering ap-

proaches. The introduction of multiple models was inspired by work of [DeMarco, 1982]

As pointed out in Sec. 3.4.1, issues concerning modelling of domain knowledge are quite

closely related to research in semantic database modelling. Software engineering tech-

niques are used in kads, e.g. a form of data-
ow diagrams (for inference structures) and

structured English (for task structures). Life-cycle models using a water-fall approach

[Barth�elemy et al., 1987] and a spiral model approach [Taylor et al., 1989] have been de-

�ned in kads. The relations with conventional software engineering are discussed in more

detail in Ch. 8.

3.8 Experiences

The kads approach has been (and is being) used in some 40 to 50 kbs projects. Not all

these projects used \pure" kads. The core activities of Bolesian Systems, a Dutch com-

pany, are teaching and applying an earlier version of kads under the name ske (Struc-

tured Knowledge Engineering). Other companies, such as Arthur Andersen Consulting

and commercial partners in the kads-i project, have incorporated kads into their own

methodology.

Within the kads-i project the approach has been tested in a number of experiments in

domains such as commercial wine making [Wielinga & Breuker, 1984], statistical consul-

tancy [de Greef & Breuker, 1985; de Greef et al., 1988b], the integration qualitative rea-

soning approaches [Bredeweg & Wielinga, 1988], network management [Krickhahn et al.,

1988; Readdie & Innes, 1987], mould con�guration [Barth�elemy et al., 1988], mixer con�g-

uration [Wielemaker & Billault, 1988], technical diagnosis [Wright et al., 1988], insurance

[Brunet & Toussaint, 1990], and credit card fraud detection [Porter, 1992; Killin, 1992],

Other applications include re-engineering of oncocin [Linster & Musen, 1992], process

control [Schrijnen & Wagenaar, 1988], chemical equipment [Schachter & Wermser, 1988],

room planning [Karbach et al., 1989], social security [de Hoog, 1989], software project

management [de Jong et al., 1988], diagnosis of movement disorders [Winkels et al., 1989],

and paint selection [van der Spek et al., 1990]. The last two systems and the credit card

system have been in operational use for some time.

A recent publication for the commercial ai community [Harmon, 1991] commented that

\before kads, most of the methodologies were vague prescriptions rather than systematic

Chapter 3. KADS: A Modelling Approach to KBS Development 51

step-by-step models for large scale systems development e�orts". On the basis of the

success of kads-i, the cec has decided to fund a second esprit project (kads-ii) with

the aim to arrive at a de facto European standard for kbs development.

This is not to say that we think that the kads approach has no de�ciencies: on the

contrary. It is clear that a group of kads users �nds certain aspects of kads attractive,

but it is also recognised that there are many weaknesses in current kads. The �rst kads

user meeting [Ueberreiter & Vo�, 1991] in which some forty, mainly German, kads users

participated, provided a good overview of the strong and weak points of kads. Among

the strong points are:

� The distinction between various models, especially the distinction between the model

of expertise and the design.

� The framework for modelling expertise. Especially the inference structures are men-

tioned by many people as an intuitively appealing way of describing the reasoning

process and as a communication vehicle with domain experts.

� The library of interpretation models. Although this library is far from complete, it

has still provided useful starting points for many applications.

The list of weaknesses is considerably longer . A selection:

� The vocabulary in the four-layer framework for describing domain knowledge and

task knowledge is not expressive enough.

� The typology of knowledge sources is too general. The precise meaning of the knowl-

edge sources is ambiguous.

� The library of interpretation models is incomplete and needs serious revision. For

example, coverage of synthetic tasks is marginal.

� kads does not provide enough support for operationalising conceptual models.

� kads gives you a vocabulary, but it provides little support for the modelling process.

In short, the experiences show that the kads approach has some interesting and at-

tractive features, but that it still needs a lot of work before it can really be considered a

\comprehensive methodology". In addition, controlled validation studies are necessary to

show that kads actually provides advantages compared to other approaches. The work

of [Linster & Musen, 1992] can be seen as a step in this direction.

3.9 Future Developments & Conclusions

In this chapter, we have taken the position that knowledge acquisition is to a large extent

a constructive activity: models of several aspects of the task and domain have to be build

before implementing a knowledge based system.

Looking at the future of knowledge acquisition from this point of view raises the

obvious question of how ai and knowledge based systems themselves can support the

various modelling processes. Recent developments in the area of knowledge acquisition

tools provide some directions in how this could be done.

Given the modelling approach to knowledge acquisition it is of vital importance that

a knowledge engineer has some language in which the various models can be formulated.

Such a language is not only important for the knowledge acquisition process itself, but

52 Pragmatics of the Knowledge Level

also for communicating models and comparing models for di�erent tasks. A comparative

analysis of the problem-solving methods embodied in kbs's will advance the knowledge

acquisition activity from an art to a proper engineering discipline. Although there is

currently little consensus on what the ingredients and vocabulary of such a modelling

language should be, the various ideas appear to converge. The result of the synthesis of

the kads and the CoE approach, which is currently being pursued and in which ideas

from other approaches are also taken into account, may be a starting point for such a

language. In our view, it is worthwhile to investigate the di�erent types of knowledge and

their relationships also from a more formal point of view. Attempts are being made in

this direction (see [van Harmelen & Balder, 1992]). Such a formal account of knowledge

models clari�es at least some of the notions that have been used in a rather informal way

so far.

If a common language for de�ning conceptual models of problem solving processes

became accepted, it would be of great interest to study the large collection of problem

solving models that currently exist. A consolidation and integration of the models in the

kads interpretation model library [Breuker et al., 1987], the generic problem solving mod-

els of Chandrasekaran and co-workers [Chandrasekaran, 1988], the models underlying the

various model-driven knowledge acquisition tools [McDermott, 1988], and various other

models in the literature, could provide the knowledge engineering community with a in-

valuable tool for knowledge acquisition. Also, such a collection of generic models could

be the basis of powerful knowledge acquisition tools that communicate both with experts

and with knowledge engineers.

Looking beyond the traditional knowledge engineering paradigm where the knowledge

engineer does most of the work, we envisage an important role for knowledge about models

in knowledge acquisition tools that integrate traditional knowledge acquisition techniques

and automated learning techniques. One of the major problems in this area is that of

integrating knowledge of various sources. A system that has knowledge about the kinds

of knowledge that it needs to acquire can exercise much more focused control on the

acquisition process and hence solve at least part of the integration problems.

Chapter 4

A KADS Domain Description Language

KADS has been critisised for the fact that it does not provide adequate support for modelling the structure

of domain knowledge. Existing approaches to data modelling are only partly able to �ll this gap. KBS

development appears to impose a number of additional requirements on data modelling. Two important

ones are (i) the need for expressions as an explicit data-modelling notion, and (ii) the need for a range of

relation types. In this chapter we present a domain description language (DDL) based on ER modelling and

KL-ONE, that provides a number of extensions making the language better suited for KBS data modelling.

The language is de�ned in BNF grammar rules and illustrated with examples. In addition, a graphical

representation for the data model is proposed.

This chapter will be published in a collection of articles on KADS. Reference: Schreiber, A. T. (1993).

A KADS domain description language. In Schreiber, A. T., Wielinga, B. J., & Breuker, J. A., editors,

KADS: A Principled Approach to Knowledge-Based System Development. Academic Press, London.

4.1 Introduction

It has been argued that one of the weak points of the kads methodology is that it provides

little to no support for the modelling of domain knowledge. Generally speaking, the kads

documents state that the domain layer consists of \concepts and relations". In most

experiments within the kads-i project P1098 the domain layer description consisted of

a glossary of concepts with attribute descriptions and a number of is-a and/or part-of

hierarchies. Originally, kads advocated the use of kl-one as the sole formalism for

domain layer modelling. Experiences in several P1098 experiments [de Greef et al., 1987;

Wielemaker & Billault, 1988] have however indicated that the kl-one primitives are not

powerful enough for modelling all relevant structural properties of the domain knowledge.

The kads domain layer can be viewed as a domain knowledge base containing the

data/knowledge types in the domain. The activity of building a domain layer model is in

many ways similar to data modelling in conventional software engineering. E�orts have

been made to apply information analysis techniques to domain-knowledge modelling. In

the next section we summarise three important existing approaches to data modelling

and analyse their restrictions. As will be pointed out in Sec. 4.3, the primitives of these

techniques are not powerful enough to describe all relevant structural properties which one

wants to describe in an application domain. The nature of domain knowledge encountered

in knowledge-based applications seems to pose additional requirements on the expressivity

54 Pragmatics of the Knowledge Level

of data modelling techniques. In Sec. 4.3 we formulate a number of these kbs-speci�c

requirements for \data modelling".1 Based on this analysis we propose in Sec. 4.4 a

Domain Description Language (ddl) for describing the kads domain layer. This ddl

contains a number of extensions of the known data modelling languages. We illustrate the

use of the ddl with examples in various domains. A full ddl speci�cation of the domain

knowledge in the Sisyphus domain (see Ch. 7) can be found in Appendix A.

The purpose of the ddl is to provide a generalisation of various available knowledge

representation formalisms. This is in line with the knowledge-level idea: when building a

knowledge-level model of an application one should not commit oneself already to a partic-

ular representation. In the design stage, the knowledge engineer needs to decide how the

ddl descriptions are to be mapped onto or transformed into symbol-level representations.

In Sec. 4.5 we discuss the relation between the ddl and some kr formalisms. In addition,

we discuss some issues concerning the semantics of the ddl.

4.2 Existing Approaches to Data/Knowledge Modelling

In this section we look at the merits and restrictions of the following three approaches to

data/knowledge modelling:

1. Entity-Relationship (er) Modelling

2. kl-one

3. Extensions to er Modelling: Semantic Database Modelling

4.2.1 Entity-relationship model The Entity Relationship Model [Chen, 1976] has

its roots in database design. The Entity Relationship Model provides2 an organisation of

information in entities, relationships, attributes, and values:

1. An entity in the model is the representation of some object in our mind. In the

original version of the er model, entities are classi�ed into entity sets by means of

an associated predicate (and this not by sub-type hierarchies). Entity sets are not

necessarily mutually disjoint.

2. A relationship in the model is an association between entities. Entities have a role,

which describes their function in the relationship (compare this with the use of role

in kl-one). This role can be explicit (the role is given a name) or implicit (the

role is determined by the order in the relationship). Relationships belong to a set of

relationships (i.e. grouped in classes).

3. The other two important concepts used in the Entity Relationship Model are the

attribute and the value. An attribute is a function, that associates an entity or a

relationship (!) with a value. Values are basic objects like a number, a colour or a

name. Values belong to one or more value sets.

1It could seem more appropriate to use the term \knowledge modelling", but this is commonly used in

a broader sense, namely to cover all knowledge types and not just the domain knowledge.
2Chen describes four levels on which data are modeled. The focus is here on Chen's level two.

Chapter 4. A KADS Domain Description Language 55

Limitations of the ER model The er-model is widely accepted as a powerful tool

for data modelling. For modelling complex relations like rules and classi�cation hierarchies,

the er-model has a limited set of modelling constructs (see [Koster, 1990]).

4.2.2 KL-ONE kl-one constitutes a representation language for the description

of \structural" domain knowledge. For a good overview of kl-one see [Brachman &

Schmolze, 1985] The major characteristics of kl-one are:

1. kl-one separates is-a relations from other types of relations. The is-a relation is

used to build inheritance lattices of entities (in kl-one: concepts).

2. All other relations (both entity $ entity and entity $ attribute) are represented as

roles of an entity.

3. Sub-concepts can limit the values and/or the cardinality of an inherited role (role

restriction). Also, a role can be split into two or more sub-roles (role di�erentiation).

4. kl-one distinguishes between concepts and instances. Concepts represent in fact

universally quanti�ed axioms concerning a set of instances. A generic classi�er can

be used to make inferences about instances of concepts using the knowledge provided

by the sub-type hierarchy.

5. Structural descriptions are used to describe relations between roles.

Limitations of KL-ONE A limitation of kl-one is that relations other than is-

a relations are described in an indirect way by specifying a role within an entity. For

instance, the fact hat an employee works for exactly one department is expressed as follows

(simpli�ed for clarity).

entity employee
role works-in
value-restriction:

department

cardinality

1,1

To represent the reverse relation a role employee has to be created in the department

entity. It is possible to circumvent this problem by creating an entity employee-department-

relation. This is even necessary, if you want to de�ne a role-attribute, that is dependent on

this relation. But introduction of these relations as concepts in a kl-one network reduces

clarity.

Also, no distinction is made in kl-one between roles that symbolise a relation with

another entity and attribute roles, i.e. roles, that have some kind of atomic value (integer,

string).

56 Pragmatics of the Knowledge Level

4.2.3 Extensions of ER modelling in semantic database modelling The er-

model has given rise to a large number of descendents adding various other constructs. We

discuss the extensions proposed in the �eld of semantic database modelling. In semantic

data modelling research (for a good overview see [Hull & King, 1987]) the aim is to move

beyond the level of the traditional data modeling techniques (the hierarchical, the network

and the relational approach). Semantic data models discern (unlike, for example, the basic

er model) between di�erent types of relations. Among the types of relations encountered

frequently in these models are Is-a relations, set relations and aggregations.

The following set of primitives is viewed by [Hull & King, 1987] as the core of the

various semantic data models;

Atomic types Atomic types represent the class of non-aggregate objects. Atomic types

can have attributes.

Constructed Types From the atomic types other types can be constructed with the use

of two types of operations: aggregation and grouping.

� Through aggregation a composite object can be constructed from other objects

in the database. These objects can themselves be either atomic or constructed.

An example could be an address, which is constructed from a street, a number,

a city, and a postal code.

� Grouping is used to construct a type which constitutes a set of objects of another

type, e.g. the set of addresses.

Attributes An attribute is viewed as a function between types. Some models make an

explicit distinction between single- and multi-valued attributes. In other models

attributes can only be single-valued. In this case the grouping relation should be

used to construct the multi-valued type. In kl-one attributes (roles) represent by

default a set of values (i.e. are multi-valued). Here, cardinality constraints are used

to specify single-valued attributes. Note that attributes with multiple arguments

can be constructed with the aggregation relation (e.g. a function from person to

address).

Is-a Relations Is-a relations indicate that an object associated with the sub-class can

also be associated with the super class. In most models Is-a relations are used to

allow for inheritance of properties (attributes) from super class to sub-class. Is-a

relations specify a directed graph in which undirected cycles may occur (multiple

inheritance). Some models distinguish two types of Is-a relations: a specialisation

and a generalisation.

� A specialisation of Csuper into one or more classes Csub de�nes, possibly over-

lapping, roles that an object of the super type can play: e.g. a person can be

a father, a scientist, and a bridge player.3.

3Another example solves an intriguing identity problem that kept bothering me for a long time in prep

school, namely that of the Holy Trinity: the super type God can play the role of both the Father, the Son,

and the Holy Ghost, as my catholic school teacher explained to me many years ago (GS).

Chapter 4. A KADS Domain Description Language 57

� A generalisation de�nes that a general term (the super class) can be used to

refer to objects belonging to the sub-classes: e.g. the sub-classes car and plane

have the super class vehicle as a generalisation. The sub-sets are assumed to

be disjoint.

Limitations of Semantic Database Modelling In comparison to ER modelling,

semantic database modelling o�ers a number of additional primitives which could prove

to be useful for data modelling in ai. The main limitation lies in the fact that it is still

di�cult (as will be pointed out in the next section) in these modelling languages to model

relations such as cause/e�ect, time.

4.3 Requirements for a Domain Description Language

Knowledge-based applications impose a number of additional requirements on a data mod-

elling language when compared to conventional systems. A knowledge base may contain

various types of knowledge structures: a causal network, taxonomical relations, \rules",

etc. Most conventional systems also have some knowledge structures such as salary scales

or product prices, but these are usually of a much simpler nature than the structures

encountered in a kbs.

In this section we discuss two types of di�culties which frequently occur when mod-

elling the knowledge base, namely (i) the modelling of expressions, and (ii) the distinction

between relations between concepts (in the kl-one sense) on the one hand and relations

between instances on the other hand.

Modelling expressions Taxonomies can often be handled well with existing data

modeling techniques, e.g. those o�ered by kl-one or semantic database modelling. (see

previous section). Knowledge structures like causal networks and \rules" are a much more

di�cult subject. A simple example might help to clarify this point.

Suppose we have the following set of rules, each of which denotes an abstraction relation

between rough data and a more general feature:

IF temperature(patient) > 38.0
THEN fever(patient) = true

IF diastolic-blood-pressure(patient) > 90

THEN blood-pressure(patient) = high
IF heart-rate-per-minute(patient) > 100

THEN heart-rate = high

It will be clear that there is a general structure behind these rules which we would

like to capture in our data model, when building an application. It allow us to limit

the knowledge engineering e�ort to a speci�cation of this general structure, and leave the

actual \�lling in" of this structure until a later re�nement phase, possibly with the help

of automated techniques.

However, it turns out to be quite di�cult to use an existing data modelling tech-

nique to model such a structure. The major problem that arises is the fact that ex-

isting data modelling techniques o�er no adequate means for modelling expressions like

58 Pragmatics of the Knowledge Level

temperature > 38:0 in a general way. Often, a knowledge engineer tries to overcome this

problem by introducing arti�cial concepts with very long name labels such as:

temperature-higher-than-38.0

This long-label approach hides however important structural properties of the domain

and is thus sub-optimal. What seems to be needed is the explicit introduction of the

notion of expression in our modelling language, so that we would be able to say something

like:

A qualitative abstraction relation is a relation between an expression about

a quantitative attribute and an expression about a qualitative attribute (a

\feature").

Another frequently occurring example in which expressions play a role are cause/e�ect

relations. Below some simple example causal relations in a medical (heart disease) domain

are listed:

% The percentage of coronary-artery obliteration is the degree

% to which the diameter of the feeding artery of the heart has

% been reduced, e.g. because of atherosclerosis.

coronary-artery-obliteration = 70% CAUSES angina-pectoris = true

coronary-artery-obliteration = 100% CAUSES myocardial-infarction = true

Again, we would like to describe in our data model, that a causal relation is a relation

between states and that states are in fact expressions about particular system attributes.

Relations between concepts vs. relations between instances Another char-

acteristic of kbs data models is that in these models it occurs much more often that one

wants to record statements about concepts (classes, entity sets) and not just about in-

stances of these concepts. Some example relation tuples from the room-planning domain

(see Ch. 7) might help to clarify this distinction:

room-1 NEXT-TO room-3
room-2 NEXT-TO room-4

.....

head-of-project REQUIRES size(room) = small

head-of-project REQUIRES occupancy(room) = single

head-of-group REQUIRES size(room) = large

....

Chapter 4. A KADS Domain Description Language 59

The �rst set of tuples represent relations between instances (actual rooms). Such

relations are typically part of the input data for a kbs. The second set of tuples is in fact

a set of universally quanti�ed statements about all instances of a particular concept. For

example, the statements about \head of project" could be read as: \all heads of projects

need to get some small, single room".

To model the structure of such statements as the above-mentioned requirements, re-

quires a distinction between relations between concept instances and relations between

concepts.

4.4 De�nition of the Domain Description Language

In this section we de�ne a domain modelling language which is based on well-known

constructs from existing data-modelling techniques plus some additional constructs that

allow one to overcome the speci�c problems encountered in kbs development. The lan-

guage supports a highly structured, but informal description of the structure of the domain

knowledge.

4.4.1 Constructs in the DDL We use the er-model as the basis of our ddl with a

number of extensions provided by semantic data modelling and kl-one. The er model

has proved useful in practice and appears to provide a natural and understandable way of

modelling domain concepts and relations. In addition, we want to introduce a number of

other constructs necessary speci�cally for kbs applications. It should be noted that most

of these additions are in fact specialised er relations. The main reason for introducing

them is to support the domain modelling activity in a natural way.

Proposed additions are:

Sub-type hierarchies Sub-type hierarchies occur in every domain and provide useful

abstractions. For the moment we only include in the de�nitions of these hierarchies

the notion of di�erentiation and restriction as de�ned in kl-one. We omit for the

moment re�nements from semantic database modelling such as specialisation and

generalisation. These may be introduced in a later stage, if the need arises.

Grouping The grouping construct is useful. It allows us to explicitly name sets of things,

e.g. the set of conditions in an abstraction relation.

Aggregation The aggregation construct is useful to model the frequently occurring struc-

tural relations in a domain. For example, an audio system is structure consisting of

various components with various types of interrelations (e.g causal relations).

Expression Statements like \blood pressure higher than 90" can be modelled by allowing

an explicit declaration of expressions when de�ning relation arguments. This should

enable modelling the examples sketched in the previous section.

Relations between various types of constructs The ddl should allow modelling re-

lations between various types of constructs, not just instances.

This leads to the following three groups of modelling constructs in the ddl.

60 Pragmatics of the Knowledge Level

Intensional objects Intensional objects are used describe the structure of the prime

ingredients of the data model. Intensional objects usually represent universally quanti�ed

statements about a class of (extensional) objects. We distinguish four types of intentional

objects:

Concept Used here as a synonym for an entity set or class. The term concept is used

because it is more common in cognitive science.

Set The set is the grouping construct. A set contains objects of one particular type, e.g.

instance, concepts, tuples,, structures, sets.

Relation Relations of various types: between concepts, between instances, between ex-

pressions, between sets, etc.

Structure A structure is an aggregate with a number of parts. These parts can be of

any type: concepts, instances, relations, other structures, sets, expressions.

A concept is in the terminology of semantic database modelling an atomic type; struc-

ture and set are constructed types.

Extensional objects Extensional objects are object of which the type structure is

de�ned by intensional objects. We distinguish two types of extensional objects:

Instance An element of the entity set denoted by a concept or a particular set or struc-

ture.

Tuple An element of a relation. E.g a row in a relation table.

Auxiliary constructs The third group of constructs is used in the de�nition of

intensional objects. We distinguish four of such auxiliary constructs:

Expression Simple expressions consisting of three parts: an operand, a logical operator

and a property of some construct.

Sub-type-of Sub-type hierarchies of concepts, relations, structures, and sets.

Property Properties are functions de�ned on various types of constructs: concepts, re-

lations, structures, sets. The range of the function is a value of a (prede�ned)

value-set.

Value and value-set Value sets are the ranges of property values (attribute functions in

er modelling). Some value sets like value-sets string, natural-number, integer, real

and boolean are assumed to be prede�ned.

In the following sections the language for writing down these constructs is de�ned using

bnf grammar rules and is illustrated with examples in the audio domain. The notation

used in these grammar rules is given in Table 4.4.1. In addition, we propose a notation

for a graphical representation of ddl de�nitions.

In the rest of this chapter we will use the term \object" in a very wide sense, referring

to both extensional and intensional objects, unless explicitly stated otherwise.

Chapter 4. A KADS Domain Description Language 61

Construct Interpretation

::= ? + [] Symbols that are part of the bnf formalism

h i j .

X ::= Y. The syntax of X is de�ned by Y

[X] Zero or one occurrence of X

X? Zero or more occurrences of X

X+ One or more occurrences of X

X j Y One of X or Y (exclusive-or)

h X i Grouping construct for specifying scope of oper-

ators e.g. h X j Y i or h X i*.

symbol Prede�ned terminal symbol of the language

symbol User-de�ned terminal symbol of the language

symbol Non-terminal symbols

TABLE 4.1: Synopsis of the notation used in BNF grammar rules

4.4.2 Concept The notion of \concept" is a central construct in the ddl. It is used

to represent a class of objects in the real or mental world of the domain studied. The

term \concept" corresponds roughly to the term ` `entity" in er-modelling and \class' in

object-oriented approaches.

Every concept has a name, a unique string which can serve as an identi�er of the con-

cept, possible super concepts (multiple inheritance is allowed), and a number of properties.

Note that a property is a (possibly multi-valued) function into a value set. A number of

value-sets are assumed to be pre-de�ned, such as strings, integers, natural numbers, real

numbers and booleans. A newly de�ned value-set can be a range of integers or reals

or an enumeration of strings, When inheriting properties, the kl-one notions of value

restriction, cardinality restriction, and di�erentiation are supported by the ddl.

Relations of a concept with other other concepts, with structures, etc. should be

modeled separately with ddl relation de�nitions (see further).

concept-def ::= concept concept-name;

[sub-type-of: concept-name h, concept-namei?;]

[properties].

properties ::= properties: [property-def h, property-defi?].

property-def ::= property-name: value-set-def;

[cardinality-def]

[di�erentiation-def;].

value-set-def ::= number j integer j natural j

string j boolean j universal j

number-range(number , number) j

integer-range(integer , integer) j

fstring-value h, string-valuei? g.

62 Pragmatics of the Knowledge Level

cardinality-def ::= cardinality: [min nat] [max hnat j in�nitei];.

di�erentiation-def ::= di�erentiation of property-name(concept-name).

Some example concepts from the audio domain are given below. We support the kl-

one notion of value restriction implicitly by allowing rede�nition of the value set or the

cardinality of a property in sub-concepts.

concept component;

properties:
state: universal;

concept ampli�er;
sub-type-of: component;

properties:

state: fok, not-okg;
cardinality: min 0 max 1;

concept signal-transmitter;

subtype-of: component;

properties:

signal: fpresent, absentg;
di�erentiation of state(component);

concept input-port;
sub-type-of: signal-transmitter;

concept output-port;
sub-type-of: signal-transmitter;

concept volume-system;
subtype-of: component;

properties:

state: fon, o�g;

concept power-system;

subtype-of: component;

properties

state: fon, o�g;

The example concept de�nitions above specify a sub-type hierarchy of components.

This hierarchy is represented graphically in Fig. 4.1. The hierarchy contains also some

additional components that appear in examples further on.

4.4.3 Set A set is a composite object. A set has zero or more members. A set can

usually be modelled (implicitly) with cardinality constraints on a relation. Often however,

the knowledge engineer will want to introduce a set as an explicit notion and thus be able

to give it a name and a status (e.g. property values) of its own.

The members of a particular set should be of the same type. This member-type can

be any object, including a set. Both properties and sub-types can be de�ned on sets.

C
h
a
p
ter

4
.
A
K
A
D
S
D
o
m
a
in
D
escrip

tio
n
L
a
n
g
u
a
g
e

6
3

input
port

output
port

input
system

tape
deck

tunerrecord
player

compact
disc

Notation for
sub-type-of relation:

super
type

sub
type

component

state
 universal

amplifier

state:
 or-not-ok

signal
transmitter

signal:
 yes-no

volume
system

state:
 on-off

power
system

state:
 on-off

concept

attribute:
 value-set

conceptNotation for
concepts:

F
IG
U
R
E
4
.1
:
E
x
a
m
p
le
su
b
-ty

p
e
h
iera

rch
y
o
f
co
m
p
o
n
en
ts

in
th
e
a
u
d
io

d
o
m
a
in

64 Pragmatics of the Knowledge Level

set-def ::= set set-name;

[sub-type-of: set-name;]

element-type: object-ref;

[cardinality-def]

[properties].

object-ref ::= object-name j instance(object-name).

object-name ::= concept-name j set-name j structure-name.

An example set in the audio domain is the set of input systems of a particular audio

system, e.g. two tape decks, a compact disc, and a tuner.

set input-systems;
element-type: instance(input-system);

Note that the elements of the set are in this case not components, but instances of

components (e.g. tape-deck-1, tape-deck-2, cd-1, tuner-1). This set could be used to store

information about the con�guration of the audio system being diagnosed. Fig. 4.2 gives a

graphical representation of this set de�nition.

input
system

input
systems

Notation
for sets:

set
object

element
type

Notation
for instances:

concept

FIGURE 4.2: Graphical representation of the de�nition of a set. This set is a set of instances of the speci�ed

element-type. An alternative would be a set of sub-concepts of this element-type.

4.4.4 Relation The relation is an central construct in modelling a domain. In the

ddl we allow various forms of (binary) relations to cater for the speci�c requirements

imposed by knowledge-based systems. The relation construct is used to link any type of

objects to each other, including concepts, instances, sets and structures. As was pointed

out in Sec. 4.3, we allow explicit distinctions between relations between concepts and

relations between instances.4 For example, it is should be possible to de�ne in the audio

domain both relations between sub-concepts of component. e.g. to specify prototypical

4In ER modelling most relations (except for the sub-type relation) are de�ned to hold between instances.

Chapter 4. A KADS Domain Description Language 65

con�gurations of an audio set, as well as relations between component instances, in order

to represent a speci�c con�guration.

Apart from de�ning relations between objects, the ddl also allows relation arguments

that represent expressions about objects. The notion of expressions as a domain modelling

construct in the speci�cation of relations is introduced because, as pointed out before, these

occur often in \domain rules". One of the major points of the domain modelling enterprise

is to describe the structure of these domain rules. This type of domain description is

currently lacking in many kbs development projects. The expression construct provides a

suitable way of modelling the structure of domain knowledge in which simple expressions

such as age(patient) > 65 and temperature(patient) = high appear. The general form of

expressions is < operand >< operator >< value > where the operand is a property of an

object, the operator is one of =; 6=; <;�; >;�;2;�;�;�;�, and value is a sub-set of the

value-set of the function.

The grammar rules below specify the ddl for de�ning relations. A ddl relation is

always a binary relation. The relation is directional in the sense that the relation name

should be chosen in such a way that it can be read as \argument-1 relation name argument-

2". An inverse name is optional. A relation can inherit information from a super-type. The

most interesting part of the ddl de�nition of relations is the de�nition of its arguments.

We provide three possible types of arguments: (i) a single object (e.g. concept, instance,

structure), (ii) an expression about an object, and (iii) sets of objects or expressions.

Expressions can be restricted to particular properties of an object. If no properties are

speci�ed, it is assumed that the expression may concern any property of the object.

Relations can themselves also have properties. The classic example of such an property

is the wedding date of two married people. Also, it is possible to de�ne standard semantic

properties of the relation (transitive, symmetric, etc.), known tuples of the relation, and/or

some additional constraints or interpretations connected to the relation (the axioms �eld5).

relation-def ::= relation relation-name;

[sub-type-of: relation-name;]

[inverse: relation-name;]

argument-1: argument-def

argument-2: argument-def

[properties]

[semantics: semantic-property h, semantic-propertyi?;]

[tuples: text;]

[axioms: text;].

argument-def ::= h argument j set(argument) i ;

[role: role-name;]

[cardinality-def].

argument ::= object-ref j expression-argument.

5The fact that this �eld is de�ned as text in the DDL is not as inconsistent as it looks. The idea is that

the knowledge engineer often has additional semantic information about a relation which she should be

encouraged to write down as unambiguously as possible, preferably in logic but not necessarily.

66 Pragmatics of the Knowledge Level

expression-argument ::= expression(object-ref) j

expression(property-name of object-ref).

semantic-property ::= symmetric j transitive j re
exive.

Below we give some example relation de�nitions. The �rst example concerns a aggre-

gation relation between component types (as opposed to instances). This relation could

be used to store knowledge about the prototypical structure of an audio system in the

knowledge base. Some examples tuples of this relation are listed as well.

relation has-sub-part;
inverse: part-of;

argument-1: component;

role: aggregate;
cardinality: min 1; max 1;

argument-2: component;

role: part;
cardinality: min 0; max in�nite;

semantics: transitive;

tuples:

ampli�er HAS-SUB-PART input-port

ampli�er HAS-SUB-PART output-port

ampli�er HAS-SUB-PART volume-system
ampli�er HAS-SUB-PART power-system;

The second example de�nes a causal relation as a relation between state properties

of components. The �rst argument constitutes a set of expressions representing the con-

ditions for the causal transition. The intended interpretation of the �rst argument is

described in the axioms �eld. One example tuple of the causal relation is listed, involving

components de�ned in earlier in this chapter.

relation causes;
inverse: caused-by;

argument-1: set(expression(state of component));
role: cause;

argument-2: expression(state of component);

role: e�ect;
tuples:

signal(input-port) = present

state(power-system) = on
state(volume-system) = on

CAUSES

signal(output-port) = present;
axioms:

�rst argument should be interpreted as a conjunction;

Both example relation de�nitions are graphically represented in Fig. 4.3,

A last example shows how the qualitative-abstraction rules presented earlier can be

modeled:

relation qualitative-abstraction

Chapter 4. A KADS Domain Description Language 67

component component
aggregate

1-1 0-inf

part
has-sub-part

component

 state

component

 state
cause effect

Notation
for relations:

first
argument

second
argumentrelation-name

role role

cardinality cardinality

expression expressioncauses

Notation for
single expressions

Notation for
set of expressions

expression

expression

object

object

[attribute(s)]

[attribute(s)]

restriction of
expression to
particular
attribute(s)
is optional

FIGURE 4.3: Graphical representation of two example relations in the audio domain.

inverse: speci�cation

argument-1: set(expression(quantitative-data))
role: conditions;

argument-2: expression(feature)
role: conclusion

axioms:

�rst argument should be interpreted as a conjunction;

4.4.5 Structure A structure is a composite object. It has a number of parts which

contain one or more single objects or sets of objects (concepts, instances, tuples, sets,

other structures)

Like the other objects, structures have a unique name and a possible super structure.

Parts are inherited and overruled in a similar fashion as roles in relations. Structures can

also have properties.

structure-def ::= structure structure-name;

[sub-type-of: structure-name;]

parts: part-def+

[properties]

[axioms: text;].

68 Pragmatics of the Knowledge Level

part-def ::= part-name: part-element-def+.

part-element-def ::= h single-element-def j set-element-def i;.

single-element-def ::= object-ref j tuple-ref.

set-element-def ::= h set(object-ref) j set(tuple-ref) i

[cardinality-def].

tuple-ref ::= tuple(relation-name).

An example of a structure is a causal network in the audio domain, that consists of

two parts: (i) nodes containing the components involved in the network, and (ii) causal

relations containing tuples of the relation causes.

structure causal-network;
parts:

nodes: set(component);
causal-relations: set(tuple(causes)));

This structure is graphically represented in Fig. 4.4.

Another example could be a structure for modelling the input data for audio system

diagnosis:

structure input-data
parts:

complaint: instance(observable)

initial-data: set(instance(observable))

This structure can contain a number of instances of observables, where one is regarded

as the actual complaint and the others are additional data available at the start of the

diagnostic process.

4.4.6 Graphical representation In Fig. 4.5 the graphical representation introduced

for the ddl is summarised. Although there is some loss of information in the pictures

constructed in this fashion, these type of pictures tend to be an important communication

vehicle throughout the knowledge engineering process.

Fig. 4.6 shows how the domain schema for the audio domain as presented Sec. 3.4.1

can be represented graphically. In this thesis additional examples are given of the use of

the ddl, especially for the Sisyphus application (Ch. 7, Appendix A). An earlier version

of this ddl has also been used to model a domain concerning submarine detection through

acoustic analysis [Schoenmakers, 1992]. The ddl has also formed the basis for the domain

modelling language being developed in the kads-ii project.

Chapter 4. A KADS Domain Description Language 69

causal
model

nodes causal
relations

component causes

Notation for
structures:

Notation for
relation tuples:

structure
object

structure
part

relation-name< >

< >

FIGURE 4.4: Graphical representation of DDL structures.

4.5 Discussion

Clancey remarks in his most recent analysis of neomycin [Clancey, 1992] that a key point

in knowledge engineering (in his particular case: structuring the set of meta rules) is the

process of making �ner-grained distinctions in the domain knowledge. One could view

this as a process of detailing the role di�erentiation of pieces of domain knowledge. He

uses the relational representation language mrs underlying neomycin to describe these

distinctions. We would argue this is typically a situation were one would like to use a more

general tool to describe these distinctions. This enhances the reusability of the theory that

is uncovered by Clancey in his analysis.

The ddl is precisely built for this purpose. As remarked before, the ddl presented

in this chapter is part of the modelling framework and is not meant to serve as another

knowledge representation formalism. Its aim is to provide a generalisation over such

formalisms in such a way that one can specify aspects of the domain knowledge without

committing oneself to a particular symbolic representation. In this section, we brie
y

address this generalisation aspect and also discuss some points concerning the semantics

of the ddl.

70 Pragmatics of the Knowledge Level

Notation for
sub-type-of relation:

Notation for
type objects:

Notation for
sets:

element
type

Notation for
relations:

first
argument

second
argumentrelation-name

role role

cardinality cardinality

Notation for
single expressions:

Notation for
set of expressions:

expression

expression

object

object

Notation for
structures:

Notation for
relation tuples:

structure
object

structure
part

object

attribute
 value-set

object

object
type of

instance

super
type

sub
type

set
object

Notation for
instances:

< >relation-name

[attribute(s)]

[attribute(s)]

FIGURE 4.5: Legend of the graphical representation of a domain description

Chapter 4. A KADS Domain Description Language 71

component

state-value:
 universal

test

test-value:
 universal

component

state-value:
 universal

expressionexpression

expressionexpression

sub-component-of

causes

indicates
state-value test-value

state-value state-value

FIGURE 4.6: Graphical DDL representation of the major part of the domain schema presented in Table 3.1.
The sub-type relations between components were shown in Fig. 4.1.

Relation between DDL and some KR formalisms

KL-ONE The ddl contains most constructs o�ered by kl-one, albeit in a somewhat

scru�y form: concepts, instances, (multiple) inheritance, roles (either through properties

or through relations), role restrictions (both value restrictions and cardinality restrictions)

and role di�erentiations.

A mapping from a ddl description to a kl-one representation would lead to a �rst, at

some points incomplete, version of a de�nitional hierarchy. The main additional decisions

that one would need to take is whether all relations in which a concept is involved should

indeed be mapped onto kl-one roles. Values of roles are used by the classi�er of concept

instances and it often turns out that some relations are irrelevant for classi�cation pur-

poses. For example, in classifying car types such as sedans, hatch backs, etc, an owner

relation of the concept car is irrelevant. We have noticed, also from personal experience

in the StatCons domain, that using kl-one representations already during analysis often

leads to commitments to the symbolic representations: e.g. in the car example, the owner

role is de�ned as an optional one (because classi�cation fails otherwise), even if every car

has some (unknown) owner.

KEE kee o�ers an organisation of production rules in a hierarchy of rule sets. This

relates quite well to the ddl representation of relations between expressions, which in fact

de�ne a similar organisation. However, in a mapping onto kee the schematic description of

the structure of the rules in particular set gets lost, because kee does not o�er facilities for

this type of structural description. E.g. when implementing the audio domain-knowledge

in kee, one would create rule sets for both the cause and the indicates relation, but the

information about the internal structure of these type of rules would be lost.

A cumbersome aspect of kee is that it does not make an explicit distinction between

concepts and instances: both map onto kee units.

Semantics of the DDL

An important question still remains open, namely what do this ddl descriptions mean:

i.e. what are their semantics? A full de�nition of the semantics of the ddl is clearly out

of the scope of the present work. A few remarks are however necessary.

72 Pragmatics of the Knowledge Level

Firstly, many constructs in the ddl are derived from data modelling research in which

the semantics of these constructs have been studied in detail. The semantics of the kl-one

constructs has been a major research topic in ai over the past decade. Also, in semantic

database modelling the semantics of various types of sub-types relations, aggregations,

groupings, etc. have been described extensively, e.g. [Abiteboul & Hull, 1987; Davis &

Bonnel, 1990].

The main blind spot with respect to semantics concerns the various additional types

of relations introduced in the ddl, especially those between concepts and between ex-

pressions. We have give some informal descriptions about how such relations should be

interpreted. E.g the requires relation in Sec. 4.4.4 between a department role concept and

an expression about a room property should be interpreted as a universally quanti�ed

statement about all objects that are denoted by these concepts. Sowa's \conceptual struc-

tures" [Sowa, 1984] provide a logical formalisation that can be used for specifying this

type of semantics. The disadvantage is that such representations require much more de-

tail and are less schematic. It is doubtful whether a complete, detailed domain-knowledge

speci�cation is useful in the analysis stage, where the focus can sometimes change rapidly.

In the context of kads, the role of domain-knowledge semantics is also slightly di�erent

than is the case traditionally. As all inferences that are made with the domain knowledge

are speci�ed through knowledge sources, one could take the point of view that the intended

semantics of domain-knowledge is externally attributed to it through these inferences. We

touch here upon a very delicate topic, which has given rise to many debates, especially in

the study of formal languages for kads models. It is possible that the the statement in

Sec. 3.4.1 that \adding a simple deductive capability would enable the system : : : to solve

all problems solvable by the theory" may need some quali�cation.

Chapter 5

Model Construction

In this chapter the focus is on the construction of inference structures. First, some extensions of the
graphical notation of inference structures are proposed to overcome a number of ambiguities in these

diagrams. We then discuss a top-down model construction process in which an inference structure is

successively re�ned. This description is based on observations made by Patil (1988). Decision criteria that
in
uence the construction process are discussed. The result is a KADS inference structure for heuristic

classi�cation, which we relate to observations Clancey (1992) makes about this model. In the discussion,

we suggest that such a top-down construction process can be supported by a library of generic model
components of a smaller grain size than interpretation models. We discuss some examples of these generic

components.

This chapter will be published in a collection of articles on KADS. It is co-authored by Bob Wielinga.

Reference: Schreiber, A. T & Wielinga, B. J, (1993). Model construction, In Schreiber, A. T., Wielinga,

B. J., & Breuker, J. A., editors, KADS: A Principled Approach to Knowledge-Based System Development.

Academic Press, London.

5.1 Introduction

Generic components of the model of expertise can be used to support top-down knowledge

acquisition. In Ch. 3, interpretation models were discussed that provide such template

models. In this chapter we explore the construction of inference structures and the role of

generic model components in more detail.

We start in the next section with a discussion on ambiguities that may arise in the cur-

rent (graphical) representation of inference structures, We propose an extended notation

to disambiguate the representation of inference structures. In Sec. 5.3 we discuss some

aspects of the model-construction process in general: operations, methods, criteria.

In Sec. 5.4 we discuss adaptations of the inference structure of an existing interpretation

model. We describe two example adaptations of the interpretation model for systematic di-

agnosis. In Sec. 5.5 we describe a top-down model-construction process in which one starts

o� with a relatively simple hypothetico-deductive model for diagnosis, and subsequently

re�nes this model step by step. This work is based on an analysis of medical diagnosis by

[Patil, 1988]. In addition, we discuss some points concerning the kads inference structure

for heuristic classi�cation, which resulted from the top-down model construction process

and relate this to Clancey's observations about this model [Clancey, 1992].

74 Pragmatics of the Knowledge Level

In Sec. 5.7 the observation is made that inference structures in fact consist of a number

of reoccurring template model components of a smaller grain size than interpretation

models. We identify some examples of such model components and discuss their role in

knowledge engineering.

5.2 Disambiguating the Graphical Representation of Inference Struc-

tures

Inference structures are among the most frequently-used ingredients of KADS. In almost

any presentation of an application of KADS, the description of the inference structure

plays a dominant role. Inference structures are, however, informal diagrams. There does

not exist a full set of composition rules for specifying inference structures. The following

list presents a set of composition rules which most kads developers and users agree upon.

� A knowledge source can have any number of inputs, including zero.

� The set of inputs of a knowledge source is interpreted as a conjunction.

� A knowledge source has only one output.

� The name given to a knowledge source should be a member of the typology de�ned

in [Breuker et al., 1987].

� If more than one knowledge source of the same type appears in an inference structure,

these should be numbered in order to avoid confusion (e.g. select-1 and select-2).

This list is incomplete, as the many discussions about representation of inference struc-

tures in papers and during KADS user meetings [Ueberreiter & Vo�, 1991; Bauer & Kar-

bach, 1992] show. In this section we investigate a number of frequent sources of ambiguity

in inference structures and propose some additional graphical notations to amend these

problems. These extensions are used in the diagrams in the rest of this chapter.

5.2.1 Transfer tasks Traditionally, inference structures were supposed to contain

only \real" inferences: derivations by the system of new \knowledge". This meant that

transfer tasks, such as obtaining the value of an observable, could not be included in an

inference structure. This can obscure parts of an inference structure. An example can be

found in the inference structure for systematic diagnosis (Fig. 3.5). The specify inference

in the lower-left part of this �gure (repeated for convenience in Fig. 5.1a) takes as input a

hypothesis and an observable and produces as output a �nding. In the corresponding task

structure (see page 38) it can be seen that this inference is in fact a concatenation of a

knowledge source and a transfer-task invocation:

specify(hypothesis! observable),

obtain(observable ! �nding)

In the model of expertise, transfer tasks are treated as black-box functions (see

Sec. 3.4.3). Knowledge sources and transfer tasks together form the lowest level of func-

tional decomposition in the model of expertise. One could say that transfer tasks are

basic functions that do not apply domain knowledge to make inferences. Thus, it seems

appropriate to include transfer tasks in an inference structure. A dashed-ellipse notation

is used to distinguish transfer tasks from knowledge sources. Fig. 5.1b shows the extended

representation of the original �gure using this notation.

Chapter 5. Model Construction 75

observable hypothesis

finding

specify

observable

hypothesis

specify

findingobtain

(a) (b)

FIGURE 5.1: Two representations of a specify inference in systematic diagnosis. At the left (a) the transfer

task is implicit. At the right (b), an explicit obtain step is introduced.

5.2.2 Meta-class element vs. set Another issue that has arisen with respect to

inference structures concerns the nature of meta-classes. As pointed out in Sec. 3.4.2, a

meta-class constitutes a functional name (a role name) for a set of domain objects that

can play this role. Some knowledge sources operate on or produce one particular object,

others work on a set of these objects. This can lead to ambiguities in inference structures,

for example if one inference produces one object and another inference works on a set of

these objects, possibly generated by some repeated invocation of the �rst inference. An

example of this kind is described in Fig. 5.2a.

The intended interpretation of this �gure is that the abstract inference can generate

from a set of �ndings a more abstract �nding, and that the select inference selects a speci�c

�nding from the full set. Such a speci�c �nding could, for example, be used in triggering

a hypothesis.

KADS users have tried to overcome this problem with elements and sets in various

ways:

� By specifying all inferences as working on sets instead of elements. E.g

abstract(findings ! findings).

� By introducing additional set operations such as join into the inference structure.

Both solutions are sub-optimal. The �rst one hides the fact whether the inference

inherently operates on a set or rather on a single element of the set. The second one

introduces additional complexity and makes inference structures less readable. We propose

to use a slight variation in the connection between a meta-class and a knowledge source to

indicate cardinality: a thin line represents a single meta-class element; a thick line a set

of meta-class elements. An example of this notation is shown in Fig. 5.2b. This notation

avoids the disadvantages of the solutions mentioned above.

76 Pragmatics of the Knowledge Level

finding

specific
finding

finding

(a) (b)

abstract

select

finding

specific
finding

finding abstract

select

FIGURE 5.2: Two partial inference structures. In part (a) the fact that the input for both abstract and

select is a set of �ndings, is not represented. In part (b) the thick-line notation is used to indicate a set of
some meta-class element.

5.2.3 Meta-class names Another problem arises from the names given to meta-

classes. There are two types of names that one can give to a meta-class:

1. A general role name of elements involved in carrying out a task. In diagnosis, such

categories could be observable, �nding, and hypothesis. These names can probably

best be viewed as abstract data types.

2. A specialised role name for elements in an inference. These names constitute a spe-

cialisation of the general categories: e.g. test observable, discriminating observable.

Specialised names describe roles that are speci�c for the particular inference process

depicted in an inference structure.1

Specialised names such as test observable are useful and make the inference structure

easier to interpret. On the other hand, some inferences may operate on the general category

(e.g. observable). One would like to be able to specify both general and specialised role

names and still be able to clearly show the dependencies between inferences. A potential

solution is to allow the knowledge engineer to write the specialised role names on the arrow

connecting a knowledge-source and a meta-class. An example of this notation is shown in

Fig. 5.3.

5.2.4 Domain knowledge used by knowledge sources Inference structures only

show the dynamic data that are being manipulated by a knowledge source (the meta-

classes). Sometimes, it is useful to show also what type of domain knowledge the knowl-

edge source uses to derive the output from the input (cf. [Linster, 1992]). This domain

knowledge is speci�ed in the domain view (cf. Sec. 3.4.1).

One could argue that this is an unwanted extension of the inference structure, as

knowledge sources are in fact domain-independent generalisations of the application of

1In KADS-II terms one would say that the specialised names are introduced by the methods applied to

achieve the task.

Chapter 5. Model Construction 77

observable

ks-1

ks-2ks-3

test
observable

discriminating
observable

FIGURE 5.3: Introducing general and specialised meta-class names in an inference structure. An object
of meta-class observable can be generated by two inferences, that each give a specialised name to this

meta-class (test observable and discriminating observable). Every observable object can serve as an input

for the third knowledge source. This last point would be di�cult to represent if the specialised name had

been written directly into (two separate) boxes.

domain knowledge. However, it can be useful at some points during knowledge engineering

to make the nature of the domain knowledge explicit, although this destroys the domain-

independence of an inference structure. We use a dashed arrow to indicate the domain

knowledge used by a knowledge source. An example of this notation is given in Fig. 5.5

in the next section.

5.3 Model-Construction Process

In this section we discuss brie
y three aspects of the model-construction process:

� The types of (knowledge-engineering) operations on inference structures.

� Some knowledge-engineering methods that can be used in constructing and adapting

an inference structure.

� The types of criteria that are used in making decisions during model construction.

These three aspects can be summarised respectively as the \what, how and why" of model

construction.

5.3.1 Types of operations on inference structures indexinference structure, op-

erations on

In general, �ve types of modi�cations can be made to a prototypical inference structure:

Renaming Sometimes, the metaclass and knowledge source names used in the inference

structure are too general. In that case, the knowledge engineer might want to use

another term to give a more precise speci�cation of the role of a knowledge element

in the inference process.

Re�nements In some cases, an inference in the inference structure is too coarse-grained

to describe the inference process required in the application domain. In that case,

78 Pragmatics of the Knowledge Level

a re�nement of this inference in the inference structure is appropriate. Such a re-

�nement provides additional terminology (in terms of knowledge sources and/or

meta-classes).

Additions/Augmentations If inferences are required that can not be speci�ed as a

re�nement of the current inference structure, additional inferences might need to be

added to the inference structure.

Simpli�cations A simpli�cation is the reverse process of a re�nement. This should be

done if a set of inferences is too �ne-grained for the purposes of the application.

Deletions A deletion is the reverse of an addition. Sometimes, a part of an inference

structure of an interpretation model is not relevant for a particular application. In

that case, this part of the inference structure should be left out.

Figure 5.4 summarises these di�erent types of operations on inference structures.

5.3.2 Model-construction methods Two knowledge engineering methods are of-

ten applied in the construction of inference structures: (i) task decomposition, and (ii)

knowledge di�erentiation.

Task decomposition Sometimes, the analysis will reveal that some inference in a

(provisional) inference structure constitutes a task which can be decomposed in a number

of parts. This leads to a more detailed inference structure with additional vocabulary.

What was originally conceived as an inference, often reappears as a task in the task

knowledge.

Task decomposition is a part-of decomposition, in which a task and its sub-parts do

not need to have anything in common, except for a mapping between the input/output of

the top-task and its parts. Task decomposition typically involves a re�nement operation

on the inference structure (see above).

Knowledge di�erentiation Knowledge di�erentiation is the process of introduc-

ing new knowledge roles during the modelling process. Finer-grained distinctions are

introduced in the inference structure. The di�erence with task decomposition is that

in knowledge di�erentiation the basic structure of the model stays the same. Knowl-

edge di�erentiation can involve various types of operations: renaming meta-classes and/or

knowledge sources, adding a new meta-class and knowledge sources that operate on that

meta-class, or re�nements.

One particular form of knowledge di�erentiation is inference di�erentiation. In infer-

ence di�erentiation, an inference is di�erentiated into a set of sub-inferences. Inference

di�erentiation involves, just like task decomposition, a re�nement operation on an infer-

ence structure, but there is an inherent di�erence between the two. In inference di�eren-

tiation, the di�erentiated inferences share the features de�ned for the general inference.

It is probably best viewed as a sub-type relation (see Fig. 5.12).

Chapter 5. Model Construction 79

MC1

KS1a

MC2

KS1b

MC3

MC1

KS1

MC3

MC1

KS1a

MC2

KS1b

MC3

MC1

KS1

MC2

KS2

MC3

MC1

KS1

MC2

KS2

MC3

MC1

KS1

MC2

MC1

KS1

MC3

MC1

KS1

MC2

MC1

KS1

MC2

(b) addition(a) refinement

(c) simplification (d) deletion

(e) renaming KS1

MC1a

MC2a

FIGURE 5.4: Examples of �ve types of modi�cation operations on an inference structure

5.3.3 Decision criteria Model construction is guided by three types of characteristics

of the application domain:

� The nature of the knowledge in an application domain (e.g. \are causal models

available?").

� The constraints posed by the task environment (see Sec. 3.3): e.g. the required

certainty of a solution.

� Computational constraints: is it possible to �nd computational techniques that re-

alise the speci�ed behaviour?

These characteristics can be used as decision criteria and specify the rationale for

decisions in the model construction process. In the \Components of Expertise" frame-

work [Steels, 1990] these characteristics are called \task features" and the three categories

80 Pragmatics of the Knowledge Level

epistemic, pragmatic and computational task features respectively.2

In the next section we discuss the adaptation of the inference structure of the inter-

pretation model for systematic diagnosis. In Sec. 5.5 we discuss a top-down model con-

struction process. After each operation on an inference structure, the type of operation,

the method and the type of criteria used will be summarised in a tabular form.

5.4 Tuning the Inference Structure for Systematic Diagnosis

The use of template descriptions such as interpretation models provides a powerful tool

for knowledge acquisition. However, applying such a template to a particular domain will

often reveal that the model does not completely �t the data on human expertise. Most

interpretation models embody only a minimal set of inferences necessary for solving a

problem with this method. The model needs to be adapted.

The model of systematic diagnosis discussed in Ch. 3 can be adapted in various ways.

We discuss two adaptations relevant for the audio domain.

5.4.1 Dynamic system-model assembly The plain model of systematic diagnosis

(of which the inference structure is shown in Fig. 3.5) presupposes that the applicable

system model is selected using knowledge about �xed decompositions of the system being

diagnosed. However, the con�guration of an audio system is usually not �xed (i.e. a

constraint of the task environment). System elements such as a CD-player, a second

tape-deck, head phones or additional speakers may or may not be present. This potential

problem can be handled by replacing the simple select inference with a more complicated

assemble inference (Fig. 5.5). This operation involves adding an extra meta-class (initial

data) and renaming the knowledge source (select becomes assemble)

In this assemble step additional data (initial data in Fig. 5.5) about the audio system

are used to construct an applicable system model. An epistemic requirement for this

di�erentiation is that additional domain knowledge can be made available, namely:

� A de�nition of potential system elements of an audio system, possibly hierarchically

organised (cf. the sub-models in Fig. 5.5).

� Con�guration rules for assembling an actual model from the possible system ele-

ments.

This modi�cation of the plain inference structure of systematic diagnosis thus leads to a

slightly more complex model with additional domain knowledge requirements.

Dynamic system-model assembly

Operation Addition (of a meta-class) + renaming

Method Knowledge di�erentiation

Criteria Task environment

2In the Components approach the task features are used for dynamic run-time task-decomposition in an

actual system. In KADS, model construction is primarily seen as a knowledge engineering activity, which

could be (but does not need to be) re
ected in the design of the KBS (in other words, it could result in

�xed task decompositions).

Chapter 5. Model Construction 81

complaint

system
model

initial
data complaint

system
model

select assemble

sub-models
configuration

rules

fixed
decompositions

FIGURE 5.5: Adapting the model of systematic diagnosis: system model assembly instead of selection. The

dashed arrow is used to denote the nature of the domain knowledge used by the assemble inference. The
dotted arrow indicates a connection with other parts of the inference structure.

5.4.2 Multiple system decompositions A second, more complicated, adaptation

concerns the introduction of multiple system views. Often, there are various ways of

decomposing a device. Each decomposition represents a di�erent view on the system.

Well-known views are functional and physical decompositions. The faulty component can

only be found if the right view is selected. The rationale for the adaptation is thus based

on an epistemic criterion: the system to be diagnosed cannot be decomposed in one single

way.

Allowing multiple views implies an additional decision in the inference process concern-

ing view selection. Davis suggests that initial view selection should be done on the basis

of characteristics of the problem (the complaint) using domain heuristics [Davis, 1984].

Fig. 5.6 shows the adapted part of the inference structure for handling multiple views.

This adaptation involves adding a view selection inference to the inference structure in

Fig. 5.5. In this case the epistemic requirement on additional decomposition knowledge is

even stronger than for the previous adaptation: for each view sub-models and con�gura-

tion rules should be present in the domain theory. In addition, heuristics about how to

select a view need to be made available.

Introducing multiple views also involves additional task structure complexity. If one

view fails to provide a solution, another view needs to be selected and the process is

repeated.

View selection

Operation Addition

Method Knowledge di�erentiation

Criteria Epistemic

5.5 Top-down Construction

In this section we focus on the top-down construction of inference structures that support

a hypothetico-deductive strategy for solving a diagnostic problem. The description is

82 Pragmatics of the Knowledge Level

initial
data

complaint

system
model

assemble

sub-models
configuration rules

initial
data complaint

system
model

assemble

sub-models
configuration rules

select

view

heuristics

FIGURE 5.6: Adapting the model of systematic diagnosis: introducing multiple system models representing

di�erent views.

based on an analysis by Patil. He gives a historic account of the evolvement of medical ai

systems for diagnosis [Patil, 1988]. He shows how one can start with a simple model of

diagnosis, such as generate-and-test, and start a gradual re�nement process of this model

on the basis of application characteristics, such as the ones discussed earlier. This section

constitutes an interpretation of Patil's analysis within the context of constructing kads

inference structures.

5.5.1 Vocabulary in diagnosis Before describing various models for diagnosis, it is

useful to de�ne a number of terms that are used in describing the diagnostic task:

Diagnosis A diagnosis is a solution of a diagnostic problem-solving process. There appear

to be two di�erent types of diagnoses, namely:

� A diagnosis as the causal explanation of the occurrence of some system state.

In this case the diagnosis is either the ultimate cause or a full causal pathway.

� A diagnosis as a label for an internal state or a set of internal system states. It

also occurs that a diagnosis is a label for some unknown internal state, e.g. in

poorly understood syndromes in medicine.

Fig. 5.7 shows an example of the two types of diagnosis: atherosclerosis and angina

pectoris. Atherosclerosis can represent the actual cause of �ndings observed in a pa-

tient. Angina pectoris is a label for an internal state, namely myocardial ischaemia

(insu�cient blood supply for the heart muscle). What should be considered as a

potential diagnosis typically depends on the context in which the diagnostic task is

being carried out. For example, angina pectoris is a relevant diagnosis in a medi-

cal emergency situation; atherosclerosis is a diagnosis that is useful in deciding on

corrective action in a non-emergency situation.

Observable An observable is a property the value of which can be observed for the system

(patient, device) being diagnosed. Example observables are weight, length, blood

pressure, position of a knob, etc.

Chapter 5. Model Construction 83

atherosclerosis
present

coronary obliteration
70%

physical state
 stress

myocardial
ischaemia

retro sternal pain

Etiological
diagnosis

Internal state
 diagnosis

angina
pectoris

FIGURE 5.7: Example diagnosis of chest pain

Finding A �nding is a value expression about an observable, e.g. weight = 80, length =

1:90.

Hypothesis A hypothesis is some object that is either considered as a potential solution

for a diagnostic problem or constitutes some relevant intermediate state.

Di�erential The di�erential is the set of hypotheses that is considered for a particular

diagnostic problem.3

In the rest of the chapter we use these terms to describe models of diagnosis and

introduce, where necessary, additional terms.

5.5.2 Diagnosis through direct matching Diagnosis is a problem solving task in

which the input is formed by a set of �ndings (values for observables) and the output

represents a diagnostic category (a fault class) which explains the �ndings. The simplest

model for diagnosis consists of a direct match between �ndings and solution through

classi�cation (Fig. 5.8). A set of �ndings is input to a classify knowledge source and this

inference can produce a solution. It uses some body of classi�catory knowledge. Findings

are generated by obtaining a value (a transfer task) for a selected observable. The select

3In medicine, the term \di�erential diagnosis" is used in a similar sense, although this term also tends

to imply an ordering of the hypotheses.

84 Pragmatics of the Knowledge Level

observable knowledge source typically selects the observable with the highest information

content (i.e. the one that discriminates best between potential solutions) and/or lowest

costs.

finding solutionclassify

observable

set of
observables

obtain

select

new
evidence

classificatory
knowledge

FIGURE 5.8: Diagnosis through direct matching

A typical task structure for this form of diagnosis is given below.

task diagnosis-through-direct-match
control-terms:

observables: set of all possible observables

�ndings: set of all �ndings currently known

task-structure:

REPEAT

select(observables! observable)

obtain(observable ! �nding)

�ndings := �nding [�ndings

classify(�ndings! solution)
UNTIL some solution has been found

In [Patil, 1988] it is observed that computational techniques applying Bayes theorem

have been used for realising this type of diagnosis. Bayesian techniques have a number

of limitations. For each hypothesis knowledge concerning the prior probability and the

Chapter 5. Model Construction 85

conditional probability given each possible �nding needs to be available. This implies that

large amounts of statistical data are required. Also, this technique is computationally very

ine�cient unless a number of simplifying assumptions are made, such as mutual exclusivity

of potential solutions and conditional independency of �ndings. These assumptions do not

hold in most real-life domains. Another computational drawback is that the complete set

of potential solutions is evaluated after every new �nding (see the task structure above).

Due to these limitations, this simple direct-match model of diagnosis is unsuitable for most

diagnostic applications.

5.5.3 Diagnosis through generate-and-test Most diagnostic experts do not eval-

uate all potential solutions at once. Instead, they build a di�erential containing only

a limited number of hypotheses. Typically, the number of hypotheses in the di�eren-

tial is not more than �ve or six. The hypotheses in the di�erential are then tested to

�nd out whether additional evidence exists for supporting a particular hypothesis. This

hypothetico-deductive approach appears to be a very general method used in problem

solving.

If one wants to introduce this idea of generating and testing hypotheses into the model,

this implies that the classify inference in Fig. 5.8 should be re�ned into a number of other

inferences (i.e. a task-decomposition):

� Inferences for generating hypotheses for which at least some evidence (�ndings) is

present.

� Inferences for testing hypotheses by specifying �ndings that would support the hy-

pothesis, and subsequently �nding out whether these �ndings are in fact present

through obtaining a value for the corresponding observable.

A �rst inference structure for this generate-and-test approach is shown in Fig. 5.9. The

new elements when compared to Fig. 5.8 are indicated with grey boxes and ovals. The

associate inference generates a new hypothesis, given a �nding. The test step is realised

through the speci�cation of a set of conjectured �ndings (specify-1, note the use of the

thick line to indicate a set) and the speci�cation of a set of corresponding test-observables

for a conjectured �nding (specify-2).

The generate-and-test approach is usually much more e�cient than the direct-match

approach as it does not require the evaluation of the complete set of possible solutions

(i.e. a computational criterion). Also, the generate-and-test approach is much closer to

the way in which humans carry out diagnosis.

Generate-and-test

Operation Re�nement

Method Task decomposition

Criteria Computational

5.5.4 Di�erentiating �ndings In the generate-and-test model described in the pre-

vious section, every �nding can potentially be used to generate a hypothesis. Patil [Patil,

1988] remarks that this often leads to a di�erential that is too large. For example, in

a medical domain general �ndings such as \headache" could generate a large number of

hypotheses.

86 Pragmatics of the Knowledge Level

finding

hypothesis

observable

set of
observables

associate

specify-1

obtain

select-1

conjectured
finding

specify-2

solution

select-2

new
evidence new

hypothesis

test
observable

trigger

tfocus

FIGURE 5.9: First inference structure for a generate-and-test approach to diagnosis. New elements are

indicated with grey boxes/ovals.

A solution to this problem is to di�erentiate the set of �ndings by introducing the

notion of speci�c �nding and to use only these �ndings for generating hypotheses. This is

similar to the way experts generate hypotheses. The non-speci�c �ndings are only used

to con�rm activated hypotheses.

Fig. 5.10 shows an extension of the previous inference structure. It contains one addi-

tional select inference select-3 which selects a speci�c �nding from the set of �ndings. Only

a speci�c �nding can generate a new hypothesis. Again, the rationale for this modi�cation

is of a computational nature: limitation of the size of the di�erential. It is also a good

example of the concept of role-limiting as described in Ch. 2.

Finding di�erentiation

Operation Addition of knowledge source
Addition of specialised role (\speci�c �nding")

Method Knowledge di�erentiation

Criteria Computational

Chapter 5. Model Construction 87

finding

hypothesis

observable

set of
observables

associate

specify-1

obtain

select-1

conjectured
finding

specify-2

solution

select-2finding

select-3

new
evidence

new
hypothesis

test
observable

focus

trigger

specific finding

FIGURE 5.10: Di�erentiating �ndings

5.5.5 Introducing �nding abstractions In many domains, human experts employ

data abstraction as a technique for reducing a large data set. Data abstraction is a

powerful technique that limits the search space and also reduces the size of the di�erential.

Introducing �nding abstraction in the generate-and-test model requires the speci�cation

of one additional inference abstract which takes as input a set of �ndings and produces

a new, more abstract, �nding (see Fig. 5.11). From the task-knowledge point of view,

abstraction typically has a recursive structure. An abstracted �nding can be the input for

another invocation of the abstraction knowledge source.

Clancey describes three types of abstraction [Clancey, 1985b]:

(i) Qualitative abstraction, in which an abstraction is made from a (set of) qualitative

�ndings to a qualitative �nding. E.g. a value for the diastolic blood pressure is

abstracted into the �nding whether the blood pressure is elevated or not.

(ii) De�nitional abstraction, in which an abstract name (label) is assigned to a �nding.

E.g. hypertension is de�ned as an elevated blood pressure.

(iii) Generalisation, in which several �ndings are de�ned as sub-types of a more general

�nding. E.g. hypertension and edema are both circulatory signs.

88 Pragmatics of the Knowledge Level

finding

hypothesis

observable

set of
observables

associate

specify-1

obtain

select-1

conjectured
finding

specify-2

solution

select-2

finding

select-3

finding

abstract

new
hypotheis

test
observable

new
evidence

abstract finding
focus

triggerspecific finding

FIGURE 5.11: Introducing �nding abstractions

In addition, syndromatic abstraction could be considered as a fourth type of abstrac-

tion. In syndromatic abstraction, a cluster of �ndings is treated as one aggregate �nding.

Clustering of �ndings is probably the most e�cient way of limiting the number of hypothe-

ses in the di�erential. For example, the combination of physical stress and retro-sternal

pain triggers the hypothesis angina pectoris. Retro-sternal pain in isolation would generate

all ischaemic heart diseases and possibly some additional ones as well.

These four types of abstraction can be seen as a special type of di�erentiation of the

abstract inference, which we have called inference di�erentiation (cf. Sec. 5.3). In this

case, abstract can be di�erentiated into four sub-inferences, based on the type of domain

knowledge used by the inferences (see Fig. 5.12).

Finding abstractions

Operation Addition of knowledge source
Addition of specialised role (\abstract �nding")

Method Knowledge di�erentiation

Criteria Computational

Chapter 5. Model Construction 89

finding

finding

abstract definitional
abstraction

qualitative
abstraction

generalization syndromatic
abstraction

finding

finding

FIGURE 5.12: Di�erentiating the abstract knowledge source into four sub-types.

Abstraction sub-types

Operation Re�nement

Method Inference di�erentiation

Criteria Epistemic

5.5.6 Hierarchical organisation of hypotheses Yet another way of limiting the

size of the di�erential is to organise hypotheses in a de�nitional hierarchy (taxonomy)

such as provided by kl-one [Brachman & Schmolze, 1985]. Such a hierarchy contains

general hypothesis categories. Each general hypothesis category speci�es commonalities

among more speci�c hypotheses.

Such an organisation has several advantages:

� The di�erential can be limited in size through the activation of a general hypothesis

category, which represents in fact a class of more speci�c hypotheses.

� If a general hypothesis category is ruled out, then its sub-classes are also ruled out.

� Hierarchies provide a natural way for representing di�erentiating knowledge: e.g.

identifying an observable of which the value would di�erentiate between alternative

hypotheses.

A hierarchical organisation of hypotheses leads to the introduction of three additional

inferences in the generate-and-test inference structure (see Fig. 5.13). Two knowledge

sources, re�ne and generalise constitute operations on the di�erential. The re�ne knowl-

edge source enlarges the di�erential by replacing a general hypothesis category with a set

of more speci�c hypotheses. The generalise knowledge source can be used to reduce the

size of the di�erential through the inverse process: replacing in the di�erential a set of

speci�c hypotheses with a more general hypothesis category that subsumes this set. The

third knowledge source, di�erentiate, generates a discriminating observable between two

or more hypotheses that have a common parent in the hierarchy.

90 Pragmatics of the Knowledge Level

finding

hypothesis

observable

set of
observables

associate

specify-1

obtain

select-1

conjectured
finding

specify-2

solution

select-2

finding

select-3

finding

abstract

new
hypotheis

test
observable

new
evidence

abstract finding

hypothesis

refine generalize

more general

more specific

focus

triggerspecific finding

hypothesis
hierarchy

matchdiscriminating
observable

FIGURE 5.13: Hierarchical Organisation of Hypotheses

In principle, a de�nitional hierarchy is a very powerful and e�cient organisation of

hypotheses. A major problem is however that in many domains it is not possible to

de�ne one single natural hierarchy of hypotheses. For example, in the disease hierarchy

in neomycin [Clancey, 1985a] the distinction between levels is based on four dimensions

along which diseases can be classi�ed:

1. process type (e.g. infection)

2. localisation (e.g. meningitis)

3. time factor (e.g. acute meningitis)

4. etiology (e.g. acute bacterial meningitis)

Each ordering of these dimensions is however somewhat arbitrary. Any ordering implies

that not all useful general disease categories are available in the hypothesis hierarchy. For

example, given the ordering in the list above, the hypothesis \acute infection" cannot be

represented. This can be repaired by reversing the localisation and time-factor level, but

that modi�cation would imply that we lose the general disease category \meningitis" (see

Fig. 5.14).

In domains where there are no natural hierarchies, knowledge engineers often keep

reorganising the hierarchy, but are unable to �nd a satisfactory organisation exactly for

the reasons given above. In the caduceus system an attempt is made to overcome this

Chapter 5. Model Construction 91

meningitis

acute
meningitis

acute bacterial
meningitis

acute
infection

infection infection

acute
meningitis

acute bacterial
meningitis

process
type

location

time
factor

etiology

process
type

location

time
factor

etiology

FIGURE 5.14: Two possible hierarchy organisations, given the dimensions process type, localisation, time,

and etiology.

problem through an organisation of hypotheses along various dimensions [Pople, 1982]:

e.g. a time-directed hierarchy, an etiological hierarchy, etc. Additional inferencing is in

that case necessary for combining the (partial) classi�cations derived from the di�erent

hierarchies.

Hierarchical organisation

Operation Additions

Method Knowledge di�erentiation

Criteria Computational

5.6 A KADS Inference Structure for Heuristic Classi�cation

The model construction process described in the previous section resulted in what one

could call a kads inference structure for the model of heuristic classi�cation (hc) as re-

alised in the neomycin system [Clancey, 1985a]. neomycin contains in fact one additional

inference used in the \clarify �nding" task: the speci�cation of a number of observables

that are dependent on a known �nding. For example, if the �nding \chest pain = present"

becomes known, then this inference is able to specify related observables such as the du-

ration, nature and radiation of the pain. The full inference structure for hc is shown in

Fig. 5.15.

This �gure contains more detail than the \horse-shoe" �gure (see Fig. 5.16). This last

�gure is considered by many as an equivalent of a kads inference structure.4 We think

that this interpretation of the horse-shoe �gure is incorrect. Clancey's �gure describes

dependencies between the main functional objects (data and solutions) in a more global

way than is required in kads inference structures.

The main re�nements in Fig. 5.15 when compared to the horse-shoe �gure are:

� The speci�cation of some inferences in inverse directions:

{ specify conjectured �nding and match: from a solution (or a solution abstrac-

tion) to data (or data abstractions)

4It was also included (in a slightly di�erent form) in the interpretation model library [Breuker et al.,

1987].

92 Pragmatics of the Knowledge Level

finding

hypothesis

observable

set of
observables

associate

specify-1

obtain

select-1

conjectured
finding

specify-2

solution

select-2

finding

select-3

finding

abstract

new
hypotheis

test
observable

new
evidence

abstract finding

hypothesis

refine generalize

more general

more specific

focus

triggerspecific finding

hypothesis
hierarchy

matchdiscriminating
observable

specify-3

dependent
observable

FIGURE 5.15: KADS inference structure for heuristic classi�cation as implemented in NEOMYCIN.

Data

Data abstractions Solution abstractions

Solutions

DATA
ABSTRACTION

REFINEMENT

=>

HEURISTIC MATCH

FIGURE 5.16: Clancey's \inference structure of heuristic classi�cation", also often called the \horshe shoe".
Source: [Clancey, 1985b; p. 296]

Chapter 5. Model Construction 93

{ generalise hypotheses: from solutions (or solution abstractions) to a (more gen-

eral) solution abstraction.

� The explicit distinction between �ndings and observables. This distinction allows

one, for example, to pinpoint the basic inference used in neomycin's generate ques-

tions task (a task which goal is to get new evidence, when the current set of data is

insu�cient to arrive at a solution). This task applies the selection of an observable

from the universe of observables known to the system (select-1 in Fig. 5.15).

As remarked before, kads knowledge sources constitute a generalisation of the use of

domain knowledge. One interesting point, that arises from observations about the kads

inference structure in relation to the analysis of heuristic classi�cation in [Clancey, 1992],

is that this inference structure can be used to generate a situation-speci�c model (ssm)

such as advocated by Clancey.

An example of such a kads ssm is given in Fig. 5.17. This example describes a SSM for

the trace of neomycin's reasoning given in [Clancey, 1992; p. 18] (repeated for convenience

in Table 5.1). This particular trace shows how, given a hypothesis \meningitis", the system

tries to �nd supporting evidence (i.e. whether the patient has experienced \seizures").

This new �nding leads to a focus shift: it triggers a new hypothesis (\increased intercranial

pressure"), which in turn starts a process of establishing evidence for this hypothesis.

Fig. 5.17 shows a kads version of the ssm generated by this example. The numbers

in the �gure indicate the ordering in which the various arcs where put in the model. The

main di�erence between the kads ssm and the ssm's in [Clancey, 1992] is that the relations

between the nodes in the kads ssm are labeled with inference vocabulary: knowledge

source and meta-class names. In [Clancey, 1992] domain rules provide the relations, with

an additional annotation of the task that invoked the rule. One can view SSM's as a

particular kind of \knowledge-level" trace of the reasoning process.

The kads ssm and Clancey's ssm's are in fact complementary. Together these provide

three di�erent and important viewpoints on the rationale behind the reasoning process:

� The domain-knowledge view point: what domain knowledge is used?

� The inference view point: what kind of derivation is made and what is the role of

the object being manipulated?

� The task view point: what is the goal that is being pursued with this reasoning step?

5.7 Discussion: Generic Model Components

The question arises whether a top-down model construction process as described above can

be supported by template model components. This would require a di�erent organisation

of the library of template models, namely not as a
at set of interpretation models but as

a set of generic model components of a smaller grain size. Such model components could

be inserted into a model and result in a more complex model.

The two re�nements of the model for systematic diagnosis (Sec. 5.4) can be viewed

as examples of such model components. Model components can be identi�ed also on a

more general level. If one studies the inference structures of systematic diagnosis (Fig. 3.5)

and of monitoring (Fig. 3.8), it becomes clear that these share a common set of related

inferences, namely the process of checking the expected value of a parameter against the

94 Pragmatics of the Knowledge Level

f1.Top of the line of reasoning: we are pursuing meningitis as a generalization of some

hypothesis triggered by the initial data.g

CONSULT

MAKE-DIAGNOSIS

COLLECT-INFO

ESTABLISH-HYPOTHESIS-SPACE

GROUP-AND-DIFFERENTIATE

TEST-HYPOTHESIS [Meningitis]

APPLY-RULES [Rule060, Rule 323]

APPLY-RULE [Rule060]

f2. After �nding out about seizures to apply rule 60, we consider other data-directed

inferences: the follow-up question (#9) about seizures duration is generated; the rule 262,
marked \antecedent", is applied.g

FORWARD-REASON

PROCESS-FINDING [Seizures]

APPLY-RULES-ANTE [Rule262]

APPLY-RULE [Rule262]

f3. Rule 262 concludes that seizures might also be caused by increased intercranial pressure:

is that linked to anything else we have been considering? It might be explained itself by
an intercranial mass lesion, but more evidence is required before the rule can be applied.

Test-hypothesis is now invoked recursively: a focus change has occurred.g

FORWARD-REASON

PROCESS-HYPOTHESIS [Increased-Intercranial-Pressure]

APPLY-RULES-ANTE [Rule239]

APPLY-RULE [Rule239]

FINDOUT [Increased-Intercranial-Pressure]

TEST-HYPOTHESIS [Increased-Intercranial-Pressure]

APPLY-RULES [Rule209, Rule233, Rule373]

APPLY-RULE [Rule209]

f4. Rule 209 requires information about papilledema; the inquiry is generalized to fundo-

scopic abnormal, question #10.g

FINDOUT [Papilledema]

FINDOUT [Fundoscopic-Abnormal]

TABLE 5.1: Trace of a consultation of NEOMYCIN. Source: [Clancey, 1992; p. 18].

Chapter 5. Model Construction 95

HYPOTHESIS
meningitis

 OBSERVABLE
 seizures

OBSERVABLE
duration of seizures

FINDING
duaration of seizures

= 1 hour
FINDING

 seizures=present

HYPOTHESIS
increased intercranial

pressure

specify
conjectured-finding

of focus

specify
dependent
observable

FINDING
 papilledema=present

 OBSERVABLE
fundoscopic image

FINDING
 fundoscopic image

= abnormal

obtain
 new

evidence

obtain
 new

evidence

specify
conjectured-finding

of focus

specify
test

observable

specify
test

observable

(1)

(2)

(3)

(4)

(5)

(6)

(7) (8)

(9)

(10)

SPECIFIC FINDING
seizures = present

select

obtain
new

evidence

trigger
associated hypothesis

FIGURE 5.17: Situation-speci�c model for the trace of NEOMYCIN shown in Table 5.1 using the KADS

inference structure of HC. The numbers indicate the sequence in which the arcs where placed in the SSM.

observed value. Fig. 5.18 shows this set of inferences. One could view this set as a potential

generic model component.

Representing template models in the form of such generic components is attractive

because it captures the way in which knowledge engineers actually build these models.

The identi�cation of such generic model components can help making a number of aspects

of the model construction process more explicit, namely:

� The ingredients (model components) from which a model is built.

� The rationale behind the inclusion of a particular component (e.g. reducing the size

of the di�erential).

� The domain-knowledge requirements of model components. For example, re�ne and

generalise require a particular hierarchical organisation of hypotheses.

In Table 5.2 an e�ort is made to describe the various modi�cations in the top-down

construction of the model for diagnosis (Sec. 5.5) in terms of model components.

The components described in Table 5.2 have a number of features in common with

Chandrasekaran's generic tasks [Chandrasekaran, 1988]. Their grain size is similar. For

example, \hypothesis generation" could be realised through the gt \abductive hypothesis

assembly". The gt \knowledge-directed information passing" can be used for \�nding

abstraction". The main di�erence is that the gt's are tied to a particular symbolic repre-

sentation.

96 Pragmatics of the Knowledge Level

observable

finding

parameter

norm

difference

specify-1

specify-2

compare

obtain

FIGURE 5.18: Example model component: checking the expected value of a parameter against the observed

value.

Component Fig. Knowledge sources Rationale

question 5.8 select(fOg ! O) generates

generation obtain(O ! F) (new) input data

hypothesis 5.9 associate(F ! H) put new hypothesis

generation in di�erential

hypothesis 5.9 specify(H ! fFg) �nd evidence such

testing specify(F ! fOg) that a solution can
select(fHg ! H) be found

�nding 5.10 select(fFg ! F) speci�c �nding triggers
di�erentiation less hypotheses

�nding 5.11 abstract(fFg ! F) reduction of
abstraction search space

di�erential 5.13 re�ne(H ! fHg) reducing/enlarging
reorganisation generalise(fHg ! H) di�erential

hypothesis 5.13 match(fHg ! O) �nd observable that
di�erentiation discriminates between

two or more hypotheses

TABLE 5.2: Summary of the model components used in the di�erentiation of the generate-and-test-model.

The symbols 'O', 'F' and 'H' denote respectively an observable, a �nding and a hypothesis. The 'f..g'

notation denotes a set.

Chapter 5. Model Construction 97

The Generalised Directive Models (gdm's) as proposed in the Acknowledge project

[van Heijst et al., 1992] support a similar top-down approach to model construction. The

grammar in which these gdm's are expressed can be used to carry out re�nement opera-

tions on (provisional) inference structures.

In principle, a library of generic model components would allow the knowledge engineer

to derive in a top-down fashion the inferences needed in an application domain. For

example, in the construction process that led to the hc model, the knowledge engineer

could decide for some application to leave out the inferences related to a hierarchical

organisation of hypotheses, when such hierarchies cannot be found or constructed. In

other domains, abstraction could turn out to be unnecessary or testing of hypotheses

could be carried out through causal models.5

However, much work still needs to be done to support the use of generic components

in top-down model construction in a principled way. It would require at least:

� The construction of a comprehensive library of generic model components.

� A description of decision criteria that would lead to including particular components

in the inference structure.

� A set of composition rules for con�guring and modifying inference structures from

smaller components.

The grammar for Generalised Directive Models developed in the Acknowledge project

[van Heijst et al., 1992] provide a �rst step to this type of support. The further exploration

of this approach to model construction is currently a major research topic in the kads-ii

project.

5Although the relations between a hypothesis and a set of corresponding �ndings are called causal

relations in NEOMYCIN, these should be viewed as direct associations and do not represent a causal model

in the usual sense of the word.

Chapter 6

Operationalising Models of Expertise

Knowledge-level models currently play an important role in the development process of knowledge-based

systems. In this chapter we investigate issues concerning the design and implementation (\operationalisa-

tion") of such models. We characterise the nature of the KBS design process and distinguish various types

of decisions that have to be made. We de�ne structure-preserving design, i.e. preserving the structure

of the knowledge-level model in the artefact, as the principle that should underly the operationalisation

process, because it facilitates reusability of code, maintenance, explanation and knowledge re�nement. We
discuss several existing environments that support the operationalisation process and outline their draw-

backs. We sketch an alternative route for computerised support and illustrate this for a class of diagnostic

tasks.
This chapter will be published in a collection of articles on KADS. Reference: Schreiber, A. T. (1993).

Operationalising models of expertise In Schreiber, A. T., Wielinga, B. J., & Breuker, J. A., editors, KADS:

A Principled Approach to Knowledge-Based System Development. Academic Press, London.

6.1 Introduction

Model-based development has become over the last few years the prevailing paradigm for

knowledge-based system (kbs) construction. With \model-based" a development approach

is denoted in which a prime role is played by a \knowledge-level" [Newell, 1982] model of

the problem solving behaviour in an application domain.1 In this chapter we investigate

the problem of how to operationalise such knowledge-level models in the process of kbs

construction.

Model-based kbs development consists of at least two di�erent types of activities (see

Fig. 6.1):

1. Knowledge modelling activities aimed at constructing a knowledge-level model of the

application.

2. Design & implementation activities aimed at operationalising a particular

knowledge-level model through the selection and implementation of appropriate com-

putational and representational techniques. In this process requirements not directly

related to problem solving are also taken into account (e.g. e�ciency).

1On-going debates on the precise nature of the knowledge-level and its role in KBS development are

discussed in Ch. 2.

100 Pragmatics of the Knowledge Level

real
world

knowledge
level

model

KBS

library of
reusable model

 components

choosing
computational and
representational

techniques

knowledge
modelling

support
environments

FIGURE 6.1: A bird's eye view of KBS construction based on knowledge-level models

In this chapter we focus on the latter part of the kbs development process which could

be called the \operationalisation problem". Generally, we use the term \operationalisa-

tion" to denote the process of designing and implementing the �nal system. However, at

some points we will also take approaches into account that aim at \making knowledge-level

models run": prototype systems used for validation and knowledge re�nement.

Sec. 6.2 discusses the nature of the kbs design process and characterises the various

types of decisions that have to be taken during design. In Sec. 6.3 we discuss structure-

preserving design as a general principle that should underly the entire design process. In

Sec. 6.4 and Sec. 6.5 we discuss how this principle in
uences the design decisions when

operationalising kads models of expertise.

Computerised support is an important issue in a kbs development methodology.

Sec. 6.6 describes existing environments for supporting this operationalisation process

and discusses their drawbacks. In Sec. 6.7 an alternative approach is suggested. This ap-

proach is illustrated through an example support environment that we developed. Sec. 6.8

discusses results and future work.

6.2 The Design Process

The major input for the design process in kads is the model of expertise, which can

be viewed as a speci�cation of the problem solving requirements. Other inputs are user

interaction requirements (i.e. the model of cooperation, see Ch. 3) and also a set of external

requirements, such as costs, software and hardware.

The nature of the design process can be characterised by dividing it into a number

of interrelated design decisions that have to be made during the design process. We

distinguish two major groups of design decisions: (i) decisions with respect to the overall

system architecture and (ii) decisions with respect to the selection of suitable computational

techniques.

6.2.1 Architectural options In the literature the term \architecture" is used in

many di�erent ways. We use the term to denote a global description of the main compo-

nents of the artefact to be developed and their inter-relations. The nature of the prime

ingredients described in an architecture varies depending on the architectural paradigm

that is being used. Such a paradigm prescribes what the building blocks are from which

the artefact will be assembled and what relations exists between them. An architectural

Chapter 6. Operationalising Models of Expertise 101

paradigm can also prescribe how the analysis input should be mapped onto the architec-

ture. Two well-known architectural paradigms in software-engineering are the functional

approach [Yourdon, 1989b] and the object-oriented approach [Coad & Yourdon, 1991;

Rumbaugh et al., 1991]. In the functional approach the prime architectural components

are functions. Functions are linked to each other via data
ows. In the object-oriented

approach the main components are objects. Objects are related to each other via associa-

tions (relations) and message connections. Another architectural paradigm that has been

proposed for certain ai programs is the so-called \blackboard" architecture. In the latter

paradigm the emphasis lies on the distribution of control in the system.

In fact, the three example paradigms described above symbolise what appear to be

three fundamental perspectives that one can take when describing a system [Rumbaugh

et al., 1991; Yourdon, 1989a] (see also Ch. 8), namely:

� the data perspective,

� the functional perspective, and

� the control perspective.

These three perspectives can be summarised as the \what, how, and when" views of

a system. Choosing one of the paradigms does not mean that only this particular type

of information is present in the architecture. For example, in the functional approach the

data manipulated by functions must be described as well. Also, in the object-oriented

approach operations (functions) and messages (control) must be de�ned for each object.

The object-oriented approach in fact groups data, functions and control together in small

untis. The main distinguishing factor between the approaches is the decomposition princi-

ple that is employed when describing a system. In the functional approach the functional

perspective provides the decomposition principle: the system is decomposed into a hierar-

chical structure of functions and sub-functions. In the object-oriented approach the data

perspective provides the entry point: system decomposition starts with building hierar-

chies of data objects.2 Many of the debates in software engineering have been about the

\right" decomposition principle. Later in this chapter we will argue for an architectural

paradigm that represents a combination of these three perspectives. This is in line with

recent proposals in software engineering, such as advocated by [Rumbaugh et al., 1991].

Thus, the speci�cation of the architecture entails two steps:

Choice of the architectural paradigm The choice of the perspective that guides the

decomposition in the architecture: e.g function-oriented, object-oriented. In real-life

practice this paradigm choice is often not noted as an explicit design decision. It

is often determined by the background and experience of the system designer or by

software-engineering `fashions".

Architecture speci�cation Given an architectural paradigm, the designer will have to

use the analysis input (the conceptual model) to specify a suitable architecture.

From a methodological point, this activity can be supported by providing the system

designer with skeletal architectures: prototypical decompositions that have to be

instantiated for a particular application. In this chapter we will give two examples

of skeletal architectures that could be useful for \kads" designers.

2This statement is not completely true for recent developments in the �eld of so-called `user-interface

management systems" such the kernel of the KEW workbench [Anjewierden, 1991].

102 Pragmatics of the Knowledge Level

6.2.2 Computational options Given an architecture, the designer will have to decide

which computational techniques she is going to employ in the artefact. The nature of these

decisions can be illustrated with an example concerning the skeletal architecture used in

the early days of expert systems. This architecture (Fig. 6.2) was a very simple, naive

one. The two main components of a kbs were in this view an \inference engine" and a

\knowledge base". It is in fact a control-oriented architecture: the leading principle for

the decomposition is the control relation between a declarative component (the knowledge

base) and a procedural component (the inference engine) of the system.

Inference
engine

Knowledge base

executes

FIGURE 6.2: Naive expert-system architecture

The computational design decisions that have to be taken in this architecture are

typically concerned with:

� the representation formalism for the knowledge base,

� the algorithm for interpreting the knowledge base, and

� the control regime for sequencing interpretations of the knowledge base.

Typically, one type of technique was selected for realising this architecture: e.g. a

production system technique (e.g. production rules, rule interpreter with forward chaining,

some form of con
ict resolution) or an automated deduction technique (e.g. predicate

calculus representation and a theorem prover).

One can view production systems and automated deduction as computational

paradigms: they point to a group of related techniques and representations. Other well-

known computational paradigms are state-space search, parsing, constraint satisfaction

and structure matching.

Employing techniques that belong to only one particular paradigm simpli�es the pro-

cess of kbs design. In general however, one would not like to limit the designer to use

one particular group of techniques. Some techniques are better suited for solving certain

(sub-)problems than others.

In short, the designer has to make two types of computational decisions: (i) the choice

of the computational paradigms that will be employed in the artefact, and (ii) the speci�-

cation of the techniques that will be used for realising the various elements in the system

architecture.

In Newell's terms, the computational techniques describe the symbol-level realisation

of the agent. It is important to realise that there is a trade-o� between (i) making the

Chapter 6. Operationalising Models of Expertise 103

knowledge-level model more speci�c, i.e. by introducing more re�ned elements, and (ii) a

more elaborate speci�cation during design. The decision whether to do the former or the

latter depends on whether one needs to represent explicit control on certain operations

in the model of expertise. The borderline between model of expertise and design is thus

in a sense governed by the level of granularity that is required of the model of expertise.

For example, in office-plan (a system for allocating o�ces to employees, see [Karbach

et al., 1989]) the actual allocation inference is modelled as one knowledge source assign in

the model of expertise and is realised in the actual system through a complex constraint

satisfaction technique. If it would have been necessary to exercise control on this technique,

then one would need to model constraint satisfaction \at the knowledge level".

6.2.3 Choosing a software environment In addition, the designer has to choose (or

construct) a software environment that is to be used for implementation. With a software

environment we mean some programming language (with possibly additional components,

e.g. libraries) that is used as the basis for implementation: e.g. kee [Fikes & Kehler,

1985], emycin [van Melle et al., 1981], Prolog, lisp, etc. A software environment supplies

the designer with a number of prede�ned (=implemented) computational constructs and

representations. In [Schreiber et al., 1987] a distinction is made between closed and open

environments.

In a closed environment the set of available techniques and representations is �xed and

not expandable. An example of such an environment is emycin. An open environment of-

fers possibilities for expanding the set of methods and representations. Open environments

can be further divided into weak or strong environments, depending on the size of the set

of prede�ned techniques. Prolog can be viewed as an example of a weak environment. Its

built-in facilities are very general-purpose: unsorted Horn clause logic, uni�cation and sld

resolution. kee can be seen as an example of a strong environment. It provides higher-

level primitives for implementing computational techniques, such as frame and production

rule representations, hierarchical structuring of frames and rules, a classi�er and various

interpreters,

There is a clear dependency between the computational decisions on the one hand and

the choice of an environment on the other hand. The techniques chosen can in
uence

the choice of an environment and vice versa. Ideally, the chosen environment should

o�er primitives for realising a large variety of techniques and thus limit the amount of

implementation e�ort. In a weak environment such as Prolog or lisp, it is necessary to

build the techniques on top of the language.

It should also be noted that in real-life kbs development the choice of a software

environment is often dictated by external requirements: costs, availability, etc. This

environment then acts as a constraint on the overall design process: e.g., if, for some

external reason, a system like emycin has to be used, this implies that the designer has

only limited freedom in making computational decisions or has to devise clever ways of

implementing the desired constructs using the limited means that the environment o�ers.

A typical example of this last phenomenon is the use of parameters to represent control

implicitly in mycin [Clancey, 1983].

6.2.4 Overview of the design process Fig. 6.3 summarises the main steps that have

to be taken during kbs design. The arrows in the �gure denote dependencies between steps

104 Pragmatics of the Knowledge Level

in design. This does not mean that the actual process in time should follow the direction

of the arrows. An example of this was given at the end of the previous section, namely

that a early (because �xed) choice of an particular environment constrains other design

steps.

The last step in Fig. 6.3 is the actual implementation of the system. The nature of

this step depends very much on the way the design was carried out and on the chosen

software environment. In Ch. 7 we discuss a full sample implementation based on the

design principles outlined in the remainder of this chapter. The implementation can

be supported in various ways. One important support tool for implementation given a

\structure-preserving design" (see the next section) are transformational tools that map

model-of-expertise descriptions on code fragments. Another useful tool is a dedicated

domain-knowledge editor, which uses a symbol-level translation of the \domain schema"

(see Sec. 3.4.1) to interact directly with an application expert. This type of functionality

is o�ered by the opal knowledge acquisition tool [Musen et al., 1987].

6.3 Structure-Preserving Design

Design thus consists of the speci�cation of an system architecture and the selection of ap-

propriate representations and computational techniques. In principle, the designer is free

to make any set of design decisions that results in meeting the requirements formulated

during analysis. However, from a methodological point of view a structure-preserving

design should be strongly favoured. With \structure-preserving" we mean that the in-

formation content and structure present in the knowledge-level model is preserved in the

�nal artefact. For example, it should be possible to reconstruct from the �nal system

both the domain-knowledge structures speci�ed during analysis as well as their relations

with knowledge sources and/or meta-classes. Design thus should be a process of adding

implementation detail to a knowledge-level model. The knowledge-level model is in fact

interpreted as a skeletal architecture for the system.

Thus, preservation of information is the key notion. For this purpose, we investigate

in the next section in more detail the nature of the information in the model of expertise.

In Sec. 6.3.2 we discuss the main advantages of the structure-preserving approach.

In Sec. 6.4 we take the \executable speci�cation" view on the model of expertise and try

to de�ne skeletal architectures for supporting structure-preserving design. In Sec. 6.5 we

investigate how the structure-preserving approach in
uences the computational decisions.

6.3.1 Types of information in the model of expertise In this section we take

a second look at the structure of the model of expertise and characterise what kind of

information it contains with respect to the three perspectives outlined in Sec. 6.2 (data,

function, control).

Functional perspective The functional perspective is represented both in the inference

knowledge and in the task knowledge. Knowledge sources constitute the leaves of

the functional decomposition tree. Tasks represent the higher-level functions. An

example of such a functional-decomposition tree can be found in Ch. 3 (Fig. 3.6).

Data perspective The domain knowledge represents a speci�cation of all domain-

speci�c data and forms the major part of the data perspective.

Chapter 6. Operationalising Models of Expertise 105

Input for design:

model of expertise
model of cooperation

Choice of architectural paradigm

Architectural paradigms:

purely functional
purely object-oriented
data-function-control

Choice of
computational paradigms

Knowledge representation and
computational technique design

Architecture specifcation

Support knowledge
for the design & implmentation

 process

Skeletal architectures:
first & second generation
KADS architectures

production systems
parsing
search
classification
automated deduction

E.g. for production systems:
rule formats
conflict resolution strategies

Computational (AI) paradigms:

AI literature on knowledge representation
and reasoning techniques

Choice of computational framework

KBS

Implementation

AI languages and
support environments:

Prolog, LISP, OPS5
KEE, KES, ART
EMYCIN, NEXPERT
BB1

Dedicated editors
Transformational tools

FIGURE 6.3: Dependencies between steps in the design and implementation process. For each step some
sample support knowledge or support tools are listed.

106 Pragmatics of the Knowledge Level

The meta-classes and the domain view in the inference knowledge are also part of

the data view, but these data are speci�ed in an indirect way: i.e. by mapping

functional names onto domain-knowledge elements. One could say that the name

of a meta-class speci�es a functional object (e.g. hypothesis) and that the mapping

onto domain terms (e.g. hypothesis! domain class disease) assigns a data structure

to such a functional object. The mapping provides in fact the link between the

functional perspective and the data perspective. The situation in kads is thus more

complicated than in conventional data-
ow diagrams, where the names of the data

ows refer directly to elements of the data model.

The control terms (part of the task knowledge) specify similar functional objects,

but through a multi-step mapping (e.g. the control term di�erential maps onto a set

of objects of type hypothesis, which in turn maps onto a class of domain objects.)

Control perspective The control perspective (the \when" view) is present in the task

knowledge (the task structure description of a task) and in the strategic knowledge.

By relating a description of control in a task-structure procedure directly to a task, an

explicit link is made between the functional perspective and the control perspective.

This is not by de�nition true for the control speci�ed in strategic knowledge, as kads

provides no strict guidelines for the structure of this type of knowledge,

Table 6.1 summarises the information contained in the various parts of the model of

expertise with respect to three viewpoints. In Ch. 8, we analyse how kads relates to more

conventional approaches with respect to these three perspectives.

Category Element Perspective

domain concepts, properties data

knowledge relations, structures, etc. data

inference knowledge source functional

knowledge meta-class functional ! data

domain view functional ! data

task control terms functional ! data

knowledge sub-tasks functional

task structure control ! functional

strategic control

knowledge

TABLE 6.1: Characterisation of the information contained in a model of expertise with respect to the three

perspectives on systems: data, function and control.

The model of expertise is thus not biased towards one particular perspective, although

part of the functional view, i.e. the inference structure is often the starting point for

building the model. The resulting architecture is thus a mixture of di�erent types of

components, each emphasising di�erent perspectives of the system. This point is discussed

in more detail in the comparison of kads with conventional approaches (Ch. 8).

6.3.2 Advantages of structure-preserving design There are a number of reasons

for following a structure-preserving approach to design:

Chapter 6. Operationalising Models of Expertise 107

Reusability of code Structure-preserving design prepares the route for reusability of

code fragments of a kbs, because, in Smith's terms (see Ch. 1), the \semantical

attribution" [Smith, 1985] of code fragments is explicit. Reusable code fragments

can be of various types and grain size, ranging from implementations of inferences

(knowledge sources) to implementations of an aggregation of inferences plus control

knowledge. The layered structure of kads models of expertise facilitates this type

of reusability.

Maintenance The preservation of the structure of the knowledge-level model makes it

possible to trace an omission or inconsistency in the implemented artefact back to

a particular part of the model. This considerably simpli�es the maintenance of the

�nal system. It also facilitates future functionality extensions. Experience with the

Fraudwatch system [Porter, 1992; Killin, 1992] indicates that systems built in this

fashion are much easier to maintain than conventional systems.

Explanation A structure-preserving approach facilitates the development of explanation

facilities that explain the reasoning process in the vocabulary of the knowledge-level

model. For example, for some piece of domain knowledge it is possible to ask:

� in which elementary problem solving steps it is used and which role it plays in

this inference;

� when and why it is used to solve a particular problem (control knowledge).

As the knowledge-level model is phrased in a vocabulary understandable for a human

observer, a structure-preserving design can provide the building blocks for \sensible"

explanations. This feature has been demonstrated by [Clancey & Letsinger, 1984]

in the neomycin system. Several researchers have proposed generic strategies for

generating such explanations from knowledge-level descriptions [Neches et al., 1985;

David & Krivine, 1990; Sprenger, 1991]. Generic explanation tools supporting ques-

tions like why/when/how inference by exploiting the structure-preserving property

of the code.

In ees [Neches et al., 1985] the model information is preserved in a separate \devel-

opment history" generated by a program writer. This database stores facts about

the relation between model elements and code fragments (i.e. ops5 rules) generated

from these model elements. This \compiler" approach to information preservation

is attractive from an e�ciency point of view.

Knowledge acquisition support Given a structure-preserving design, the knowledge-

level description can ful�ll the role of semantic information about pieces of code of the

artefact. This additional information can be used to support knowledge acquisition

in various ways. Some examples:

� One can construct editors for entering domain knowledge directly into the sys-

tem which interact with the user in the vocabulary of the model, similar to

systems like mole [Eshelman, 1988].

� One can build debugging and re�nement tools which spot errors and/or gaps in

particular parts of a domain knowledge base by examining its intended usage

during problem solving.

108 Pragmatics of the Knowledge Level

� It is possible to focus the use of machine learning techniques to generate a

particular type of knowledge, e.g. abstraction and speci�cation knowledge (cf.

the Acknowledge project [Shadbolt & Wielinga, 1990; van Heijst et al., 1992]).

An example might help to illustrate the advantages of a structure-preserving design.

Suppose we have in a medical application some pieces of domain knowledge of the following

form (here phrased as logical implications):

temperature � 38.0 ! fever = present

diastolic-pressure � 95 ! blood-pressure = elevated

blood-pressure = elevated ! hypertension = present

Suppose also that we have the following two inferences in our model of expertise

applying such pieces of domain knowledge in the reasoning process:

(i) An abstraction inference in which a �nding, e.g a quantitative property like the

temperature of a patient, is abstracted into a more abstract �nding such as fever.

(ii) A specify step which de�nes an inference that can be used to �nd-out which observ-

able should be asked to the user once it becomes known that the patient has, for

example, a fever.

Although the validity of the model is not the issue here, it might be useful to add that

physicians usually want to get an answer to the question \What is the temperature"

when they learn (e.g during physical examination) that a patient has a fever, as the

precise value can be important in other parts of the reasoning process.

Fig. 6.4 depicts a simple inference structure containing these two inference steps.3. The

italic annotations of the meta-classes denote the domain-knowledge elements that could

ful�ll the role of �nding or observable. The domain implications listed above are used

by both inferences in their \domain view" (see Sec. 3.4.1). The inference structure also

contains an additional step (the oval with the dashed border), which denotes a transfer

task (see Sec. 3.4.3) for obtaining the value of an observable (e.g. \What is the value of

the temperature").4

A structure-preserving design dictates that this two-fold use of essentially the same

pieces of domain knowledge is made explicit in the �nal implementation. For example,

implementing these domain expressions in duplo as abstraction and as speci�cation rules

would violate the structure-preserving property. It would give rise to knowledge redun-

dancy (the same knowledge is present twice in the system) and can lead to serious main-

tenance problems (when speci�cation knowledge is changed, the abstraction knowledge

needs to be changed as well). For a knowledge acquisition tool it could mean that the user

needs to enter the same piece of knowledge twice (or it would require an undesirable ad

hoc adjustment of the tool). For explanation purposes it is important to be able to explain

the di�erent usage of these implications. At di�erent points in the reasoning process the

explanations about the role of these implications can vary.

3This inference structure is in fact a small fragment of the KADS inference structure for heuristic

classi�cation (see Fig. 5.15).
4As pointed out in Ch. 3 such an inference structure only describes the data dependencies between

inferences.

Chapter 6. Operationalising Models of Expertise 109

finding

finding

observable

obtain

specify

abstract

temperature >= 38.0 ->
 fever = present
diastolic-pressure >= 95 ->
 blood-pressure = elevated
blood-pressure = elevated ->
 hypertention = present

temperature
diastolic-pressure

Attribute-value pair of:
temperature

diastolic-pressure
blood-pressure

Attribute-value pair of:
fever

blood-pressure
hypertension

FIGURE 6.4: Two inferences in a medical application with some examples of related domain knowledge.
Both abstract and specify use the same domain implications, but for di�erent purposes. The dashed oval

denotes a transfer task.

Structure-preserving design is currently also being advocated in conventional software

engineering, especially in the area of object-oriented modelling and design [Rumbaugh

et al., 1991; Coad & Yourdon, 1991]. The motivation there mainly concerns reusability

and maintenance. This point is discussed in more detail in Ch. 8.

6.4 Structure-Preserving Design: A Skeletal Architecture

In structure-preserving design, the idea is to use the model of expertise as a skeletal

architecture of the artefact. In fact, most knowledge engineers using kads think about

the model of expertise as some (semi-)executable speci�cation. One could say that they

have internalised a particular architectural interpretation of the model and use this to

explain how the model they have built can solve a particular problem. However, the

information in the model of expertise is incomplete from the executable-speci�cation point

of view. This is not surprising, as this model is primarily meant for analysis purposes and

not for design. The main ingredients that are missing and that need to be considered in

architectural design are inference methods, domain indexing and access functions, working

memory, and input/output functions:

Inference method Knowledge sources specify the nature of the input and output (the

meta-classes) and the domain knowledge used in deriving the output from the in-

put (the domain view). Knowledge sources do not specify how the inference will be

achieved. This how description is typically something that has to be added during

design. During analysis, the knowledge engineer often takes, what one could call, an

automated-deduction view on a particular inference: the knowledge engineer speci-

�es a knowledge source in such a way that she knows that it is possible to derive a

conclusion, given the available knowledge, no matter how complex such a derivation

in practice might be. In analysis, the emphasis lies on a competence-oriented de-

scription: can I make this inference in principle, and what is the information I need

for making it happen. An inference method speci�es a computational technique,

110 Pragmatics of the Knowledge Level

that actually does the job.5 Some example inference methods mentioned in [Breuker

et al., 1987; p. 41] are inheritance, empirical association, matching algorithms, and

generalisation.

One can take the view that inference methods are part of knowledge sources and

thus should not have the status of separate architectural components. However, the

relation between knowledge sources and inference methods is not one-to-one. Several

knowledge sources may apply the same inference method, but for di�erent purposes.

For example, in the StatCons system for statistical consultancy two inference meth-

ods realised in total eight inferences [de Greef et al., 1987; pp. 73-99]. Also, in the

Sisyphus application described in Ch. 7 one method is used to realise three di�erent

inferences.

The reverse can also be true, namely that one inference function is realised through

multiple methods. Thus, incorporating inference methods into operational knowl-

edge sources prevents making full use of the reusability concept.

Domain access and indexing One of the subtle points of the model of expertise frame-

work is the use of functional names (i.e. meta classes, domain views) to describe

the inference process. In the knowledge-source speci�cations (see e.g. Sec. 3.4.2) the

mapping between functional names and domain-speci�c terms is indicated. During

design, one has to construct for these inference/domain mappings indexing mech-

anisms for the (operational) domain knowledge-base. Domain-access functions use

this indexing information to retrieve the required domain knowledge for carrying

out a particular inference. These access functions ensure that system elements that

realise inferences (the \inference functions", see further) can be speci�ed fully in

a manner that is independent of the application-domain. This is a key point with

respect to reusability (see also the discussion on data-function interactions in Ch. 8).

Working memory During analysis one is (and rightly so) sloppy in de�ning storage of

the run-time data. This is mainly because a full speci�cation of this type of informa-

tion requires a detailed description of all kinds of data manipulations. The working

memory (with which we mean the database of the run-time results of inferences

and tasks) is only speci�ed implicitly, in particular through meta-classes and control

terms (see Sec. 3.4.3 for a de�nition of the notion of control terms). During design,

one has to de�ne however explicitly the nature of working memory, possibly adding

other types of run-time information as well: e.g. which tasks have been executed

etc.

HCI functions Although the emphasis lies in this chapter on the impact of the model of

expertise on the design, a few remarks are in place here about the components that

are concerned with the interaction of the system with external agents. The model

5If the model of expertise is fully speci�ed in some strictly formal language such as ML
2 [van Harmelen

& Balder, 1992; Akkermans et al., 1992] it is in principle possible to use a dedicated theorem-prover for

executing the model. In practice however, some inferences involve computations that are, given the state of

the art, computationally intractable within such an approach . In the KADS-II project, we are developing

a theorem-prover for simulating the problem-solving behaviour of a particular model, providing pragmatic

short-cuts for intractable parts. This theorem-prover is meant to be used for model validation purposes

and is not expected to ful�ll the role of �nal system.

Chapter 6. Operationalising Models of Expertise 111

of cooperation contains the detailed speci�cation of this part of the system. In the

skeletal architecture (cf. Fig. 6.5 such components appear as human-computer inter-

face (hci) functions.6 These functions implement transfer tasks such as obtaining a

value and presenting a solution.

It should be noted that the model of cooperation can interact with the speci�cation

of control in the model of expertise. For example, it can be the case that the model

of cooperation speci�es a desired interaction strategy in which obtaining the value

of certain observables should involve asking also for values of related observables

(e.g. because this increases the plausibility of the line of questioning of the system).

In fact, the model of cooperation often gives rise to an adaptation of the control

knowledge as speci�ed in the model. Typically, it in
uences the design of task

knowledge and strategic knowledge speci�ed. This point is discussed in more detail

in [de Greef, 1989].

Fig. 6.5 depicts a typical skeletal architecture for structure-preserving design. We

brie
y discuss its various components below, except for the hci functions which fall outside

the scope of this chapter.

Domain knowledge-base and access functions The domain knowledge-base con-

tains a declarative symbolic representation of the domain-speci�c knowledge. It contains

both the actual domain expressions (e.g. relation tuples, concept instances) as well a de-

scription of the structure of the domain expressions (the symbolic representation of the

domain schema, cf. Sec. 3.4.1).

This schema is used by the knowledge-base access functions to retrieve certain types

of domain knowledge, using the mapping speci�cations provided by meta-classes and do-

main views. The access functions should be able to handle requests such as `retrieve all

abstraction knowledge" or \retrieve a domain entity that can play the role of observable".

The operationalised domain schema can also be used for explanation purposes (e.g.

providing an answer to the question: \what domain knowledge was used in making this

inference") and for the development of domain-knowledge editors that interact with the

user in a domain-speci�c vocabulary, similar to opal [Musen et al., 1987].

Inference functions and inference methods We use the term inference function

to denote the design counterpart of knowledge sources. Inference functions should contain

the same information as described for knowledge sources; types of input, output, and na-

ture of the domain knowledge used (all in domain-independent terminology). In addition,

every inference function de�nes how a particular inference method can be activated to

realise the inference and what type of information needs to be retrieved (using the domain

access functions) for successful execution of the inference method. In Sec. 6.5, we provide

an example operationalisation of the inference functions for the abstract/specify exam-

ple. More elaborate examples can be found in the description of the Sisyphus application

(Ch. 7 and Appendix B).

6The skeletal architecture makes the simplifying assumption that the external agents the system will

deal with are all humans.

112 Pragmatics of the Knowledge Level

inference
function 2

inference
function 3

HCI
function 1

inference
function 1

inference
method 1

inference
method 2

domain knowledge base

task
interpreter

task
descriptions

working
memory

store
retrieve

activates

activatesactivates

interpret

KB access functions through index of inference/domain mappings

retrieve retrieve retrieve retrieve

FIGURE 6.5: Skeletal architecture supporting structure-preserving design. The boxes with rounded cor-

ners denote system components that are active during reasoning; the sharp-edged boxes denote data stores.

Non-dashed lines describe a control operation (activates) between components; dashed lines a data opera-

tion (store, retrieve, interpret).

Task interpreter, task descriptions, and working memory The task inter-

preter is the central control unit of the system in this architecture. It uses a declarative

description of task structures and stores/retrieves run-time results of the reasoning process

in/from working memory. The complexity of the task interpreter can vary, depending on

the technique being chosen for implementing this component. In the simplest case, it is

a straight-forward interpreter for kads-type task structures. A more complex technique

would be a blackboard-type of control technique. Choosing a particular control technique

is discussed in more detail in Sec. 6.5.

6.4.1 Meta-level vs. object-level inferencing The skeletal architecture shown in

Fig. 6.5 has a meta-level
avour, in which the domain knowledge base represents the

object-level and the inference- and task-elements represent the meta-level. Van Harmelen

distinguishes three types of meta-level architectures based on the locus of action [van

Harmelen, 1989]:

Chapter 6. Operationalising Models of Expertise 113

� Pure meta-level inferencing: all computation is carried out at the meta-level. The

object-level has no interpreter and is only accessed to retrieve information.

� Pure object-level inferencing: the meta-level has no interpreter of its own, but is

active at �xed points during the computation through the execution of prede�ned

meta-predicates.

� Mixed inferencing: both object-level and meta-level have an interpreter. The object-

level interpretation is a black box for the meta-level.

Within this classi�cation, the skeletal architecture of Fig. 6.5 can be characterised as

either pure meta-level or mixed, depending on whether the retrieval of domain knowledge

involves computations in the domain knowledge-base. In the Sisyphus application the

architecture is a mixed one: the domain knowledge-base contains additional axioms which

are interpreted by the domain access functions: e.g. knowledge about properties of relation

types such as transitivity is used to infer tuples of a relation.

6.5 Structure-Preserving Design: Computational Decisions

In this subsection we discuss some more detailed design decisions in a structure-preserving

approach. The scope of the section is limited to decisions with respect to elements of

the model of expertise. A more detailed description of these decisions can be found in

[Schreiber et al., 1987; Schreiber et al., 1989a].

6.5.1 Inference and domain knowledge For each knowledge source a corresponding

computational technique needs to be selected that can realise this inference. A technique

consists of three types of elements: (i) an algorithm, (ii) input-output data structures

and possibly additional temporary data structures, and (iii) a representation of domain

knowledge. The algorithm embodies the method for realising the inference and speci�es

the local, symbol-level control (cf. Sec. 2.3).

As remarked before, a number of groups of computational techniques have been devel-

oped in ai research, such as production systems, state-space search, parsing, classi�cation

and matching. These groups can be viewed as computational paradigms. Detailed studies

have been performed to unravel the criteria for choosing a technique within one group

such as hierarchical classi�cation [Goel et al., 1987] or automated deduction [Reichgelt

& van Harmelen, 1986]. In [Schreiber et al., 1989a] criteria for chosing a particular type

of technique are discussed. Often, knowledge engineers use within one system only one

or two types of techniques. For example, in neomycin [Clancey, 1985a] four production

system techniques are provided. Each inference7 applies one of these production system

techniques. Applying only one type of technique, such as production systems, in one

particular kbs minimises the interaction problems with the design of other parts of the

system (in particular the domain knowledge-base, as it requires just a single representa-

tional formalism), but apart from that there is no compelling reason to adhere strictly to

this approach.

7
NEOMYCIN distinguishes only one \inference" type: apply-rule. The lowest level of meta rules ful�lls

however a similar role as knowledge sources in KADS, namely performing the computations using domain

knowledge.

114 Pragmatics of the Knowledge Level

A crucial design decision concerns the choice of the representation technique(s) for

the domain knowledge. Often, the nature of the knowledge described in the domain

schema indicates suitable symbolic representations. If the knowledge engineer works within

a particular paradigm, such as production systems, the choice of the representational

technique is usually obvious: the domain representation technique is the same as the

representation used by the chosen type of computational technique.

With respect to the structure-preserving principle, the most di�cult part is to preserve

the information about the functional names (meta classes, domain views, the domain spe-

ci�c names and their mappings. As the analysis in the previous section has shown, these

inference-to-domain connections specify in fact the relation between the functional per-

spective and the data perspective on the system and constitute crucial areas for reusability

etc.

To illustrate how structure-preserving design can be achieved in this respect, we present

an example of a simple Prolog implementation of the inferences in Fig. 6.4. A full listing

of the code, together with some sample traces, can be found in Appendix C.

Example fragment of a model of expertise We assume that the inferences in

Fig. 6.4 are speci�ed in the following way in the conceptual model:

knowledge-source abstract

input-meta-class:

�nding ! some expression about patient-data

output-meta-class:

�nding ! some expression about qualitative-data

domain-view:

abstraction-knowledge !

< relation(qualitative-abstraction), relation(de�nition) >

knowledge-source specify

input-meta-class:

�nding ! some expression about qualitative-data

output-meta-class:
observable ! some property of qualitative-data

domain-view:

speci�cation-knowledge!
< relation(qualitative-abstraction), relation(de�nition) >

These inferences use the same domain knowledge (see the domain view), but for dif-

ferent purposes.

The domain knowledge is speci�ed in the model of expertise using the domain descrip-

tion language (ddl) de�ned in Ch. 4:

concept patient-data ;

concept quantitative-data ;

sub-type-of: patient-data ;

properties:

temperature: number-range(35 - 42) ;

diastolic-pressure: number-range(0 - 300) ;

concept qualitative-data ;

Chapter 6. Operationalising Models of Expertise 115

sub-type-of: patient-data ;

properties:

fever: fabsent, presentg ;
blood-pressure: fnormal, elevatedg ;

hypertension: fabsent, presentg ;

relation qualitative-abstraction

argument-1: expression(quantitative-data) ;

argument-2: expression(qualitative-data) ;

tuples:

< temperature � 38.0, fever = present >

< diastolic-pressure � 95, blood-pressure = elevated > ;

relation de�nition

argument-1: expression(qualitative-data) ;

argument-2: expression(qualitative-data) ;

tuples:

< blood-pressure = elevated, hypertension = present > ;

The ddl description speci�es two types of attributes of a patient and two relations

that express relations between expressions about such attributes.

Representation of domain knowledge For this example we use a set of Prolog

predicates that allow an almost direct translation from ddl statements onto the chosen

knowledge representation. This representation was also used for the implementation of the

Sisyphus application (cf. Ch. 7 and Appendix B)). The main idea is to keep the domain

knowledge as much as possible in the form of a declarative theory of the domain, without

any particular commitment towards speci�c use during reasoning.

% concept(Concept name, Supertypes)

concept(patient_data, []).

concept(quantitative_data, [patient_data]).

concept(qualitative_data, [patient_data]).

% property(Concept, Property name, Valueset)

property(quantitative_data, temperature, numberrange(35.0, 42.0)).

property(quantitative_data, diastolic_pressure, numberrange(0, 300)).

property(qualitative_data, fever, [present, absent]).

property(qualitative_data, blood-pressure, [normal, elevated]).

property(qualitative_data, hypertension, [present, absent]).

% relation(Relation name, Type first argument, Type second argument)

relation(qual_abstraction, expr(quantitative_data), expr(qualitative_data)).

relation(definition, expr(qualitative_data), expr(qualitative_data)).

% tuple(Relation name, [First argument, Second argument])

tuple(qual_abstraction, [temperature >= 38.0, fever = present]).

tuple(qual_abstraction, [diastolic_pressure >= 95, blood-pressure = elevated]).

tuple(definition, [blood-pressure = elevated, hypertension = present]).

116 Pragmatics of the Knowledge Level

Automatic generation of this representation from the ddl would require little e�ort.

Domain index The domain index speci�es the mappings from inference-level names

(see next paragraph) onto domain-speci�c data types in the knowledge-base.

domain_index(expression, finding, [expr(patient_data)]).

domain_index(entity, observable, [property(patient_data)]).

domain_index(relation, abstraction, [relation(qual_abstraction)

, relation(definition)]).

domain_index(relation, specification, [relation(qual_abstraction)

, relation(definition)]).

The predicate domain-index has three arguments, namely:.

1. The inference-level data type (one of entity, relation, and expression).

2. The inference-level name (e.g. �nding, observable).

3. A list of domain types that can play the role of this inference-level object.

Thus, the inference-level relations \abstraction" and ` `speci�cation" both map onto all

tuples of two domain relations.

Inference knowledge The inference-knowledge representation consists of three el-

ements. The �rst element is the declaration of inferences as de�ned in the model of

expertise.

% inference(Internal name, External name)

% metaclass(Inference, Input/Output, General name, Specialised name).

% domain_view(Inference, , Inference knowledge).

inference(abstract, 'Abstract').

metaclass(abstract, input(1), finding, 'Specific finding').

metaclass(abstract, output, finding, 'General finding').

domain_view(abstract, relation(abstraction, finding, finding)).

inference(specify, 'Specify').

metaclass(specify, input(1), finding, 'Finding to be clarified').

metaclass(specify, output, observable, 'Dependent observable').

domain_view(specify, relation(specification, finding, finding)).

The domain view describes the static domain-knowledge used by the inference (cf.

Sec. 3.4.2).

The second element of the inference-knowledge representation is the de�nition of an

inference function that realises this inference by retrieving the necessary domain knowledge

and activating an appropriate inference method:

inference_function(abstract, [In], Out) :-

domain_retrieval(find_all, abstraction, Rules),

rule_interpreter(Rules, In, Out, forward, single_pass, find_one).

inference_function(specify, [In], Out) :-

domain_retrieval(find_all, specification, Rules),

Chapter 6. Operationalising Models of Expertise 117

rule_interpreter(Rules, In, Out, backward, multi_pass, find_one).

The predicate domain retrieval represents a knowledge-base access function that re-

trieves the required domain knowledge by interpreting the domain-view description of the

inference. The predicate rule interpreter represents a call to a production-system tech-

nique, where the last three arguments indicate the required control regime in a similar

way as is neomycin:

� forward/backward Derive conclusion from the premise of a rule (forward) or set up

premise as a goal to achieve the conclusion of the rule (backward).

� single/multi pass Stop once a conclusion or a goal has been inferred (single pass)

or invoke the rule interpreter recursively (multi pass).

� �nd one/all Stop evaluation (�nd one) or continue evaluation (�nd all) of the rule

set when a conclusion or a goal has been found.

This production-system technique interprets a domain-relation tuple as

< premise; conclusion >.

The inference abstract is thus realised by a single, data-driven, evaluation of the rule

interpreter using the tuples of the two domain relations as rule set. The inference specify

is realised by a recursive, goal-directed, execution of the same rule set.

Fig. 6.6 shows a a schematic view of a sample execution of the specify inference. The

input is a �nding. The corresponding inference function calls a domain-retrieval function

to retrieve all speci�cation rules. This retrieval function uses the domain index to collect

the appropriate domain knowledge. Finally, the inference method (the rule interpreter) is

activated which produces the output (in this case an observable).

specify
 inference

finding
"hypertension=present"

observable
"diastolic pressure"

input output

speification
rule

role-interpreter

domain
retrieval activate

inference method

domain tuple

domain
index

FIGURE 6.6: Schematic overview of a sample execution of the inference specify.

The third element of the inference-knowledge representation is the actual de�nition

of the inference method. The corresponding Prolog predicates implementing the rule

interpreter can be found in Appendix C.

118 Pragmatics of the Knowledge Level

6.5.2 Task knowledge Given the set of tasks speci�ed in the conceptual model (con-

sisting of both problem solving tasks and of transfer tasks) the designer has to make two

{ interrelated { decisions, namely:

1. The choice of a control technique for executing tasks. The simplest solution would

be to de�ne an interpreter for a representation of the task structures in the model of

expertise. This solution is su�cient in the case where the model of cooperation does

not impose additional requirements on the control regime (see the discussion earlier

on hci functions). This is the solution taken in the diagnostic system described in

Sec. 6.7.

If the model of cooperation imposes additional control requirements, it is usually

appropriate to employ a more complex control technique, that integrates the execu-

tion of task structures and the control of hci functions as de�ned in the model of

cooperation. Control techniques that could be used for achieving this are an agenda

mechanism, a blackboard or a skeletal planning technique. The StatCons system is

an example kbs where the user interface requires complex control [de Greef et al.,

1988b].

2. The choice of how to represent and update the run-time data. These data can be

viewed as the \working memory" of the kbs. This working memory contains the

data that are manipulated by the tasks and the inferences: e.g. the current state

of the di�erential, the �ndings, etcetera. The control terms and the meta-classes

speci�ed in the conceptual model form the basis for the representation of working

memory: they often reappear in the �nal system as labels for (sets of) working

memory elements.

Most existing kbs's use a simple monotonic technique for updating working mem-

ory. We expect that in the next generation kbs's more complex techniques such as

truth-maintenance techniques will be used more often. Note that the use of such

a technique can pose additional requirements on the output produced by computa-

tional techniques realising primitive inferences. An example of such an additionally

required output is the \justi�cation" used in an atms [de Kleer, 1986].

In Appendix C an example task structure representation can be found for two tasks

that apply respectively the abstract and the specify inference.

6.5.3 Strategic knowledge Most conceptual models that have been constructed do

not contain much strategic knowledge, if any at all. In most systems the strategic part has

been \compiled out" into �xed task decompositions with possibly a few strategic decision

points that can be in
uenced by the user (cf. [de Greef et al., 1987]).

If more elaborate strategic knowledge is present, the following techniques could be

applicable:

� A production system containing a set of meta-rules with states of working memory

as conditions and task activations and/or changes to working memory (e.g. assump-

tions) as actions.

� An extended blackboard technique such as the \Blackboard Control Architecture"

[Hayes-Roth, 1985], where the scheduling part represents the strategic knowledge.

Chapter 6. Operationalising Models of Expertise 119

From the viewpoint of the skeletal architecture in Fig. 6.5, these techniques involve

the development of a complex central control unit (the term \task interpreter" is probably

not appropriate anymore within this context).

Strategic knowledge as meta-knowledge An alternative route is to view the

strategic knowledge as a separate meta-system, The pdp system is an example of this ap-

proach [Jansweijer et al., 1986]. This approach has been the focus of the reflect project

[van Harmelen et al., 1992]. In the reflect approach the strategic knowledge is viewed

as a meta-theory about the three other knowledge categories in the model of expertise (the

object-theory). This meta theory can be described with the same modelling framework

as the object-theory. In architectural terms, this means that the skeletal architecture

sketched in Fig. 6.5 is extended to a meta-level architecture in which a strategic meta-

system reasons about and acts upon a model of the object system. This object-model

is causally connected [Maes, 1987] to the corresponding constructs in the actual object

system. In practice, this causal connection can only be achieved if the object-system has

been can be operationalised in a structure-preserving way.

Note that the architecture of the object-system itself is also of a meta-level nature:

the inference-level components reason about an d act upon the (object-level) domain

knowledge (see the discussion in Sec. 6.4.1).

The term \knowledge-level re
ection" has been coined for the reflect approach to

distinguish it from most other meta-level approaches that reason directly about the actual

code fragments of a system. The reflect architecture allows to build systems that carry

out re
ective tasks like competence assessment and competence improvement in a
exible

way. For more details about this architecture, the reader is referred to [Reinders et al.,

1991; Schreiber et al., 1991b; van Harmelen et al., 1992].

6.6 Existing Approaches to Computerised Support

Although in principle a knowledge-level model can be viewed as a speci�cation that can

be implemented in a conventional manner, for most modelling approaches dedicated envi-

ronments exist, that support structure-preserving operationalisation. In this section, we

discuss the nature as well as the merits and limitations of each of approaches.

6.6.1 Types of support environments Existing support environments can roughly

be be divided into three categories:

1. Task-speci�c shells

2. Task-speci�c programming languages

3. Task-independent programming languages

Task-speci�c shells Task-speci�c shells support the operationalisation of a range

of application domains. In kads terms, a task-speci�c shell can be seen as an opera-

tionalisation of an interpretation model. The model incorporated in a task-speci�c shell

represents a problem solving method for solving a certain type of problems. Example

task-speci�c shells are mole (method: cover & di�erentiate; [Eshelman, 1988]), salt

(method: propose & revise; [Marcus & McDermott, 1989]) and opal (method: skeletal

120 Pragmatics of the Knowledge Level

inference
function 2

inference
function 3

HCI
function 1

inference
function 1

inference
method 1

inference
method 2

domain knowledge base

KB access functions through index of inference/domain mappings

task
interpreter

task
descriptions

working
memory

store
retrieve

activates

activatesactivates

retrieve retrieveiretrieve

interpret

retrieve

strategic task knowledge

strategic inference knowledge

strategic domain knowledge

knowledge-level model
of object system

causal connection

meta system

object system

FIGURE 6.7: Skeletal meta-level architecture in which the strategic knowledge is operationalised through

an separate meta system. This meta system uses a a causally connected knowledge-level description of the

object system to reason about and act upon this system.

Chapter 6. Operationalising Models of Expertise 121

plan re�nement; [Musen et al., 1987]). In task-speci�c shells the structure of the task is

�xed: the knowledge engineer cannot change the structure of the domain knowledge (i.e.

the domain schema), the set of inferences or the control imposed on these inferences. Only

the domain-speci�c knowledge needs to be entered in the prede�ned format.

It is assumed that the expert is capable of entering this domain knowledge directly

into the system with the help of a dedicated domain-knowledge editor. [Musen et al.,

1987] makes the point that this can best be achieved by providing the expert with a

support tool that communicates with the user in a domain-speci�c vocabulary. opal uses

this approach. This is not the case in mole and salt, where the interaction is (at least

partially) in terms of functional objects.

The protege system [Musen, 1989] overcomes some of the problems associated with

task-speci�c shells. This system allows the knowledge engineer to tailor a skeletal plan-

ning method to meet the demands of a particular application domain (within the area of

managing protocols for medical treatment) and then generates an opal-like shell that can

interact with the expert to acquire the domain-speci�c knowledge.

Task-speci�c programming languages A second type of support environments

is represented by the task-speci�c programming languages such as developed within the

Generic Task (gt) approach [Chandrasekaran, 1988]. These programming languages con-

tain constructs speci�c for operationalising a particular (generic) task (see Sec. 3.7 for

a discussion on the relation between gt and kads). An example of such a language

is csrl [Bylander & Mittal, 1986], which supports the operationalisation of hierarchical

classi�cation problems.

The methodological viewpoint behind the gt approach is that problem solving con-

sists of a relatively small set of information processing tasks (the generic tasks) and that a

particular instantiation and con�guration of these tasks can be used for realising a partic-

ular application. Each programming language supports such a generic task. The resulting

generic task programs are integrated into one system in an object-oriented fashion.

Task-independent programming languages Task-independent programming

languages are high{level programming languages that allow a (relatively) simple map-

ping from the knowledge-level model onto computational constructs in the language, For

the kads approach a number of such languages have been developed: e.g. Model-K [Kar-

bach et al., 1991] omos [Linster & Musen, 1992] and karl [Angele et al., 1991]. For the

Components of Expertise approach the language described in [Vanwelkenhuysen & Rade-

makers, 1990] has been developed. zdest-2 [Tong et al., 1988; Karbach et al., 1988] can

also be viewed as such a language, although it is not tied to a particular knowledge-level

modelling approach.

The mapping from model to language elements is in these languages usually supported

by giving the computational constructs names similar to the model elements. For example,

Model-K o�ers computational constructs with kads-speci�c names such as knowledge

source and metaclass.

6.6.2 Merits and limitations of the approaches Task-speci�c shells provide a high

level of support to the knowledge engineer. If the application domain �ts well with the

122 Pragmatics of the Knowledge Level

environment, then only relatively little e�ort is necessary for building a system. The price

paid for the high level of support is a low level of
exibility: small mismatches between

domain and tool can already render the tool unsuitable for the target application.

The task-independent programming languages leave the knowledge engineer with con-

siderable freedom during operationalisation. Within the limitations of the computational

techniques supported by the language, it is possible to operationalise a variety of appli-

cations. On the other hand, their level of support for the knowledge engineer is limited.

Unlike the task-speci�c shells, which contain reusable computational constructs for one

particular knowledge-level model, the current programming languages do not contain any

reusable pieces of code, e.g. prede�ned domain structures or inferences. So, the higher

level of
exibility is paired with a lower level of support.

The task-speci�c programming languages take more or less an intermediary position.

This approach is
exible in the sense that the control knowledge is not �xed: the knowl-

edge engineer has to `program" each generic task as well as specify how these should be

integrated to solve the overall problem. In terms of support, in particular the reusability

of code, this approach is limited: the languages themselves are of course reusable, but

there are no prede�ned pieces of code, such as provided by the task-speci�c shells.

The three approaches can be seen as as points on a spectrum determined by the level

of support vs. the level of
exibility (Fig. 6.8).

high level of support
inflexible

low level of support
flexible

OPAL
SALT
 MOLE

DSPL
CSRL

Model-K
KARL
OMOS
ZDEST

FIGURE 6.8: Characterisation of some support environments with respect to level of support and
exibility.

6.6.3 Some remarks about operational \knowledge-level" languages In the

last few years, several languages have been proposed for operational and/or formal repre-

sentation of kads models of expertise. Some examples were given earlier in this section.

Some additional remarks about this line of research are in place.

It is clear that it is desirable to have, as early as possible in the development process,

some machine-executable version of the model of expertise. Such prototypes can be used

for simulation of the problem-solving behaviour that is speci�ed in the model and can thus

play a role in validation of the model.

One should however separate two fundamentally di�erent aspects of such languages:

1. The modelling aspects of the language: what constructs does the language o�er for

modelling the reasoning process in the application domain.

2. The operational aspects of the language: what is the operational interpretation of

the language constructs.

Chapter 6. Operationalising Models of Expertise 123

There is a kind of trade-o� between these two aspects. During modelling, one wants to

be as
exible as possible in specifying the required problem-solving behaviour. One is pri-

marily interested in the declarative semantics of the language. During operationalisation,

one needs to restrict the language to expressions that have operational semantics.

The formal speci�cation languages for kads models of expertise such as ML
2 [van

Harmelen & Balder, 1992; Akkermans et al., 1992] emphasise the modelling aspects, al-

though they have a (partial) operational interpretation. The task-independent program-

ming languages are much more directed towards operational aspects. The languages karl

[Angele et al., 1991] and forkads [Wetter, 1990] take an intermediate position, empha-

sising both modelling and operational aspects.

Fig. 6.9 characterises the di�erent languages on a spectrum from formal speci�cation

(emphasising modelling) to executability (emphasising operationality).

formal
specification executability

ML2 FORKADSKARL OMOS Model-K

FIGURE 6.9: Formal languages for KADS models of expertise interpreted as points on a continuum from

formal speci�cation to executability.

Also, it should be noted that in most real-life applications external requirements dictate

constraints on the software environment in such a way that the operational languages

cannot be used for the �nal implementation. For example, the successful Fraudwatch

system [Killin, 1992; Porter, 1992] was implemented partly in Cobol (while following

the structure-preserving principle which indeed greatly facilitated the maintenance of the

system [Killin, 1992]).

6.6.4 Design languages Another type of support for design can be given by a design

language such as desire [van Langevelde et al., 1992]. In this approach, it is assumed that

there exists some (informal) conceptual model of what the system should do. Given this

input, the design language supports the formal speci�cation of appropriate system com-

ponents and their con�guration into a system architecture. From this design speci�cation

the system code can then be generated automatically.

The desire approach �ts in fact quite well with the kads approach. One major

advantage is that there is a clear separation of roles: the model-of-expertise language

used during analysis emphasises modelling aspects; the design language emphasises oper-

ational aspects. This circumvents the problems encountered with some afore-mentioned

\knowledge-level programming languages" in which the distinction between these, funda-

mentally di�erent, view points is not clear.

An interesting research question would be to study the possibility of prede�ning within

a design language such as desire the components of a skeletal architecture like the one

in Fig. 6.5. This would simplify the mapping from the analysis input onto components in

the design language.

124 Pragmatics of the Knowledge Level

6.7 Maximising Support and Flexibility: An Example

Ideally, one would want to combine the support provided by reusable pieces of code and

the
exibility o�ered by the \knowledge-level" programming languages. The grain size

of task-speci�c shells is too coarse: these constitute an implementation of a complete

interpretation model. On the other hand, the programming languages do not provide any

reusable code fragments such as ready-to-use implementations of inferences. What appears

to be needed is an environment with a library of reusable modules that can be used to

operationalise elements of a knowledge-level model and allow the knowledge engineer to

con�gure these into a system that meets the demands of the application at hand.

Within the framework of kads we have developed a prototype environment that can

be considered as a �rst attempt in this direction. It contains a library of modules that

can be used to operationalise inferences for a class of diagnostic tasks. These inferences

appear in the interpretation model for systematic diagnosis. This model represents a

method for diagnosis in which a device is examined in a systematic, top-down, manner to

�nd a component that behaves abnormally. Systematic diagnosis can be seen as a form

of generate and test. Hypotheses are generated through decomposition of a hierarchical

device model into sub-components. A component is tested by predicting the value of an

observable using a model of the normal behaviour of the device and comparing this norm

value with the observed value. The control knowledge typically has a recursive structure:

decomposition is carried out until a non-aggregate abnormal component is found.

This basic version of the model of systematic diagnosis can be extended in a number

of ways. These extensions are adaptations of the model that could be necessary in a

particular application. They modify the basic model of systematic diagnosis and de�ne

in fact a space of potential systematic diagnosis models. Two example extensions are (i)

the introduction of complex tests that require system recon�guration (e.g. reconnecting

cables), and (ii) the use of multiple device models each representing a di�erent view on the

device (e.g. functional, physical). An overview of the complete set of inferences is given

in Table 6.2. For a more detailed description, see Sec. 3.4.2 (basic version) and Sec. 5.4

(extensions).

The environment we developed contains modules for all potential inferences, both for

the basic version and for those required by the extensions. Each module represents a

computational technique for realising the inference. Each computational technique has

particular domain knowledge requirements, e.g. the technique for realising the inference

in which a norm value is predicted requires a causal model of the normal behaviour of the

device.

The environment o�ers the following facilities to a knowledge engineer who wants to

build a system for a particular instance of systematic diagnosis:

� The instantiation of techniques for the required set of inferences.

� A language to de�ne tasks that specify the sequencing of inferences (control knowl-

edge). The control language is an operationalisation of the modelling language used

for describing task structures. It contains additional constructs necessary for imple-

mentation, such as invocation of user interface functions and storage and inspection

of of intermediate results. An example fragment of this language can be seen in the

top-right window of Fig. 6.10.

Chapter 6. Operationalising Models of Expertise 125

Inference input output description used in

select complaint system model selection of an appropriate device
model

basic version

decompose system model di�erential hypothesis generation though de-

composition of the device model

basic version

select �rst di�erential hypothesis select a component for testing basic version

specify hypothesis test �nd a test for the a component to

be tested

basic version

specify test norm predict the normal test outcome basic version

system model

compare value, norm truth value compare the observed and the ex-

pected value

basic version

assemble complaint system model dynamic creation of the device

model

extension

initial data

transform system model system model allow tests that require a recon�gu-

ration of the device

extension

sort di�erential di�erential order the hypotheses in the

di�erential

extension

criterion

select complaint view allow multiple device models each

representing a view

extension

TABLE 6.2: Inferences in systematic diagnosis models

� A simple editor for entering the domain knowledge required by the selected infer-

ences.

The environment also supports the execution of the resulting system and an interface

that allows a user to trace the reasoning process in the vocabulary of the knowledge-level

model. Fig. 6.10 shows part of this interface. The interface allows the user to trace the

reasoning with respect to various aspects of the model, such as:

� the task that is being executed and its internal control structure;

� the inference-structure diagram in which an inference is highlighted when it is being

executed;

� the bindings of meta-classes such as \system model".

� the domain knowledge that is used by inferences that are executed.

A detailed description of the environment can be found in [Lemmers, 1991]. The

architecture of the environment is an instantiation of the skeletal architecture of Fig. 6.5.

Future perspectives for support The environment for systematic diagnosis mod-

els discussed in the previous section is only a �rst step in the direction of
exible support

for operationalising knowledge-level models. It has still a number of important limitations:

� For each inference only one computational technique is provided to operationalise it.

This is too restrictive. For example, the inference in which a norm value is predicted

can currently only be operationalised with a technique that uses a causal model

of the device. For some applications other techniques might be more attractive, for

example some form of qualitative reasoning. Ideally, the environment should support

a range of techniques for realising some inference.

126 Pragmatics of the Knowledge Level

FIGURE 6.10: Prototype interface for tracing the execution of a system for systematic diagnosis in the

vocabulary of the knowledge-level model. The inference structure is shown on the left. The decompose
knowledge source is currently being executed. The task structure (control knowledge), the bindings (in

this case the system model that is currently being decomposed) and the domain knowledge used by the

decompose knowledge source (a part-of relation) are shown on the right. The window in the lower-right
corner allows the user to trace the reasoning process at the task and/or inference level.

� The environment provides only limited support for specifying control knowledge.

The notion of task decomposition methods, such as used in Components of Expertise

[Steels, 1990], can be of value here. Task decomposition methods specify prototypical

decompositions of a task into sub-tasks and/or inferences plus information about

sequencing these. Incorporating such methods also as reusable constructs in an

environment can support the knowledge engineer also in this respect.

� The environment supports the operationalisation of just a small set of models. For

example, to be able to cover a large range of diagnostic applications it would be nec-

essary to include also heuristic methods for diagnosis and combinations of systematic

and heuristic methods (cf. [Benjamins et al., 1992b]).

Within the context of the kads-ii project (esprit project 5248) we are developing a

more comprehensive environment. This environment will support the operationalisation

of a large variety of models applying some form of generate and test. The environment

Chapter 6. Operationalising Models of Expertise 127

will contain a large set of techniques for both hypothesis generation as well as hypothesis

testing. The knowledge-level models supported there are the result of a uni�cation of

the original kads-i model of expertise (the \four-layer model") and the Components of

Expertise framework [Wielinga et al., 1992b].

Other researchers are working along similar lines. Both in Spark/Burn/FireFighter

[Klinker et al., 1991] and in protege-ii [Puerta et al., 1991] the aim is to overcome the

limitations of the role-limiting methods described earlier by providing the knowledge en-

gineer with a set of prede�ned computational \mechanisms" from which she can con�gure

a system.

An important research question that arises is whether it it possible to come up with an

appropriate typology of such mechanisms. Such a typology would pave the way for building

a library of reusable operationalisations of model elements which is not ideosyncratic for

one particular approach and can thus be shared by several groups.

6.8 Discussion

The structure-preserving approach as outlined in this chapter has been applied in a number

of system development projects. The StatCons system [de Greef et al., 1987; de Greef et al.,

1988b], developed in an early P1098 experiment, was developed along these lines and served

as an important source of ideas for the theoretical background. The mixer-con�guration

system [Billault, 1989], also part of a P1098 experiment, used the structure-preserving

approach and experimented with more
exible forms of control. The developers of the

Fraudwatch application [Porter, 1992; Killin, 1992] which has been in commercial use for

some time now remark that the kads approach to design in fact leads to a system which

is easier to maintain that a conventional system. This despite the fact that part of the

system had to be be implemented in cobol. Object-systems developed in the reflect

project where all based on a structure-preserving design, and this was found to facilitate

the construction of
exible meta-systems on top of these object-systems [van Harmelen

et al., 1992]. Also, the fact that in conventional software engineering researchers are

advocating a design approach in which design is seen as adding implementation detail to

an analysis model ([Rumbaugh et al., 1991]), supports our view that structure-preserving

design is a promising approach.

However, still a lot needs to be done to support designers in the actual process. The

support environments discussed earlier are one way of providing support, but are currently

only useful in the realm of prototyping. External requirements of the KBS development

process are often in con
ict with the constraints of such an environment. From our point

of view, a promising line of research is to study mappings between knowledge-level models

and design languages that guarantee the structure-preserving property for the resulting

system.

Acknowledgements Marco Lemmers implemented the systematic-diagnosis system

described in Sec. 6.7.

Chapter 7

Applying KADS to the Sisyphus Domain

In this chapter the KADS approach is used to model and implement the o�ce assignment problem. We

discuss both the �nal products (the model of expertise and the design) and the process that led to these
products. Emphasis is put on modelling the problem in such a way that it closely corresponds to the

behaviour of the expert in the sample protocol. The last section of the chapter addresses the evaluation

points raised by the initiators of Sisyphus'91.

This chapter is a heavily revised version of a submission to the Sisyphus'91 project \Models of Problem

Solving". Reference: Schreiber, G. (1992) Sisyphus'91: Modelling the o�ce-assignment problem. In

M. Linster, editor, Sisyphus'91 Part II: Models of Problem Solving.

7.1 Introduction & Approach

This chapter describes an exercise to model and implement the sample problem of the

Sisyphus'91 project. The Sisyphus project was initiated at the European Knowledge Ac-

quisition Workshop 1990 in the Netherlands. The aim of the project is to collect data for

comparative studies of approaches in various �elds. One of these �elds is \Models of Prob-

lem Solving". Researchers were asked to model a domain of allocating rooms to employees

and explain the rationale behind decisions made in this process. . A description of the

Sisyphus'91 problem statement (drawn up by Marc Linster) is repeated for conveninece

in Sec. 7.2.

This chapter is organised as follows. In Sec. 7.3 a brief account is given of the steps that

were taken to arrive at the model for the o�ce-assignment task-domain. Sec. 7.4 discusses

some initial observations that came out of a �rst global analysis of the problem description.

The next three sections describe the results of the process of modelling expertise: (i)

description of the domain schema (Sec. 7.5), (ii) classi�cation of the o�ce-assignment

task and model selection (Sec. 7.6), and (iii) model decomposition and resulting inferences

and tasks (Sec. 7.7). Sec. 7.8 discusses the step from model of expertise to design and

implementation. Finally, in Sec. 7.9 the proposed solution to the problem is evaluated

with respect to the questions raised in the problem description.

130 Pragmatics of the Knowledge Level

7.2 Statement of the Sample Problem1

The members of the research group yqt of laboratory hne are moved to a new
oor of

their château. Due to severe cuts in funding they only get a very limited number of o�ces.

It will be quite a problem to cram them all in. To complicate matter even further some

will have to share an o�ce. After several vain attempts, that all ended in nightmares

that would have impressed Freddy, the management of hne is desperate. Sisyphus is their

last hope. hne implores the Sisyphus teams to provide knowledgeable systems that are

up to the task. It is important that the systems' way to solve the problem follow the

shining example of the wizard Siggy D., the only one ever managed to solve the problem.

The system developers should be aware of the fact that yqt's members are used to be

pampered. They all have their personal preferences and professional peculiarities that

should better be observed, as the dungeons of the babylon tower are deep and lonely.

7.2.1 Data on people and o�ces Not all members of yqt can pro�t from this new

o�ce space in the château: about half of the group will stay in their old o�ces. Those

that are concerned by the new assignment are:

Werner L. Juergen L.

Role = researcher Role = researcher

Project = RESPECT Project = EULISP

Smoker = no Smoker - no

Hacker = true Hacker = true

Works-with = Angi W. Works-with = Harry C.

Marc M. Thomas D.

< plus 13 other employees >

Within the subset of member we have the following organisational structure. Thomas

D. is the head of the group yqt. Eva I. manages yqt. Monika X. and Ulrike U. are the

secretaries. Werner L. and Angi W. work together on the respect project. Harry C.,

J�urgen L. and Thomas D. work in the eulisp project. Michael M. and Hans W. work in

the babylon Product project. Hans W. is the haed of this large project. Marc M., Uwe

T. and Andy L. pursue individual projects. Katharina N. and Joachim I. are haeds of

larger projects which are not considered in this problem.

The
oor plan is shown in Fig. 7.1. C5-123, C5-122, C5-121, C5-120, C5-119 and

C5-117 are large rooms that can host two researchers. Large rooms can be assigned to

heads of groups too. C5-113, C5-114, C5-115 and C5-116 are single rooms.

7.2.2 Protocol Table 7.1 shows a sample transcript of a protocol in which the expert

Siggy solves the problem.

Note 1 Our wizard Siggy D. seems to pursue a general strategy of assigning the head

of group and the sta� personnel �rst, followed by the heads of large projects, who through

their seniority are eligible for single o�ces (some are more equal than others). The o�ces

of the head of group and the sta� should be close to each other. Heads of projects should,

if possible, be allocated o�ces close to the head of group.

1Shortened version of the problem description drawn up by Marc Linster Copied with permission.

Chapter 7. Applying KADS to the Sisyphus Domain 131

The words of the Comments, questions and annotations

wizard Siggy D.

1 Put Thomas D. into of-
�ce C5-117

1a The haed of group needs a central o�ces that he/she
is as close to all the members of the group as possible.
This should be a large o�ce.

1b This assignment is de�ned �rst as the location of the
o�ce of the head of group restricts the possibilities
of the subsequent assignments.

2 Monika X. and Ulrike
U. into o�ce C5-119.

2a The secretaries' o�ce should be located close to the
head of group. Both secretaries should work together
in one large o�ce. This assignment is executed as
soon as possible, as its possible choices are extremely
constrained.

3 Eva I. into C5-116 3a The manager must have maximumaccess to the head

of group and to the secretariat. At the same time
he/she should have a centrally located o�ce. A small
o�ce will do.

3b This is the earliest point where this decision can be
taken.

4 Joachim I. into C5-115. 4a The heads of large projects should be close to the
head of and the secretariat. There really is no reason
for the sequence of assignments of Joachim, Hans,
and Katharina.

5 Hans W. into C5-114. 5a The heads of large projects should be close to the
head of and the secretariat.

6 Katharina N. into C5-
113.

6a The heads of large projects should be close to the
head of and the secretariat.

7 Andy and Uwe T. into
C5-120.

7a Both smoke. To avoid con
icts with non-smokers
they share an o�ce. Neither of them is eligible for a
single o�ce. This is the �rst twin-room assignment
as the smoker/non-smoker con
ict is a severe one.

8 Werner L. and J�urgen
L. into o�ce C5-123.

8a They are both implementing systems, both non-
smokers. They do not work on the same project,
but they work on related subjects. Members of the
same projects should not share o�ces. Sharing with
members of other projects enhances synergy e�ects
within the research group.

8b There really are no criteria for the sequence of twin-
room assignments.

9 Marc M. and Angi W.
into o�ce C5122.

9a Marc is implementing systems; Angi isn't. This
should not be a problem. Putting them together
would ensure good cooperation between the respect

and the kriton projects.

10 Harry C. and Michael
T. into o�ce C5-121.

10a They are both implementing systems. Harry devel-
ops object systems. Michael uses them. This should
create synergy.

TABLE 7.1: Transcript of protocol

132 Pragmatics of the Knowledge Level

C5-123 C5-122 C5-121 C5-120

C5-119

C5-118

(The tower)C5-117C5-116C5-115C5-114C5-113

C5142

C5-143

C5-144

FIGURE 7.1: The part of the
oor plan considered in the sample application.

Note 2 Twin o�ces are assigned to the members of research projects under the

consideration that synergy among projects is boosted. This means that researchers that

work in the same project, are if possible not sharing an o�ce. Co-workers that work on

related subjects can share an o�ce. It is important not to put smokers and non-smokers

together into twin o�ces.

7.3 Modelling the O�ce Assignment Problem

The problem description basically consists of two parts:

1. A description of the major entities (employees, rooms, projects) and relationships

(hierarchies, project assignments,
oor plan) in the sample domain.

2. A think-aloud protocol showing how an expert solves a particular o�ce assignment

problem.

As there is only one protocol, it can occur in the remainder of this chapter that there

is not su�cient information to make a particular (modelling) choice. Such a situation

usually gives rise to a knowledge engineering (ke) goal: a topic for which further knowledge

elicitation and/or analysis is necessary. We will point to these ke goals in the text and

state what kind of assumptions we have made about its outcome in building the model.

We should also mention here that it is our goal to build a model and a system that

re
ects as closely as possible the reasoning process of the expert. It is not our goal to �nd

an algorithm that, given the input, would produce the same or similar output.

The process which led to the construction of the model of expertise presented in this

chapter roughly consisted of the following steps:

Chapter 7. Applying KADS to the Sisyphus Domain 133

Initial observations Firstly, the protocol was used to make some initial observations

about the nature of the task, e.g.:

� What kind of task is it: analytic, synthetic?

� Are there clearly identi�able sub-tasks?

� What can be said about the information and the knowledge that the expert uses?

� Does the task resemble some known (generic) task? If so, what are similarities and

di�erences?

� Does it seem feasible to automate (part of) the task?

Tentative domain schema Subsequently, a �rst sketch was made of the types of

domain knowledge that play a role in solving this task. This characterisation of domain

knowledge is done before any detailed model construction for a dual purpose:

1. To guide and verify the process of model selection and/or decomposition: is the

knowledge available for achieving this task.

2. To prevent as much as possible that domain knowledge is only speci�ed because it

is required by the particular problem solving method that was chosen to achieve the

task.

The chosen problem solving method will of course in
uence the required represen-

tation of domain knowledge. Our goal is however to specify such representations as

much as possible as a viewpoint on the available domain knowledge. For example, in

the o�ce-assignment domain relations exists between particular employees and their

roles in the department (employee X has the role of head-of-group). The fact that

this relation can be used as classi�cation knowledge is a method-(or use-)speci�c

viewpoint.

Model selection & top-down model construction The next step was to specify

the top-level task (in this case o�ce assignment) in terms of sub-tasks and primitive

inferences required for solving the problem. This model construction process consists of

one or both of the following activities:

1. Selection of a prede�ned generic decomposition in sub-tasks and inferences: an in-

terpretation model. The selection of such model is guided by characteristics of the

task such as the nature of the input and output of the top-level task (e.g. an enu-

merable set of solutions suggests an interpretation model for an analytic task) and

of the required types of domain knowledge (e.g. a model of the normal behaviour of

a device). In Ch. 3 (Fig. 3.9) these selection criteria are represented in the form of

a decision tree.

2. A (repeated) process of model decomposition. In the worst case, no (partial) inter-

pretation model is available for the task at hand. The knowledge engineer then has

to decompose the top-level task into sub-tasks and inferences (primitive leaf tasks)

on the basis of the elicited data (in particular protocols).

There are however also a number of other situations in which decomposition plays

a role:

134 Pragmatics of the Knowledge Level

� The top-level task is not a generic task for which an interpretation model can

be selected, but is a compound, \real-life" [Breuker et al., 1987], task.

In that case, the knowledge engineer will �rst have to decompose the top-level

task to the level of generic tasks.

� The decomposition given by the selected interpretation model is too coarse-

grained.

The \inferences" in such a model are in fact complex sub-tasks that need fur-

ther speci�cation and decomposition to arrive at inferences that can be linked

to fragments of domain knowledge. For example, many models for synthetic

tasks in the kads library of interpretation models provide only a �rst level of

decomposition.2 Also, even if a detailed interpretation model such as system-

atic diagnosis is selected, it is possible that this model needs further detailing

for the task-domain at hand.

Often, there is an interplay between the selection of generic components and model

decomposition. In the o�ce assignment case the emphasis was on decomposition, as there

was no detailed interpretation model available.

Re�nement When a �rst (partial) model of expertise has been established through

selection and/or decomposition, it will need to be re�ned. This re�nement was in this

case performed in two ways:

1. By formulating task structures (i.e. control relations between sub-tasks) and check-

ing whether these task structures could serve as plausible explanations of the be-

haviour of the expert.

2. By trying to identify the types of domain knowledge that would be needed to carry

out the various inferences, and checking whether this knowledge could be derived

from the domain schema. If it is not derivable, the question arises whether it can be

formulated as an extension of this theory and whether expertise data are available

for formulating this knowledge. Often, this involves additional knowledge elicitation

(ke goal).

The re�nement process acts in a sense as a veri�cation of the chosen decomposition.

In the next section, the initial observations about the o�ce assignment problem are

discussed. In Secs. 7.5-7.7 a description is given of the major product of the modelling

process: the model of expertise. These contains a description of the underlying domain

knowledge, of the process of model selection and decomposition, and of the resulting

inferences and tasks necessary for solving the problem.

2One could view problem solving methods such as \propose & revise" [Marcus & McDermott, 1989],

\cover & di�erentiate" [Eshelman, 1988] and \skeletal planning" [Musen, 1989] also as partial interpretation

models that can be used as a starting point for a model of expertise.

Chapter 7. Applying KADS to the Sisyphus Domain 135

7.4 Initial Observations

Initially, the protocol is our focus of attention. While reading the protocol, we noted the

following features of the problem solving process of the expert:

� A �rst thing to note is that the o�ce assignment problem is of a synthetic nature:

the solution is not chosen from a given set of prede�ned solutions, but is constructed

using knowledge about employees, rooms and allocation constraints.

� The expert appears to solve the problem in two steps: (i) selecting a particular

(group of) employee(s), and (ii) assigning this (group of) employee(s) to a room.

� It seems that the selection process is based on a global plan of the expert, namely

assigning employees in a particular order. This plan is however not explicitly men-

tioned by the expert. This assumption would need to be veri�ed in a future session

with the expert (ke goal).

� The ordering in the allocation plan is not an ordering of speci�c employees, but of

types of employees, e.g. head of group, manager, etc. The underlying knowledge on

which this ordering is based seems to be quite subtle. For example, it is not just

based on a simple hierarchy of employee types, as one could be inclined to deduce

from the fact that the head of group is assigned �rst: this would not explain why

the secretaries are assigned before the manager and the heads of projects.

� The elements of the allocation plan are not just single employees. These elements can

also be sets of employees that are assigned in a random order (heads of projects) or

groups of employees that are assigned in blocks to a room (secretaries, researchers).

If one requires of the �nal model that it indeed models the behaviour of the expert

as closely as possible, then this would exclude every model or method in which

employees are assigned one at a time.

� The expert does not backtrack in the protocol. There is no evidence of a veri�-

cation and/or a revision process. Most existing models and systems for synthetic

problems, e.g. [Chandrasekaran, 1990; Marcus & McDermott, 1989], contain such

a verify/revise step. The absence of this step could very well be an artefact of the

sample problem solved in the protocol. This should be a major topic for future

sessions with the expert (ke goal). We will come back to this issue in the discussion

section.

This is by no means meant to be a complete or even correct list.3 Such initial obser-

vations focus however the modelling process (see the next section).

7.5 Domain schema

In the description of the domain knowledge we are mainly interested in a structural descrip-

tion: what types of knowledge are available in the problem description? For this schematic

3It is in fact the list that the author presented at the EKAW'91 Sisyphus workshop in Crie�, Scotland

after a �rst reading of the sample problem.

136 Pragmatics of the Knowledge Level

description we use the constructs of the data-description language (ddl) proposed in Ch. 4:

concepts, sets, properties, and relations between concepts, instances and/or expressions.

Fig. 7.2 gives a graphical overview of the structure of the domain knowledge described

below.

works-on

head-of

smoker-non-smoker

hacker-non-hacker
on-different-projects

works-well-with

researchersecretary
head of
group

head of
projectmanager

expression

next-to
distance

room-preference role-interaction
near-to preference

property: level
property: strength

employee
role

boss-of

room

project

size

employee

room
department

rolefloor
number

type
size

location

occupancy

smoker?
hacker?

FIGURE 7.2: Schema of the domain knowledge in the o�ce-assignment domain. See Fig. 4.5 for an

explanation of the graphical notation used.

Employees and rooms stand out as central concepts in this domain. Employees have

properties (such as whether they smoke or like to hack) and relations with projects they

work on or are the head of. Also, a number of relations between two employee in-

stances seem to be important: a smoker and a non-smoker, employees working on di�erent

projects, etc. Rooms have a number of properties (size, number, type, etc.) and relations

with other rooms (distance, next to).

A ddl description of the concept employee and of one relation between employee

instances is given below. A full ddl description of the domain schema is listed in Ap-

pendix A.

concept employee;

properties:

smoker: [true, false];

hacker: [true, false];

relation on-di�erent-projects;

Chapter 7. Applying KADS to the Sisyphus Domain 137

argument-1: instance(employee);

argument-2: instance(employee);

semantics: associative;
axioms:

8 E1,E2:employee, P1,P2:project

on-di�erent-projects(E1,E2) $
works-on(E1, P1) ^ works-on(E1, P1) ^ P1 6= P2;

Another central concept in this domain is the notion of a department role: head of

group, secretary, etc. As observed in the previous section, the expert seems to base most

of his allocation decisions on properties of employee types and not on individual employees.

The employee types are represented as sub-concepts of department-role (see Fig. 7.2).

Several types of relations concerning department roles seem to be important in the

domain:

� A hierarchy of roles (e.g. the head of group is the boss of the manager)

� The amount of daily interaction (e.g. a high level of interaction between head of

group and secretary)

� Positional preferences (e.g. the head of group should be near to a secretary)

� Relations between department roles and expressions about rooms, denoting room

preferences (e.g. the head of group should have a large, central room).

This room-preference relation is represented in the ddl as follows:

relation room-preference;

argument-1: department-role;

argument-2: expression(room);
tuples:

< department-role, type(room) = o�ce >

< head-of-group, location(room) = central >
< head-of-group, size(room) = large >

< head-of-project, size(room) = small >

< researcher, size(room) = large >
< manager, size(room) = small >

< secretary, size(room) = large > ;

The intended interpretation of such relation tuples is described in Ch. 4. For example,

the statements about \head of project" should be interpreted as \all heads of projects

need to get some small, single room".

7.6 Task classi�cation and model selection

The o�ce-assignment task takes as input a set of employee instances and a set of room

instances and produces as output a set of allocations of rooms to employees. The o�ce-

assignment task can be classi�ed as a design task: although the solutions are in principle

enumerable for a given input problem, in practice the solution is not selected, but con-

structed.

In [Chandrasekaran, 1988] three classes of design tasks are described: creative design

tasks, routine design tasks and a mix of routine and creative design. The prime property

of routine design is that the elements from which the solution is constructed are known in

advance. O�ce-assignment can thus be classi�ed as a routine design task.

138 Pragmatics of the Knowledge Level

Puppe distinguishes three sub-classes of routine design tasks [Puppe, 1990]: planning,

con�guration and allocation (in German: \zuordnung"). According to Puppe, the main

features that distinguish allocation from planning and con�guration are:

� It operates on at least two disjunct sets of objects,

� The solution consists of allocation relations between objects of di�erent sets that

satisfy particular requirements.

O�ce-assignment is thus clearly an allocation task. The two disjunct sets of objects

are in this case the employees and the rooms.

Unfortunately, the kads interpretation model library in [Breuker et al., 1987] does not

contain a model for allocation. In such a case, it can be useful to look at a more general

model for design tasks and use this is a starting point. Such a model for a more general

task provides however only a �rst level of decomposition.

Chandrasekaran describes methods for routine design tasks [Chandrasekaran, 1988].

The general structure of the design task is presented as consisting of of three major sub-

tasks: propose, critique and modify. For each sub-task a number of methods are described

(informally) that can be used for realising the task. For example, the propose task can be

realised with decomposition methods, with constraint satisfaction, etc.

The salt system [Marcus & McDermott, 1989] implements a similar model for routine

design called \propose & revise". The propose step proposes a value for a design param-

eter. Design parameters are linked to design constraints. When a constraint violation

is detected, the revise task is activated to suggest changes (\�xes") to the design. This

process is iterated until all design parameters have a value and no constraints are violated.

The mixer-con�guration system [Wielemaker & Billault, 1988] design starts with build-

ing an ordered list of \duties" (i.e. design requirements). The �rst duty of the list (the

\top duty": the requirement which is considered to be the most critical one) is used to

generate an initial con�guration, which is subsequently tested and re�ned on the basis

of the other requirements. If a con
ict arises, e.g. because some requirement cannot be

satis�ed, this duty becomes the top-duty and the design is modi�ed.

In each of these models, the general structure of routine design appears to have an

iterative structure: �rst, a (partial) solution is proposed, which is subsequently veri�ed

and if necessary adapted and /or re�ned, This leads to a new proposal and thus starts a

new cycle of veri�cation and adaptation/re�nement.

As noted in the previous section, the expert in the sample protocol seems to carry out

only the propose task. We limit the modelling enterprise in this chapter to a study of the

nature of this propose task. However, this apparent absence of veri�cation and revision

should be a major focus for further knowledge engineering,

7.7 Model construction

Initially, we observed (Sec. 7.4) that this propose task seems to consist of two steps:

selecting an employee and assigning her to a room. Also, the point was made that this

selection step seemed to be based on a global allocation plan. In other models for design

tasks the notion of a plan also appears. For example, in the mixer-con�guration system

[Wielemaker & Billault, 1988] the notion of a plan plays a role in terms of an ordering of

Chapter 7. Applying KADS to the Sisyphus Domain 139

requirements. \Tackle the most di�cult requirement �rst" appears to be a quite general

strategy in design tasks. We will assume here that the expert indeed has some allocation

plan. The precise nature of this plan is discussed below. As already pointed out, this

assumption would need to be veri�ed during further knowledge engineering (ke goal).

This gives us a �rst decomposition of the propose task (see Fig. 7.3). This �gure (and

also Fig. 7.5, see below) should be interpreted as a provisional inference structure. It

ful�lls the role of a working hypothesis in the knowledge engineering process. It can (and

will) be re�ned in the process of model construction, e.g. through task decomposition and

knowledge di�erentiation (see also Ch. 5).

As task and inference knowledge are described in a domain-independent way, we coin

the general role names component and resource to talk at the task and inference level

about employees and rooms. This is one way of enabling a potential reusage of (part of)

the resulting model for another resource allocation domain.

component

resource

plan plan
element

allocation

assemble select

assign

FIGURE 7.3: First provisional structure of the propose task. See Sec. 5.2 for a description of the graphical

notation used.

The task structure of the propose task is speci�ed below in a structured-English format.

The top-level task propose-allocations consists of two major steps:

� Assemble plan which generates a plan in which the allocation order of components

is speci�ed

� Assign resources which produces parts of the solution. This last step is carried out

for each element in the plan.

task propose-allocations

input:

components: set of components to be allocated

resources: set of available resources

output:

allocations: set of tuples <resource, set of components>

control-terms:

plan: list of (sets of) components representing an allocation ordering

plan-element: (set of) component representing an element of the plan

task-structure:

140 Pragmatics of the Knowledge Level

propose-allocations(components + resources ! allocations) =

assemble(components ! plan)

FOREACH plan-element 2 plan DO
assign-resources(plan-element + resources ! allocations)

We use the format proposed in Ch. 3. The slots input, output and control-terms describe

the data manipulated by the task, such as single objects, tuples, sets and lists. The task

structure speci�es the sub-tasks and their control dependencies in the form of a piece of

pseudo-code. The arrows in the task structure describe the relation between input and

output of the task or sub-task.

7.7.1 Plan assembly The question now arises whether it is possible to identify one

inference that can generate the plan, or whether plan assembly should be considered a

non-primitive task that requires further decomposition. To resolve this question we turn

back to the protocol.

We noted the following characteristics of the way in which the expert orders the as-

signment of components:

1. The ordering is not based on individual components, but on component types: the

expert does not talk about speci�c employees, but about the head of group, the

secretaries etc. This means that during plan assembly it is necessary to classify

components (the input of the assembly task) in terms of component types.

2. The head of group is assigned �rst, because this assignment \restricts the possibilities

of subsequent assignments" (fragment 1 of the protocol). There is a similarity here

with other models of design tasks, such as the model of the mixer con�guration

system [Wielemaker & Billault, 1988]: the component which is expected to impose

the heaviest constraints on the �nal solution is tackled �rst. The allocation plan

represents an implicit ordering of requirements: not the requirements themselves are

ordered, but the component types to which they are related.

3. The other component types are ordered on the basis of the level of required access

to and interaction with the head of group (fragments 2-4).

These observations led us to the formulation of three inferences that are needed to

carry out the plan assembly task:

� Classify components as component types.

� Select the component type with the highest associated constraints.

� Sort the other components types relative to the one that imposes the highest con-

straints.

These three inferences are described in detail below. The inference structure in Fig. 7.4

shows the dependencies between the inferences for plan assembly. An important point of

the speci�cation of inferences is to indicate for each inference how its functional terms

(meta-classes, domain view) relate to available domain knowledge. This will often reveal

that some type of domain knowledge is lacking and can thus lead to new ke goals.4

4Here we will only describe inferences that use knowledge described in Fig. 7.2, but it is fair to say that

this is an artefact of a post-hoc description.

Chapter 7. Applying KADS to the Sisyphus Domain 141

component component
type

component
type

list of
component

types
classify

select-1

sort

prime

FIGURE 7.4: Inferences for plan assembly.

Classify The classify knowledge source uses the domain relation employee-role (see

Fig. 7.2) for classifying a component (an employee instance) as a component type (i.e. a

department role).

knowledge-source classify

input-meta-class

component ! employee

output-meta-class

component-type ! department-role
domain-view

type associations from component to component-type !

employee-role(employee, department-role)
description

knowledge-base look-up

The arrows in the description above show how names at the inference level map onto

domain terms. The meta-classes can be seen as the data elements that are being manip-

ulated by the knowledge source. The domain view describes the static knowledge that is

used in this inference. The \description" slot gives an indication of how the output could

be generated from the input and the domain view. This allows the knowledge engineer

to make some remarks about possible computational methods. The actual selection of a

computational method (which could turn out to be a di�erent one) is part of the design

process (see Sec. 7.8).

Select prime The select-1 inference is used in the plan-assembly task to �nd the

component type with the highest requirements. This knowledge source uses a domain

relation boss-of to �nd the highest node in the component-type hierarchy5. This component

(for which we will use the term \prime") is assumed to be the most critical one to assign

(fragment 1 of the protocol).

knowledge-source select-1 (select prime)

input-meta-class

component-types ! set of department-role

output-meta-class

prime ! department-role

5In retrospect, this is probably a suboptimal speci�cation, because it makes unnecessary strong as-

sumptions about the nature of the domain knowledge. It is conceivable that in other tasks other types

of domain knowledge than hierarchies could be used to select the component with the highest associated

constraints.

142 Pragmatics of the Knowledge Level

domain-view

hierarchy of component-types !

boss-of(department-role, department-role).
description

�nd the top node in the hierarchy of component types

Sort As remarked in Sec. 7.4, the other components are sorted on the basis of the

amount of interaction that is required between certain types of components (see items 2-4

of the protocol).

knowledge-source sort

input-meta-class

prime ! department-role
components-types ! set of department-role

output-meta-class

component-types ! list of department-role
domain-view

sort predicate !

value of the attribute \level" of the relation

role-interaction(department-role, department-role)

description

a component type is placed before another component type of the

level of required interaction with the prime is higher

Plan assembly tasks In the task-knowledge speci�cation for the plan assembly

task we have to indicate how the three inferences can be sequenced to achieve the goal

of the task: the construction of a plan. The simplest solution would be to specify one

task structure for plan assembly. However, the select and sort inference are so tightly

connected, that we decided to view this as part of a separate sub-task order. A reason for

this more detailed task decomposition is that one can envisage that in other domains this

task could be realised with one inference.6

We thus end up with three tasks that specify the sequencing of inferencing in plan

assembly: plan assembly and two sub-tasks: (i) a classi�cation task, and (ii) an ordering

task.

The plan-assembly task is speci�ed as follows:

task assemble-plan

input: components

output: plan
control-terms:

component-types: set of components classes

task-structure

assemble-plan(components ! plan) =

classify(components ! component-types)

order(component-types ! plan)

6Although this may sound a bit altruistic, the whole idea of \model construction for reusability" is so

central to KADS approach that it tends to become a second nature for people involved in it.

Chapter 7. Applying KADS to the Sisyphus Domain 143

The classify task requires a repeated invocation of the classify knowledge source plus

a data operation (set uni�cation).

task classify
input: components

output: component-types

task-structure:

classify(components! component-types) =

FOREACH component 2 components DO

classify(component ! component-type)

component-types := component-type [component-types

For readability purposes, the names of knowledge sources are italicised in the task

structure.

The order task speci�es a sequence of the select and sort inference and appends the

output of both inferences to the resulting allocation plan.

task order
input: component-types

output: plan

control-terms:
prime: the component-type with the highest constraints

other-components: the components minus the prime component

ordered: the other components sorted with respect to constraints
in relation to the prime

task-structure

order(component-types ! plan) =
select-1(component-types! prime)

other-components := component-types/prime

sort(other-components + prime ! ordered)
plan := prime , ordered

The \/" symbol represents a subtraction operator on a set; the \," symbol is used here

to specify the order in a list. The resulting plan consists of an ordered list of component

types.

7.7.2 Assign resources In assign-resources components of one particular type are

allocated to a resource. Again, we turn to the protocol to study the inferences involved in

assigning resources.

� As was noted in Sec. 7.4, if it concerns a multiple assignment (more than one compo-

nent to one resource) the expert �rst groups these components into units of the right

size using a special type of requirement concerning component interaction (avoiding

con
icts and enhancing synergy, see protocol fragments 7-10). The type of assign-

ment (single or shared) is fully determined by the component type (e.g. a head of a

project should have a single room).

� The input for the actual assign task with respect to the components to be allocated

can be of two types (see the remarks in Sec. 7.4):

1. One single component (head of group, manager) or component group (secre-

taries).

2. A set of components (heads of projects) or component groups (researchers).

144 Pragmatics of the Knowledge Level

If the input is a set, the assignment order of its elements should be random, as the

expert indicates in the protocol explicitly that there is no particular reason for his

sequencing of, for example, assignments of head of projects and pairs of researchers

(fragments 4-6 and 8).

These observations lead us to a �rst re�nement of assign resources by introducing an

additional group step. This re�ned structure of the assign step in Fig. 7.3 is shown in

Fig. 7.5. The corresponding task-knowledge speci�cation is given below:

component
type

resource

grouping unit

allocation

group select
random

assign

FIGURE 7.5: First re�nement of the assign step of Fig. 7.3 by introducing a group step which generates

possible groupings and a random selection of a unit (a component or set of components to which one

resource will be assigned).

task assign-resources

input:

component-type: type of component allocated in this plan step

resources: available resources
output:

allocations

control-terms:
unit: a component or set of components

grouping: set of units

suitable-groupings: groupings satisfying particular constraints
task-structure

assign-resources(component-type + resources ! allocations) =

group(component-type ! suitable-groupings)

select-random(suitable-groupings! grouping)

REPEAT

select-random(grouping! unit)
assign(component-type + unit + resources ! allocations)

UNTIL grouping = ;

The group step is only interesting for components that share resources. For other

component types we assume it is a kind of no-op. The random selection of units in the

repeat loop ensures that, for example, heads of projects are really assigned in a random

Chapter 7. Applying KADS to the Sisyphus Domain 145

order. This also implies, that the speci�cation di�ers here slightly from the assignment

order in the protocol. There, a unit of two researchers is assigned directly after grouping.

As the expert indicates that there is no special reason for this (except maybe mental

hygiene) we have separated in our model the grouping of units from the actual assignment

of units

It might be useful to note that the introduction of a separate group step implies a

di�erentiation of allocation requirements into twomajor types: (i) requirements concerning

interaction of components with respect to one resource (con
icts, etc.), and (ii) resource-

speci�c requirements (room preferences, etc.). This is in fact a role di�erentiation at

the level of the model of expertise that can make the resulting system more e�cient

(cf. Sec. 2.4). For example, a computational technique implementing one of these sub-

tasks would need to handle less requirements and operate on a smaller set of components

(because some of them are already grouped into units).

In the next sections, we study the group and the assign step in more detail.

7.7.3 Group When components are grouped together for joint assignments to one

resource, a di�erent kind of domain knowledge comes into play, namely knowledge about

possible e�ects of the joint usage of the resource. The expert tries to minimise negative

e�ects and support positive ones as much as possible. This grouping of components into

appropriate units (fragments 7-10 in the protocol) appears to be the only part of the

resource allocation process where the expert uses requirements based on properties of

individual employees: e.g. whether they smoke or on which project they work, etc.

Generating suitable groupings is typically a task where one would specify another prob-

lem solving method for a machine than the one the expert employs. The expert generates

in the protocol partial groupings based on the requirements. This partial grouping is in

fact one of a set of possible partial groupings. Given the limited size of human short-term

memory it is usually impossible to consider all possible solutions. For a machine however,

this storage problem does not exist. On the other hand, the somewhat ad hoc, intuitive

way in which the expert generates a grouping would be quite di�cult to model for machine

execution.

Thus, we decided to drop for this subtask the general guideline of modelling the expert

as closely as possible and model the grouping task as consisting of two types of inferences:

� A transform inference, which generates all possible groupings.

� A select inference which selects a subset of groupings that satis�es particular re-

quirements.

The transform inference is described below:

knowledge-source transform
input-meta-class:

component-type ! department-role

output-meta-class:
possible groupings: set of employee structures

domain-view:

-
description:

generate all possible groupings of components of this type

146 Pragmatics of the Knowledge Level

For the select inference (\select-2", to distinguish it from the previous select inference)

one has to decide what the requirements should be for suitable groupings. The following

types of requirements are mentioned by the expert:

� Con
icts The expert tries to minimise con
icts. Putting a smoker and a non-

smoker together is considered a major con
ict (fragment 7) and should have a high

impact. Putting a hacker and a non-hacker together is only a minor con
ict that

could be allowed if more important reasons exist for preferring such a grouping.

� Synergy The expert also tries to maximise synergy. Putting employees together

that work on di�erent projects is considered by the expert as an important type

of synergy (fragment 8). Also, grouping researchers working on similar subjects is

considered synergetic, although to a lesser degree (fragment 10).

The select inference speci�es the selection of a subset of groupings given one particular

criterion (some con
ict or synergy). Based on the observations above, we distinguish four

types of criteria: minimise major/minor con
icts and maximise major/minor synergy.

This choice would have to be veri�ed in future sessions with the expert (ke goal).

The dependencies between these two inferences, which constitute a re�nement of the

group step in Fig. 7.5, are shown in Fig. 7.6.

groupingcomponent
type

transform select-2

selection
criterion

maximize synergy
minimize conflict

possible
groupings

grouping

suitable
groupings

FIGURE 7.6: Inferences for generating suitable groupings of components.

knowledge-source select-2 (select suitable groupings)

input-meta-class:
groupings ! set of employee structures

selection-criterion! a con
ict- or synergy-type

output-meta-class:
suitable-groupings! set of employee structures

domain-view:

major-con
ict ! smoker-and-non-smoker relation
minor-con
ict ! hacker-and-non-hacker relation

major synergy ! on-di�erent-project relation

minor-synergy ! works-with relation

description:

generate the subset of all possible groupings

that minimises some con
ict or maximises some type of synergy.

Chapter 7. Applying KADS to the Sisyphus Domain 147

This distinction between four di�erent types of criteria can be considered as an example

of inference di�erentiation (cf. Sec. 5.3 and Fig. 5.12): the select-2 inference can be

di�erentiated into four sub-types each using a di�erent type of criteria.

In the task-knowledge speci�cation of group we have to decide in which order these four

possible instantiations of the select-2 inferences should be executed. The order \avoid ma-

jor con
ict, increase major synergy, increase minor synergy, avoid minor con
ict" seemed

to conform most to the way the expert solves the grouping problem. Again, this hypothesis

would need to be veri�ed (ke goal).

task group

input:
component-type: the type of components being grouped

output:

preferred-groupings: the optimal sub-set of groupings given the selection criteria
control-terms

possible-groupings: all possible groupings of the components of this type

task-structure

group(component-type ! suitable-groupings) =

transform(component-type ! possible groupings)

select-2(possible-groupings + minimise(major-con
ict)! preferred-groupings)
select-2(preferred-groupings + maximise(major-synergy) ! preferred-groupings)

select-2(preferred-groupings + maximise(minor-synergy) ! preferred-groupings)

select-2(preferred-groupings + minimise(minor-con
ict)! preferred-groupings)

In Appendix B (Sec. B.5.2) a sample trace is listed of the execution of the group

task for the researchers in the Sisyphus data set. The transform inference generates 105

possible groupings. Avoiding major con
icts reduces this set to 15. Maximising synergy

by putting people on di�erent projects together reduces this set further to 10 possible

groupings. Maximising synergy by grouping people that work on similar subjects reduces

the set of ten to two groupings. The last inference (reducing hacking con
icts) has no

e�ect in this particular case.

The two groupings generated by the program di�er slightly from the grouping generated

by the expert. This is due to the fact that we assumed that the \works-with" relation in

the sample data set represented the notion of working on similar subjects that the expert

talks about, Probably, this was not a correct assumption and should be noted as a ke

goal. However, this type of re�nement does not a�ect the structure of the model and can

be carried out in a later knowledge-re�nement phase.

7.7.4 Assign In the assign task resources are allocated to components or groups of

components on the basis of various requirements. We distinguished two types of such

requirements:

1. Resource speci�c requirements Requirements about a resource independent of other

allocations: required size, required location, etcetera.

2. Positional requirements Requirements about a resource that are dependent on other

allocations: e.g. a room is required as close as possible to the head of group.

These requirements are the same for every component of a particular type.

148 Pragmatics of the Knowledge Level

Thus, we de�ned two select inferences select-3 and select-4 each selecting a subset

of resources that respectively satisfy resource-speci�c and positional requirements. The

select-4 inference has as an additional input the current set of allocations.

Fig. 7.7 shows the dependencies between these two select inferences. This �gure rep-

resents a further detailing of the assign step in Fig. 7.5.

unit

resource

select-4select-3

set of
resources

allocation

(group of) component

suitable resources

avalilable resources

FIGURE 7.7: Inferences for resource selection.

knowledge-source select-3 (select on resource requirements)

input-meta-class:

component-type ! department-role

resources ! set of rooms

output-meta-class:
suitable-resources! set of rooms

domain-view:

resource-requirement ! room-preference relation
description:

select the subset of resources that satis�es

resource-speci�c requirements

knowledge-source select-4 (select on positional requirements)
input-meta-class:

component-type ! department-role

resources ! set of rooms
output-meta-class:

suitable-resources! set of rooms

domain-view:
resource-requirement ! near-to-preference relation

description:

select the subset of resources that satis�es
positional requirements

Chapter 7. Applying KADS to the Sisyphus Domain 149

Note that the unit to which a resource will be assigned is input to neither of the

two inferences. This is consistent with the fact that resources are only selected based on

requirements connected to a component type. The main decision that has to be taken

when de�ning control over these inferences, is which one should be executed before the

other (or maybe in parallel). In the current task structure select-3 is executed before

the select-4 inference. This implies that we give a higher priority to a resource-speci�c

requirements. If, after execution of both inferences, more than one resource is considered

suitable, one is selected at random.

task assign

input

component-type:

unit: the component or group of components that to which a resource is assigned

resources: available resources

allocations: current allocations

output

resources: available resources
allocations: current allocations

control-terms: =

task-structure

assign(<component-type + unit + allocations + resources ! allocations + resources)

select-3(component-type + resources ! suitable-resources)

select-4(component-type + suitable-resources + allocations ! suitable-resources)

select-random(suitable-resources! resource)

allocations := < unit, resource > [allocations

resources := resources/resource

In Appendix B (Sec. B.5.3) a sample trace is listed of the execution of the assign task

for the manager. In the example, select-3 generates four suitable rooms: the four small

rooms. Select-4 selects from this subset the room closest to the one allocated to the head

of group.

The full inference structure that resulted from the model construction process for

this model of resource allocation is shown in Fig. 7.8. Fig. 7.9 shows the resulting task

decomposition.

7.8 Operationalising the Model of Expertise

In this section we describe some aspects of the design and implementation of a system that

implements the behaviour speci�ed in the model of expertise. In the design of the system

we follow the structure-preserving principle as de�ned on Ch. 6: all relevant elements of

the conceptual model should map onto clearly identi�able constructs in the system. The

advantages of such a design approach are (see also Sec. 6.3):

� It simpli�es the implementation of an explanation facility that enables the user

and/or the expert to trace the system's execution in the vocabulary of the model of

expertise. Although we have not build a graphical interface for this particular case,

we have tried to ensure that all the necessary anchor points for such an extension

are present.

� It provides clear routes for re�ning and/or extending the system, such as:

150 Pragmatics of the Knowledge Level

component component
type

component
type

list of
component

types
classify

select-1

sort

prime

component
type

transformselect-2

selection
criterion

maximize synergy
minimize conflict

grouping groupingsuitable
groupings

unit

resource

select-4select-3

set of
resources

allocation

(group of) component

suitable resources

avalilable resources

possible
groupings

select
random

select

FIGURE 7.8: Inference structure for resource allocation in the o�ce-assignment domain. The �gure sum-

marises the results of the various decompositions and re�nements of the �rst model in Fig. 7.3.

1. adding/modifying domain knowledge such as other con
icts or room require-

ments;

2. changing the control of task execution;

3. replacing computational techniques;

4. introducing additional tasks and inferences such as for veri�cation and revision.

No special-purpose tools were used in the development of this system. Also, the fact

that no run-time interaction with external agents such as a user is required simpli�es the

system development. The chosen environment was the swi-prolog system [Wielemaker,

1991], mainly for pragmatic reasons. The system architecture is an instantiation of the

skeletal architecture described in Sec. 6.4. Modules were used to support the separation

of various elements of this architecture (see Fig. 6.5). Fig. 7.10 gives an overview of the

various Prolog modules. The source code of the application plus some example traces can

be found in Appendix B. A synopsis of the contents of each module is given in the rest of

Chapter 7. Applying KADS to the Sisyphus Domain 151

allocate

assemble
plan

assign
resources

classify

select-1 sort

group assign

select-3 select-4classify

order

select-2transform

FIGURE 7.9: Task decomposition of the o�ce-assignment problem. Italic names denote knowledge sources.
Two trivial select inferences (select-next and select-random) have been left out

this section.

Task-declarations, inference-declarations and domain-theory These three

modules contain an almost direct translation of the contents of the model of expertise

task into a prede�ned format of Prolog clauses.

Below, the task declaration of the classify task is listed, It is an almost direct mapping

of the description given in the previous section. The data operations in the original task

structure (set membership, set addition) was translated into the format of the access

functions de�ned in the module task-working-memory (see below).

task(classify).

task_input(classify, 'components').

task_output(classify, 'component types').

task_structure(classify,

(forall(data_operation(member, components, C),

(exec_inference(classify, [C], CType)

, data_operation(add, 'component types', CType)

))

)).

An inference declaration is described in a similar fashion. The only di�erence is that

all mappings from inference-level names to domain-speci�c constructs are speci�ed in a

separate module domain index (see below). The example below shows the Prolog facts

associated with the classify inference:

% inference(Internal name, External name)

% metaclass(Inference, Input/Output, General name, Specialised name).

% domain_view(Inference, , Inference knowledge).

inference(classify, 'Classify components').

152 Pragmatics of the Knowledge Level

task
interpreter

task
working memory

task
declarations

inference
functions

inference
methods

inference
declarations

domain
access

domain
theory

domain
data

domain
index

inference
activation

Legend:

module 1 module 2

Module 1 is imported into
module 2

module

module

Generic module

Application-specific
module

main

FIGURE 7.10: Import relations between Prolog modules of the Sisyphus system.

metaclass(classify, input(1), component, _).

metaclass(classify, output, component_type, _).

domain_view(classify, relation(type_association, component, component_type)).

The domain-theory module de�nes a language on top of Prolog which allows the dec-

laration of concepts, instances, sets and various types of relations and also the possibility

of de�ning properties for each of these constructs (not just for concepts). In addition, it

is possible to specify semantic information about relations (associativity, transitivity) and

sets (cardinality).

This language was used to describe the domain schema as presented in Fig. 7.2 and also

the actual domain knowledge (concept hierarchies, relation tuples, de�nitional axioms).

An example fragment of the representation of the domain knowledge used by the classify

inference are listed:

Chapter 7. Applying KADS to the Sisyphus Domain 153

% concept(Concept name, Supertyes)

% property(Concept, Property name, Valueset)

% relation(Relation name, Type first argument, Type second argument)

% tuple(Relation name, [First argument, Second argument])

concept(employee).

property(employee, hacker, bool).

property(employee, smoker, bool).

concept(department_role).

concept(head_of_group, [department_role]).

concept(manager, [department_role]).

concept(secretary, [department_role]).

concept(head_of_project, [department_role]).

concept(researcher, [department_role]).

relation(employee_role, instance(employee), department_role).

tuple(employee_role, [Employee, head_of_project]) :-

get_instance(project, Project),

get_value(Project, size, large),

tuple(head_of, [Employee, Project]).

tuple(employee_role, [Employee, researcher]) :-

tuple(works_on, [Employee, _SomeProject]),

\+ tuple(employee_role, [Employee, head_of_project]),

\+ tuple(employee_role, [Employee, head_of_group]).

Task-interpreter and task-working-memory The task interpreter module exe-

cutes the task structures de�ned in the module task-declarations and stores intermediate

results in data stores. These data stores and their access operations (cf. the data-operation

clause in the Prolog task structure above) are de�ned in task-working-memory. The im-

plementation supports three types of working-memory data structures: set, list (= sets

with an ordering relation, used for example to represent the allocation plan) and a single

object.

Inference-functions, inference-methods, and inference-activation The mod-

ule inference functions de�nes for each knowledge source how inference methods should be

activated to realise the inference. In addition, it retrieves the necessary domain knowledge

by calling domain access functions. In fact, the classify inference function only retrieves

domain knowledge:

inference_function(classify, [In], Out) :-

domain_retrieval(find_one, type_association, {In, Out]),

The six other inferences in the o�ce-plan model are realised through four inference

methods (see Table 7.2). The partition-set method is used to realise three select infer-

ences, all selecting a subset based on some criteria. All inference methods are de�ned in

the module inference-methods. Ideally, one should have a large library available of such

methods.

The module inference-activation contains the generic part of the inference-functions

module (e.g. how to produce trace information).

154 Pragmatics of the Knowledge Level

Method Method description Used for

Hierarchy search Supports search in hierarchical relations, in this case �nd-
ing the root node of the hierarchy

select-1

Sorting Supports sorting given a predicate that compares two

members of the set being sorted (built-in SWI-Prolog

predicate)

sort

Pair permutations Generates all possible permutations of pairs of set

elements

transform

Partition set Partitions a set into an ordered list of subsets based on

a predicate that assigns a rating number to each element

of the set. The method can be used to either maximise
or minimise this rating.

select-2

select-3

select-4

TABLE 7.2: Inference methods used in the implementation of the Sisyphus model

Domain-access and domain-index The domain-access module de�nes a number

of access functions for the domain knowledge base. The module uses the indexing infor-

mation de�ned in domain-index to map inference-level names onto domain-speci�c ones.

The access functions are used by the inference functions to retrieve domain knowledge (cf.

domain-retrieval in the example inference function above). This is a typical part of kbs

from which one abstracts in the model of expertise: it is speci�c for the representation

chosen in design.

The domain index is a specialisation of the meta-class and domain view mappings

de�ned in the model of expertise. These last ones are typically de�ned in a sloppy manner

during analysis. Below the mappings used by the classify inference are listed:

domain_index(entity, component, [instance(employee)]).

domain_index(entity, component_type, [concept(department_role)]).

domain_index(relation, type_association, [relation(employee_role)]).

Domain data This module contains the example data set provided for the Sisyphus

problem in the format of the knowledge base representation used in the module domain

theory: (i) employee, room and project instances with their associated property values,

and (ii) some relation tuples that are not part of the domain theory: employee-project

tuples and some employee-role tuples. Some sample data:

instance(employee, 'Werner L.', [smoker = false, hacker = true]).

instance(project, 'RESPECT', [size = medium]).

tuple(works_on, ['Werner L.', 'RESPECT']).

tuple(employee_role, ['Eva I.', manager]).

Main This module is the central module that invokes the top-level task. It could

contain in future versions some additional strategic knowledge.

7.9 Discussion

How general and/or reusable is the model? A major assumption in kads is

that the description of task and inference knowledge is su�ciently domain-independent to

Chapter 7. Applying KADS to the Sisyphus Domain 155

have the potential of being reused in a similar task domain. With regard to the model that

was constructed for the o�ce-assignment domain, the following tentative observations can

be made:

� The notion of plan representing an ordering of requirements seems to be a quite

general one: it reoccurs in many constructive task-domains.

� The di�erentiation into various types of requirements can be useful. In some domain,

e.g. allocating air planes to gates, the component-interaction requirements will not

be relevant (only one plane per gate), thus leading to a simpli�ed version of this part

of the inference structure (the grouping inferences do not have to be included).

� The o�ce-assignment domain contains a number of simpli�cations that could well

not be present in other domains and thus may lead to more complex models, e.g.:

{ No time considerations come into play (no existing allocations, no planning of

future allocations). This could be very important in a domain such as allocating

air planes to gates.

{ Preferences of individual components are not considered in the selection of

suitable resources.: only preferences of types of components.

� An obvious shortcoming of the model is that it covers only the propose task. In

most domains, an iterative revision process is required.

What would be needed to include the revisions in this model? The inclusion of a

separate revise task and the additional control can easily be achieved by de�ning

an additional task on top of propose-allocations which activates both the propose

and the revise task. The main question is whether the revisions would require a

di�erent structure of the propose task. Some revisions can be achieved by relaxing

the constraints, i.e. changing the domain theory and re-activating the propose task.

For example, if not enough single rooms are available for all heads of projects, a

revision might be to consider one of them (temporarily) as an ordinary employee.

However, the nature of the revise task needs to be studied in more detail before a

de�nite answer can be given,

Concerning the reusability of the domain knowledge, it can be said that the description

of employees, rooms, projects, and department roles has a quite general
avour. On the

other hand, some relations such as room preferences are rather speci�c for this task-

domain.

Comparison with other approaches This exercise has made clear that there is

quite some overlap between various approaches to modelling problem solving. As shown

in this chapter, the problem solving methods described by Chandrasekaran (1988, 1990)

and Marcus & McDermott (1989) could be used as input for a kads modelling enter-

prise. We see two major di�erences between the Generic Task approach (as described in

Chandrasekaran, 19907) and kads:

7The description given in this article is much more conceptual and therefore better comparable to KADS

than other publications.

156 Pragmatics of the Knowledge Level

� The Generic Task approach makes the underlying problem solving method explicit

(e.g. goal decomposition). In kads this is implicit in the task knowledge description.

� In the Generic Task approach only the method description is domain-independent:

its application to a task-domain is, unlike kads, described in domain-speci�c terms

[Allemang, 1991]. This limits the reusability of the resulting model.

In the computationally-oriented approaches, the underlying assumptions about the

reasoning techniques supported by the approach tend to bias the problem solving model.

For example, in a pure constraint-satisfaction approach the idea of grouping will usually

not be considered and will also not be easy to include.

Weak points of the approach In this application of kads, some weak points that

have already been pointed at before (see Sec. 3.8), become very clear:

� If no interpretation model is available, the knowledge engineer has to construct a

model almost from scratch.

� The typology of knowledge sources described in Breuker et al. (1987), and used quite

rigorously in this chapter, does not provide always appropriate distinctions between

inferences. For example, knowledge sources of type select appear in many places in

the model presented and range from trivial selections to inferences involving complex

knowledge structures (select 2-4).

Acknowledgement Werner Karbach provided valuable comments on an earlier version

of this chapter.

Chapter 8

Comparing KADS to Conventional

Software Engineering

In this chapter, a comparison is made between KADS and two leading software-engineering methodologies:

Structured Analysis & Design and the Object Modelling Technique. In the comparison the emphasis lies on

similarities and di�erences in analysis: the process of describing what the system should do. We compare

the approaches with respect to three di�erent perspectives on modelling a system: the data perspective,

the functional perspective and the control (or: dynamic) perspective. The study shows that, though

terminology is di�erent at some points, there are quite a number of similarities between the approaches.

We also study some important di�erences. We discuss some lessons that might be learned from these

di�erences. A common topic that arises is that of reusability.

This chapter will be published in a collection of articles on KADS. It is co-authored by Bob Wielinga.

Reference: Schreiber, A. T & Wielinga, B. J, (1993). Comparing KADS to conventional software engi-

neering In Schreiber, A. T., Wielinga, B. J., & Breuker, J. A., editors, KADS: A Principled Approach to

Knowledge-Based System Development. Academic Press, London.

8.1 Introduction

Knowledge engineering (ke) and conventional software engineering (cse) are closely re-

lated �elds. Although both �elds emphasise di�erent aspects of the system development

process, there is no sharp boundary between conventional software systems and knowledge-

based systems. The main features that distinguish a kbs from a conventional system are

often said to be the nature of the task (problem solving) and the explicitness of knowledge

(the knowledge base). But with the growing complexity of conventional systems, the bor-

derline is at most vague. Also, the tendency is to use kbs applications not as stand-alone

applications, but in combination with other, more conventional, applications.

The aim of this chapter is twofold:

1. To identify bridges between kads and cse methodologies: how do models, terms,

techniques etc. map from one approach to another.

2. To identify common themes and suggest areas in which results achieved in one �eld

could be of use for research in the other �eld.

Both ke and cse are still very much under development and sometimes the respective

research communities seem to be more apart than ideally should be the case.

158 Pragmatics of the Knowledge Level

Given the context of this thesis, we limited the scope of comparison to the analysis

stage and the role of the analysis results in system design. In Sec. 8.2 we discuss the

type of analysis and design models that are distinguished in the approaches. In Sec. 8.3

three basic perspectives on describing a system are identi�ed: the data, the functional and

the control perspective. Sec. 8.4 discusses for each of the three perspectives the type of

modelling techniques advocated by the approaches. Sec. 8.5 contains a brief discussion on

the role of the analysis model in the design process. Sec. 8.6 summarises some conclusions

with respect to the points raised above: bridges and cross-fertilisation.

The comparison is made with an emphasis on the content of the models and the

modelling languages and methods, much less on the modelling process. The reason is

that both in kads and in cse the descriptions of the actual modelling process are not

prescriptive and often vague. Although Ch. 5 gives some indications about the modelling

process in kads and although there exist cognitive studies of the modelling process in cse,

a more thorough analysis is needed for a detailed comparison.

In this study we have limited the comparison to two examples of cse approaches, each

representing a leading development paradigm: the functional paradigm and the object-

oriented paradigm. The example functional approach is Structured Analysis and Design

which appears to be the leading methodology in this area. The major source of refer-

ence used in this comparison is the latest book on \Modern Structured Analysis" (msa)

[Yourdon, 1989b].

In the object-oriented area the choice was di�cult. There is an abundance of books

and articles on various
avours of \object-oriented". We have chosen the omt (Object

Modelling Technique) methodology [Rumbaugh et al., 1991] as the example object-oriented

approach for this study, because it assumes an object-oriented view point, but covers also

many other aspects of the development process.

8.2 Models Distinguished

In this section we look at (i) what kind of models are being distinguished in kads and

cse during analysis and design and (ii) what these models describe.

MSA In [Yourdon, 1989b; Chapter 17] two modelling approaches are sketched: the

classical modelling approach and a more recent approach.

In the classical approach, four system models are important: two \physical" models,

and two \logical" models. Physical models describe the detailed implementation of a

system; logical models focus on the essential requirements of these systems. In other

words, a logical model describes the what and a physical model describes the how. A

further distinction is made between current and new models. The current physical model

and the current logical model describe the current situation: the real world (organisation,

enterprise, department, task) in which system development will be undertaken. The new

physical model and the new logical model describe the target system to be developed,

including its new1 environment.

1This is consistent with observations that the introduction of new automated functions within an

organisation often involves new distribution of tasks

Chapter 8. Comparing KADS to Conventional Software Engineering 159

Yourdon argues that this classical approach has failed, because in many cases it has

proven di�cult to build models of the current situation. Often, an enormous amount of

time is spent on analysing the current situation. Especially, the construction of a current

physical model in full detail is a time-consuming process, which only marginally pays o�

in later stages of the project.

Based on these observations, Yourdon argues that system development should focus

more on modelling the new situation, and especially on the new logical model. He calls

this model the essential model. He characterises the essential model as follows [Yourdon,

1989b; p. 323]:

\The essential system model is a model of what the system must do in order to

satisfy the user's requirements, with as little as possible (and ideally nothing)

about how the system will be implemented."

Two sub-components are distinguished in an essential model:

� The environmental model de�nes the system boundary: what is the relation of the

system with its environment.

� The behavioural model de�nes the required internal behaviour of the system necessary

for performing its intended function in the environment,

The new physical model takes the role of the design model.

OMT omt describes two models: the analysis model and the design model. The

analysis model consists of three submodels: the object model, the dynamic model and the

functional model. Whether this analysis model is a model of the current situation or the

future situation is not completely clear. Some quotes from [Rumbaugh et al., 1991]:

\Starting from a statement of the problem, the analyst builds a model of

the real-world situation showing its important properties." (p. 5).

\During analysis, a model of the application domain is constructed : : :"

(p. 17)

\The analysis model is a concise, precise abstraction of what the system

should do, not how it will be done. The objects in the model should be

application-domain concepts and no computer-implementation concepts such

as data structures \ (p. 17)

From the last quote, it can be concluded that the omt analysis model is very similar

to what Yourdon calls the essential model. The omt analysis model should describe what

the system should do, independent of how it will be realised in the artefact.

KADS Models distinguished in kads are brie
y described in Ch. 3. Fig. 3.2 in that

chapter gives an overview on these models. We focus here on the main models relevant

for a comparison with the models de�ned in cse.

� The task model de�nes a top-level decomposition of tasks to be carried out in the

application domain, together with their input-output relations. In addition, the task

160 Pragmatics of the Knowledge Level

model speci�es the task distribution: an assignment of tasks to agents: (i) the system

to be developed, (ii) users, and (iii) possibly other automated systems. The task

model thus describes, from a high-level point of view what is called the automation

boundary in cse.

� The model of expertise describes for those tasks assigned solely to the system2 the

required internal behaviour of the system needed to carry out these tasks. The

model of expertise is a so-called ` `knowledge-level model" [Schreiber et al., 1991a]: it

describes the required problem solving behaviour in the vocabulary of users /experts

and it abstracts from implementation details.

� The model of cooperation provides a description of those tasks that exchange infor-

mation across the system boundary: e.g. require interaction with the user or an

external system. It also abstracts from implementation details.

� Together, the model of expertise and the model of cooperation form the conceptual

model. This conceptual model contains a complete speci�cation of the functionality

provided by the system, in implementation-independent terms.

� The design model speci�es how this conceptual model will be realised in the artefact:

what computational and representational techniques are needed to implement the

requirements implied by the conceptual model.

Discussion It will be clear that, although terminology is di�erent, there are many

similarities between cse and ke with respect to the models being distinguished. These

similarities are summarised in Table 8.1

MSA OMT KADS

essential model analysis model task model +
conceptual model

environmental model part of task model +
analysis model model of cooperation

behavioural model part of model of expertise
analysis model

new physical model design model design model

TABLE 8.1: Correspondences between models in the three approaches.

From this table it can be concluded that models distinguished in cse and kads are

closely related. One question that comes up when inspecting this table is why a separate

task model is considered necessary in kads. The reason for this is that kads distinguishes

two stages in task description. The purpose of the �rst stage (described in the task model)

is to decompose the application task down to the level where generic problem solving tasks

can be identi�ed. kads provides a set of reusable templates for a number of those generic

tasks, such as diagnosis, monitoring, assessment, repair, etc. The generic tasks provide

2When we use the term \system" we always mean the target system to be developed, unless explicitly

stated otherwise. The simplifying assumption is made here that the system development process is aimed

at one single application.

Chapter 8. Comparing KADS to Conventional Software Engineering 161

the starting point for the second stage: the detailed analysis of a problem solving task

which is described in the model of expertise (and the model of cooperation).

Another question concerns the problem whether the analysis models describe the cur-

rent or the future situation. The position taken in msa is that one should concentrate on

the future situation. Although this has been a point of discussion for many years in kads

(see Sec. 3.2) the current position is that the �nal conceptual model also is a model of the

future situation. The position of omt appears to be close to that of msa as well.

8.3 Modelling Framework

One can take three basic perspectives when modelling a system [Yourdon, 1989a; p. 219]

[Rumbaugh et al., 1991; p. 17]:

Data perspective Modelling the essential information that one needs to represent in the

system.

Functional perspective Modelling the functions and the
ow of data between functions.

Control perspective Modelling the dynamic, time-dependent, behaviour of the system.

Yourdon remarks [Yourdon, 1989a; pp. 218-222]3 that many of the debates in soft-

ware engineering have been about the \right" perspective. Traditionally, the information

modellers argue that one must start with describing the data perspective because the

data form the most stable part of the application. The data-
ow adepts claim that data

representation is so dependent on the way it is used that one should start with func-

tional decomposition. People working on real-time systems claim that neither is the right

approach for this type of system: a control-oriented modelling approach is required.

In Yourdon's view, these debates about the right perspective are fruitless in the sense

that there does not exists a single perspective that is better than another for every appli-

cation. The right perspective varies with the nature and the complexity of the application

domain. In some domains, such as large database applications, the structure of the infor-

mation is complex and the functions relatively simple. In real-time systems, the dynamics

of the system are often the most complex part. Also, given the increasing complexity of

systems being built, there now tend to be more and more applications in which all three

perspective are (almost) equally important.

The omt analysis model consists of three sub-models (object model, dynamic model

and functional model) each representing one of the perspectives. The msa analysis model

does not contain an explicit representation of the three perspectives. The kads model of

expertise can be viewed as supporting an integrated description of the three perspectives

(see also Ch. 6, Table 6.1), although this is not an articulate postulate of the description

of the model components given in Ch. 3.

In the next section we compare the approaches with respect to the modelling techniques

o�ered for modelling the three perspectives during analysis. In addition, we study the way

in which the connection between perspectives is modelled.

3These remarks are made in a chapter of Managing the structured techniques and do not come from the

book on MSA.

162 Pragmatics of the Knowledge Level

8.4 Modelling Techniques

8.4.1 Data perspective

OMT omt o�ers an extensive (graphically-oriented) object-modelling language

based on constructs developed in semantic database modelling. The main ingredients

of this language are:

� Object class & instance The object is the central entity in the data model. An

object class describes the structure of a set of object instances through the de�nition

of attributes (\properties") and operations (\methods") for objects in this class.

� Association & Link A link is a connection between object instances. An association

describes the structure of a set of links between object instances (one could think of

it as a link class). For associations, attributes and cardinality constraints (in omt

\multiplicity") can be de�ned that apply to links in this class.

� Aggregation Aggregation provides a way of describing part-whole relations between

objects, e.g. a mixer consists of a vessel and an agitator. It is in fact a special type

of association with additional semantics.

� Generalisation & Inheritance Generalisation refers to a hierarchical organisation of

object classes to capture similarities between objects. Inheritance refers to the fact

that this hierarchy can be used to inherit object class de�nitions such as attributes

and operations. omt allows various types of generalisation/specialisation such as

extension and restriction (similar to the notion of di�erentiation and value restriction

in kl-one [Brachman & Schmolze, 1985]). It also supports multiple inheritance.

� Module A module provides a way of grouping object classes that naturally belong

together (e.g. through various associations), without imposing the semantics of

aggregation.

� Constraints Constraints are used to express features of one or more elements of

the data model that cannot be represented with the constructs mentioned above.

Simple constraints are annotated in the data model using semi-natural language

(these strings could contain equations etc.). According to omt, complex constraints

should be placed in the functional model.

MSA msa provides two modelling tools for describing the data perspective: the data

dictionary and the Entity-Relationship Diagram (erd).

The data dictionary consists of a set of structural descriptions of the basic data elements

that are relevant in a particular application. For example, a data dictionary could contain

an entry for person-name and a description of its internal structure (title + �rst name +

optional middle name + last name, each conisting a some sequence of characters).

The erd describes the general structure of entries in the data dictionary and their

interrelationships. The erd's used in msa support a subset of the modelling constructs

provided by omt, notably entity classes with attributes (similar to object class de�nitions

without operations), relationships (associations), and sub-supertype relations (generalisa-

tion & inheritance, but with less expressive power than provided by omt).

Chapter 8. Comparing KADS to Conventional Software Engineering 163

KADS The kads modelling tools for describing the data perspective were discussed

extensively in Ch. 4. This data modelling language provides er-type constructs with gen-

eralisation/specialisation and aggregation (part-of structures). In addition, kads provides

some constructs for modelling the structure of \rules" or `axioms": relations between ex-

pressions about entities. An example of such a relation is a causal relation. A causal

relation is not just a relation between two entities, but between state values of entities

(e.g. \if the lumen of a coronary artery is obstructed, then this may lead to necrosis of

the heart muscle"). A distinction is also made between relations between entity classes

and entity instances.

Discussion From the data perspective there do not seem to be many di�erences

between cse and ke. This is also clear from the literature on for example \expert database

systems" [Kerschberg, 1986]. There is a clear link between work on ai data modelling

languages such as kl-one and its descendents, and research on extensions of the er

approach in semantic database modelling.

Still, the emphasis in ke is slightly di�erent. An example of this can be found in

the e�orts in kads to describe rule and axiom schemata. In omt and msa this type of

information would either need to be described in the form of constraints (omt), which

are basically just textual annotations of the data model, or in the functional model. For

example, Yourdon proposes decision tables as a possible technique for describing a process

speci�cation (the description of the internal process of a function, see below) [Yourdon,

1989b; p. 219]. Decision tables constitute in fact sets of rules (see the example decision

table in Table 8.4.1). For a KBS application a schematic description in the data model

of the structure of this type of knowledge is crucial. This explains also the need for

additional vocabulary in the kads data modelling language, such as relations between

expressions. For example, the medication table can be modelled in the ddl (see Ch. 4) as

a relation between expressions about certain properties of patients (age, sex and weight)

and a medication.

1 2 3 4 5 6 7 8

Age > 21 Y Y Y Y N N N N

Sex M M F F M M F F

Weight > 150 Y N Y N Y N Y N

Medication 1 X X X

Medication 2 X X

Medication 3 X X X

No medication X X

TABLE 8.2: Example decision table (copied without permission from [Yourdon, 1989b]).

An important common theme is that of reusable data/knowledge bases. For example,

many companies are developing company-wide data models, that should be used by each

(new) application. In ai some e�orts have started to develop large reusable knowledge

bases. The best-known is the cyc project [Lenat & Guha, 1990]. Such large data or

knowledge bases require at least an expressive data modeling language such as omt and

kads o�er. But this is not su�cient. The methodologies o�er little guidance with respect

to the ontologies of such knowledge bases. The de�nition of generally-shared ontologies in

164 Pragmatics of the Knowledge Level

currently an important research topic.

8.4.2 Functional perspective

MSA In msa, the functional perspective is described using a \data-
ow diagram"

(dfd). A dfd consists of so-called ` `bubbles", representing functions, and data stores.

Functions and data stores are connected via directed links. These links represent data

ows and describe the input/output of a function. The name of the data
ow is written

on the link. Fig. 8.1 shows an example dfd. In addition, a dfd can contain \control

bubbles". These bubbles represent the link between the functional view and the control

view (see Sec. 8.4.3).

 findings hypotheses
generate

hypotheses
hypothesissymptom

data store
input

data flow
"bubble" data storeoutput

data flow

FIGURE 8.1: Example data-
ow diagram

Each function itself can be described in more detail in a separate dfd, thus giving rise

to a hierarchical dfd structure. A process speci�cation describes the internal structure of

a function that is not decomposed into sub-functions. msa suggests three main techniques

for writing process speci�cations:

1. Structured English This technique describes a procedure using a subset of English.

The aim of Structured English is to balance the formal properties of (procedural) pro-

gramming languages with the
exibility and readability of natural language. Struc-

tured English descriptions specify in an informal manner the algorithm that the

function uses to compute its output from the input.

2. Pre/post conditions Pre- and post conditions describe logical relations that must

hold between input data, output data and/or data stores. The main distinction with

Structured English is that one does not describe the algorithm itself.

3. Decision tables A decision table speci�es for each value of the input variables the

value of the output variable. A decision table represents in kbs terms a rule set (see

Table 8.4.1).

OMT omt basically applies msa techniques for describing the omt functional

model. The main di�erence lies in the fact that process speci�cations are described as

operations (methods) on an object class in the data model. omt advocates basically the

same techniques for describing process speci�cations (i.e. operations) as msa.

Chapter 8. Comparing KADS to Conventional Software Engineering 165

KADS The functional perspective in kads can be found in the task model and in

the model of expertise. The task model provides a top-level functional decomposition. The

task knowledge in the model of expertise details this decomposition to describe problem-

solving tasks (i.e. composite functions) and, at the lowest level of decomposition, knowl-

edge sources and transfer tasks (i.e. primitive functions). dfd's are not systematically

used in kads to describe the functional decomposition. The input-output dependencies

between the leaf functions are graphically described in an inference structure. An inference

structure can be viewed as a data-dependency diagram at the lowest level of functional

decomposition.

A �rst di�erence between the functional description in kads and in cse is that the

data elements in inference structures do not refer directly to elements of the data model

(entities, relations, etc.). Inferences in kads de�ne functional objects of which the name

re
ects the role that the object plays in the problem-solving process. The major reason

for introducing separate functional objects in kads is reusability. The functional objects

give a characterisation of the data in terms of the roles that these data elements play in

solving the application task. This creates the possibility of using functional descriptions

such as inference structures as templates for a class of application tasks with similar

characteristics. kads calls these reusable templates \interpretation models". See for a

more detailed discussion of interpretation models Ch. 3 and Ch. 5.

A second di�erence is that the kads knowledge sources are not described via detailed

process speci�cations. These leaf functions are described via the data-
ows and the un-

derlying domain knowledge used by the function. As pointed out in Sec. 6.4, the analyst

takes an automated deduction view on the primitive functions: is it clear that it is possible

to derive the input from the output plus the underlying domain knowledge? The speci�-

cation of the actual algorithm for computing the output is left for the design phase. This

approach is probably closest to the pre/post condition technique for writing process spec-

i�cations. This technique only describes logical relations between data elements involved

in the function.

A third distinction is that kads provides a typology of basic functions (see Sec. 3.5.1).

Each basic function should be an instance of one of these types. The current typology in

kads has however proved to be insu�cient for handling every possible function.

Discussion: data-function interactions The interaction between the data per-

spective and the functional perspective is probably one of the most critical points in the

system development process. Yourdon describes from his experience the frequently occur-

ring situation where two groups, an \information modelling" group and a dfd group, start

working in parallel on an application and end up with incompatible results. In ke this

dependency problem between data and function has been called the interaction hypothesis

[Chandrasekaran, 1988]: data cannot be described independent of its use.

In msa the data
ows and the data stores in the functional model refer directly to

elements in the data model. The situation is similar for omt. Direct links between the

data model and the functional model hamper the reusability of functions (and data).

The kads approach to connecting the functional perspective and the data perspective

is substantially di�erent from the cse approaches. In kads functional role names are

introduced in the functional model. The mapping of functional names onto elements of

the data model is speci�ed separately. The introduction of functional objects implies that

166 Pragmatics of the Knowledge Level

the functional description is not directly dependent on the data model. As remarked above,

this opens the possibility of reusing functional descriptions such as inference structures.

The tentative typology of primitive functions (knowledge sources) and the approach taken

to de�ne the internals of a primitive function (I/O plus static domain knowledge used)

also facilitates a concise description of the functional perspective.

This type of reusability is not present in msa. The simple case study of msa in

[Yourdon, 1989b; Appendix F] (the Yourdon Press application) contains 9 complex data-

ow diagrams and 23 pages of process speci�cations in Structured English. It appears

attractive to study whether kads-type techniques can be used in cse to reduce the e�ort

spent on functional descriptions in individual applications.

omt advocates reuse of functions by selecting (parts of hierarchical structures of)

existing object-class de�nitions on which operations are de�ned. There is however no

typology of primitive functions and no explicit relation between the type of task the

system has to perform and the objects to be reused.

8.4.3 Control perspective

OMT & MSA Both omt and msa employ state-transition diagrams for describing

the control (or \time-dependent behaviour") of the system. Sometimes, additional internal

control is speci�ed in process speci�cations, e.g. if these are described through structured

English procedures.

omt employs a comprehensive state-transition technique developed by Harel [Harel,

1987]. The msa diagrams support a simpler version. The omt state-transition diagrams

consist of six types of elements: states, state-transition links, events, conditions, activities

and actions. An (object) state is the set of attribute values and links held by an object

or an abstraction of it. A state-transition link is a directed dependency between states: it

indicates that one state can lead to another state. An event is something that happens at

some point in time; conditions are valid over an interval of time. Events and conditions

are used to indicate when a state change over a transition link takes place. For example,

a state \no sound" of an audio system changes into the state "sound" when the event

\play-button CD player pressed" occurs under the conditions that the power is on, a disc

resides in the CD player etc. Activities and actions are functions (i.e. operations on an

object). An activity is associated with a state: for example, in state s1, do activities a1

and a2 in sequence. An action is a function associated with a state transition. The omt

state-transition technique supports the speci�cation of concurrency and the partitioning

and levelling of diagrams.

In omt the connection between the control perspective and the other perspectives is

achieved through the activities and actions: these map onto operations of an object class

in the data (object) model. msa includes special \control bubbles" describing control

relations in the data-
ow diagram The process speci�cation of a control process is provided

by a state-transition diagram. The inclusion of control processes should ensure an adequate

connection between functional and control perspective.

KADS The task knowledge in the kads model of expertise uses a form of pseudo-

code to describe the internal control of a problem-solving task. This control procedure (the

Chapter 8. Comparing KADS to Conventional Software Engineering 167

\task structure") de�nes control dependencies between functions (sub-tasks, inferences)

involved in the task. Transfer tasks (functions that communicate with a user or another

system, see Ch. 3 and [de Greef & Breuker, 1992]) are used to indicate events, for example

those in which an external agent has the initiative (receive and provide, see Sec. 3.4.3).

In some applications the structure diagrams proposed by jsd were used instead of pseudo

code to describe task control [Readdie & Innes, 1987; de Greef et al., 1987]. Additional

control of the problem solving process can be speci�ed in the strategic knowledge (to

handle internal events such as impasses), but no particular formats are prescribed for

these descriptions.

The model of cooperation describes aspects of the control of transfer tasks , in partic-

ular the initiative (who is responsible for starting communication).

The connection of control and function is achieved by describing control as a part of

the task description.

Discussion In cse the description of control is focused on the relation between the

system and external agents (users, other systems). State-transition diagrams are especially

useful if the system interacts heavily with its environment and external events (e.g. user

actions, incoming data) strongly in
uence the activities to be performed by the system.

In contrast, the description of control in kads focuses on the internal control of system

behaviour. This is probably due to the particular characteristics of knowledge-based sys-

tems. Problem solving involves elaborate reasoning strategies which kads tries to capture

through the de�nition of task and strategic knowledge. In the model of expertise the em-

phasis lies on the internal control of reasoning. kads assumes that it is possible (at least

to some extent) to study the internal behaviour of the system (the model of expertise)

and the interactions with the outside world (the model of cooperation) in parallel.

While the kads approach may be su�cient for systems that work mainly in \batch-

mode" (e.g. certain diagnostic or con�guration systems), the vocabulary o�ered for de-

scribing control appears insu�cient for real-time kbs applications such as process control

systems. State-transition diagrams are more appropriate for these type of applications.

Integrating state-transition diagrams with the existing kads constructs can be achieved

easily, e.g. by de�ning tasks as activities or actions or by allowing pseudo-code descrip-

tions of the invocations of activities and/or actions. Given the growing complexity of

conventional systems, these extensions can be useful for these systems as well.

8.5 The Role of the Analysis Model in Design

In this section some brief remarks are made about the role of the analysis model in the

design process. As discussed in Ch. 6. kads strongly advocates a \structure-preserving"

approach to design: preserving the structure and the content of the information in the

analysis model during design and implementation. It was argued that this approach to

design facilitates code reusability, system maintenance, and explanation of the system's

behaviour in a for humans intelligible way.

Similar ideas are put forward in the object-oriented approaches to analysis. Some

quotes from omt:

\Optimization of the design should not be carried to excess, as ease of im-

168 Pragmatics of the Knowledge Level

plementation, maintainability and extensibility are also important concerns."

(p. 227)

\Object-oriented design is primarily a process of re�nement and adding

detail." (p. 228)

\Design decisions should be documented by extending the analysis model,

by adding detail to the object, dynamic and functional models." (p. 253)

In omt design is viewed as a process of adding detail to the three parts of the analysis

model. For example, additional classes may be introduced for optimisation, but may not

corrupt the original structure.

omt is not the only object-oriented approach that takes this point of view on design.

The object-oriented approach described by [Coad & Yourdon, 1991] views design along

similar lines:

\moving from ooa4 to ood5 is a progressive expansion of the model.

: : :The expansion is in contrast with the radical movement from data
ow

diagrams to structure charts : : : . Such a movement is abrupt and forever

disjoint: the designers get a hint from analysis and then go o� to the \real"

design. : : :Moreover, meaningful traceability - one which supports the process

itself { withers away." (p. 178)

In msa, analysis and design are viewed in a more traditional way. The functions in the

data-
ow diagrams are mapped onto modules in \structure charts". These modules are

reorganised on the basis of principles concerning coupling and cohesion of modules. No

explicit attention is given in this transformation to the preservation of information.

8.6 Conclusions

The aim of this comparison was twofold: (i) to identify bridges between the two �elds,

and (ii) to identify common research areas in which results from one �led could be of use

for the other �eld.

Bridges The common ground between cse methods and kads lies in the use of the

three perspectives: data, function and control. Each of the methods studied constructs

models along all three dimensions, albeit with a di�erent emphasis. Fig. 8.2 summarises

the various techniques that each method recommends for constructing models along each

dimension. In omt these perspectives are explicit sub-models of the modelling framework.

In the kads model of expertise, the three perspectives are integrated into one model. This

similarity of perspectives between cse and kads is in our view a strong indication that

kads is not just an ideosyncratic method for constructing kbs's, but is based on the same

foundations as conventional methods.

With respect to data modelling we have seen that kads and cse o�er similar con-

structs, based on techniques from semantic database modelling. The main di�erence lies

in the fact that in kads (and in ke in general) more information is viewed as being part

4Object-oriented analysis
5Object-oriented design

C
h
a
p
ter

8
.
C
o
m
p
a
rin

g
K
A
D
S
to

C
o
n
v
en
tio

n
a
l
S
o
ftw

a
re

E
n
g
in
eerin

g
1
6
9

time
dependent

view

functional
view

data modelling
view

Domain Schemata

Inference
Structure

Task
Structure

time
dependent

view

functional
view

data modelling
view

State
Transition
Diagrams

Data Flow
Diagrams

Object modelling
ER diagrams

MSA / OMT KADS

F
IG
U
R
E
8
.2
:
S
y
n
o
p
sis

o
f
th
e
m
a
in

in
g
red

ien
ts

d
escrib

in
g
th
e
th
ree

d
i�
eren

t
p
ersp

ectiv
es

in
M
S
A
/
O
M
T

a
n
d
in

K
A
D
S
.

170 Pragmatics of the Knowledge Level

of the data perspective. For example, part of the information present in process speci�-

cations such as decision tables is included in the data model. This explains the need for

additional vocabulary in the kads data modelling language.

With respect to the functional perspective it can be concluded that the concept of

tasks, inferences and inference structures is quite compatible with data-
ow diagrams.

The main di�erence is the extra layer of abstraction that kads through the functional

role names and the separate speci�cation of data-function mappings.

With respect to the control perspective we have seen that there is a di�erent emphasis

in ke and cse. In the �rst, the control description is focused on the internal control of

reasoning; in the latter the control mainly describes the interaction between the system

and the outside world.

Research topics The �eld of data modelling is clearly a common research area of

ke and cse. The development of data modelling languages which can be used for both

types of systems would facilitate the integratrion of kbs and conventional applications.

The study of reusable ontologies is a longer-term research goal. In principle, ontologies

can provide powerful support for data modelling.

It appears worthwhile to study whether the kads approach to functional modelling,

in which one abstracts from the data model and tries to de�ne types of functions, can also

be used in cse. This paves the way for reusing functional descriptions in a similar way as

provided by interpretation models in kads.

kads should consider whether it is useful to include techniques such as state-transition

diagrams to describe control, especially for real-time kbs applications.

Chapter 9

Di�erentiating Problem-Solving

Methods

Problem solving methods (PSM's) are important in constructing modular and reusable knowledge-based
systems, as they specify the di�erent types of knowledge used in knowledge-based reasoning, as well

as under what circumstances what knowledge is to be applied. We argue that there is a need for a

more rigorous description of PSM's than the prevailing verbal and/or computational descriptions, because
this facilitates clarifying, communicating and comparing problem-solving knowledge. In this chapter an

attempt is made to describe the Cover-and-Di�erentiate method for diagnosis in a more formal way, and

to compare this method to Heuristic Classi�cation. We bring to light considerable di�erences with the
heuristic classi�cation method, although in the original literature Cover-and-Di�erentiate was said to be

a specialised form of it. We are not claiming that our model is the only correct one. However, the account

given in this chapter can be a starting point for a precise, knowledge-level, de�nition of what methods like
Cover-and-Di�erentiate actually do.

This chapter is a revised version of a paper presented at EKAW'92. Reference: G. Schreiber,
B. Wielinga, and H. Akkermans. Di�erentiating problem solving methods. In Th. Wetter, K-D. Al-

tho�, J. Boose, B. Gaines, M. Linster, and F. Schmalhofer, editors, Current Developments in Knowledge

Acquisition - EKAW'92, Berlin/Heidelberg, 1992. Springer Verlag.

9.1 Introduction

A generally accepted principle underlying Knowledge-Based Systems (kbs) is that they

solve problems through the application of domain speci�c knowledge. On the basis of this

principle many useful systems have been developed [McDermott, 1988], some of which are

in operational use. However, the principle of problem solving power through application

of domain knowledge does not specify what the nature of the knowledge is that these

systems use and under what circumstances what knowledge should be applied, i.e. the

method of solving a particular problem through application of knowledge still needs to

be explicated. In recent work [McDermott, 1988; Clancey, 1983] several of such Problem

Solving Methods (psm's) have been described, but so far no comprehensive theory of psm's

has been put forward. The goal of this chapter is to investigate the nature of problem

solving methods through an analysis of methods that were used in some well known ai

programs. The application task is diagnostic reasoning. The example psm this chapter

focuses on is the Cover-and-Di�erentiate method [Eshelman et al., 1988; Eshelman, 1988].

172 Pragmatics of the Knowledge Level

We also illustrate how several methods, which are seemingly alike at the level of informal

description, can be compared and can be shown to be di�erent, when a more rigorous

PSM analysis method is applied.

What constitutes a psm? It is progressively becoming clear [Clancey, 1985b; Wielinga

& Breuker, 1986; Wielinga et al., 1992a; Steels, 1990] that there are a number of basic

ingredients that are needed in order to specify a problem solving method. These ingredi-

ents are types of knowledge which would be instantiated for each speci�c method. There

are at least the following types of knowledge required in the speci�cation of a psm.

1. Knowledge describing which inferences are needed in an application. Inferences (in

kads: \knowledge sources") describe the elementary reasoning steps that one wants

to make in some domain and the roles that pieces of domain knowledge that are

manipulated by the inferences play in the overall reasoning process (e.g. �nding

or hypothesis; in kads \meta classes"). The set of inferences is often graphically

represented in a diagram showing the input-output dependencies between inferences:

the so-called \inference structure".

2. Knowledge about the structure of the domain-speci�c knowledge required to per-

form inferences. For example, an inference in which quantitative data are abstracted

into qualitative �ndings requires domain knowledge which relates pieces of domain

knowledge that play the role of data and �ndings (e.g. de�nitions, generalisations

or qualitative abstraction relations [Clancey, 1985b]). This type of knowledge corre-

sponds to the notion of domain view in kads [Wielinga et al., 1992a].

3. Control knowledge which is used to determine how inferences are sequenced in a

particular situation. The notion of a task is used to structure this control knowledge.

A task de�nes a typical decomposition into inferences and/or sub-tasks together with

internal sequencing information.

The di�erent types of knowledge can be viewed as located in layers which have a object-

meta-like relation. An inference applies domain knowledge with a particular structure;

control knowledge invokes inferences.

Generally speaking, there are two ways in which psm's are described in the literature:

the informal description using either natural language or an informally de�ned graphical

notation [Breuker et al., 1987; Wielinga et al., 1992a], and a computational description,

which is formal and unambiguous, but di�cult to interpret and dependent on implemen-

tation details. Both ways of describing psm's make it hard to compare methods, let alone

to develop a theory of problem solving in kbs. There is a clear need for an intermediate,

formal but implementation-independent, description of psm's.

In this chapter we show how formal methods can support the de�nition of the di�erent

knowledge types required for speci�cation of psm's. There are several reasons why a

formal account of psm's is useful. First, formal models are a means for concise and precise

communication of psm's. Second, formal models help to identify distinguishing properties

of di�erent psm's and thus to compare them. A third reason is re-usability. When we

specify di�erent knowledge types in a modular way, modules can be re-used over di�erent

psm's. Such re-usability is of great practical importance for building kbs's. Last but not

least, formal approaches to modelling psm's can provide �rst steps towards a theory of

automated problem solving.

Chapter 9. Di�erentiating Problem-Solving Methods 173

9.2 Framework for Speci�cation of PSM's

In several recent papers [Akkermans et al., 1992; van Harmelen et al., 1990; van Harmelen

& Balder, 1992], we have developed and applied a logic-based framework called ML2,

which is based upon the kads approach and allows for a formal speci�cation of psm's. As

pointed out in the Introduction, we propose to de�ne a psm in terms of di�erent categories

of knowledge, categories that are also distinguished in the kads conceptual modelling

framework. Our speci�cation language ML2 has been designed such that these various

knowledge categories and types are expressed by means of di�erent formal constructs.

Basically, an ML2 description is a structure of logical theories. The choice of both the

logic and the structure has been derived from the nature of the various elements occurring

in the kads framework, as brie
y indicated below.

Categories of knowledge Our description of psm's will be in terms of di�erent cate-

gories of knowledge: domain, inference, and task or control knowledge. This cate-

gorisation recurs in ML2, each category being represented as a set of logical modules

of a certain structure. Thus, in an ML2 speci�cation the various categories occur as

separate components in a one-to-one relation to the `layers' of a kads conceptual

model.

Domain knowledge Domain knowledge is modelled in ML2 as a collection of logical

theories. Each theory consists of a signature and a set of axioms. The logical lan-

guage is usually �rst-order order-sorted predicate calculus (order-sorted fopc), but

it can be extended to include, for example, modal operators. Domain knowledge

can be structured, since ML2 allows for the modular combination of separate sub-

theories. Typically, such a subtheory or module corresponds to a speci�c domain

model. This modular structuring and recombination is done by means of simple

meta-theoretic operators, such as the import operator which generates the union of

two theory modules.

Inference knowledge Also the knowledge at the inference layer is speci�ed in terms of

a modular order-sorted fopc. The modular structure is such that the well-known

inference structure diagrams in kads and in ML2 are identical. Inference steps

(knowledge sources) and their inputs and outputs (metaclasses) are thus visible

in ML2 as separate components. Knowledge sources are speci�ed as full-
edged

logical theories, whereas metaclasses are mainly given by signature only (de�ning

the language used at the inference layer).

Task knowledge Task knowledge contains control and procedural aspects which cannot

be naturally modelled in terms of fopc. Therefore we use for these aspects a di�erent

logical language, viz. quanti�ed dynamic logic (qdl, a multi-modal logic) that is able

to speak about the execution of inference steps and has built-in notions of sequence,

iteration and selection. This qdl is a superset of the language used at the inference

layer such that task decompositions, structures and procedures can be written down

formally. Thus, it is possible to formally express procedural knowledge and have a

declarative semantics. However, in the present chapter we will mainly deal with the

domain and inference knowledge, and hardly touch upon the control aspects.

174 Pragmatics of the Knowledge Level

Links between categories In ML2 the relation between the domain and inference knowl-

edge is a meta-relation. This is a natural solution since the domain layer describes

the content of expert knowledge, while the inference layer speaks about the inferen-

tial use of the domain knowledge. The link between these layers is speci�ed in by a

so-called lift de�nition. It gives domain model statements a name at the inference

layer by establishing a naming relation. The mapping is achieved via sets of rewrite

rules. Such a user-de�nable naming makes it possible to give meaningful names to

domain knowledge elements that express the role that they play in the inference

process. In addition to meaningful naming, ML2 employs so-called re
ection rules.

For example, in the context of a speci�c inference step one can ask by means of a

re
ection rule whether a certain domain statement is present as an axiom or can be

derived. In the following we will see several examples of these speci�cation elements.

For a further technical discussion the reader is referred to the above-cited papers on

ML2.

This speci�cation framework will be used in the sequel for the description of psm's,

and in particular for our analysis of the Cover-and-Di�erentiate method.

9.3 A Model of Cover-and-Di�erentiate

In this section parts of a formal description in ML2 of the problem-solving method cover-

and-di�erentiate (c&d) are presented. The full formal description can be found in [van

Harmelen et al., 1990]. The information sources for this description [Eshelman et al., 1988;

Eshelman, 1988] do not supply a complete description of all the details of c&d. Parts of

the underlying speci�cation are thus a more or less \educated guess" about the workings

of c&d. The idea behind this description is to create a platform to discuss what psm's

like c&d actually do and to be able to compare them.

Note All free variables in the theories given below are implicitly assumed to be

universally quanti�ed.

9.3.1 Conceptual description of C&D Cover-and-di�erentiate [Eshelman, 1988] is

a problem solving method for diagnostic tasks. The main knowledge structure on which

c&d operates is a causal network. The nodes in this network are expressions about the

state of the system being diagnosed. Reasoning basically comprises two types of inferences:

cover inference steps in which the causal network is used in an abductive manner to

generate potential explanations for nodes that need to be explained, and di�erentiate

inference steps in which these potential explanations are con�rmed or discon�rmed by

applying additional knowledge in the network. c&d uses in its reasoning two general

principles: exhaustivity (every symptom should be explained), and exclusivity (a form of

Occam's razor: all things being equal, parsimonious explanations are preferred). The

solution that c&d comes up with is an explanation path from symptoms to (potentially

multiple) causes. The solution can be a partial one.

One of the points that triggered the work presented in this chapter is the following

quote from [Eshelman, 1988; p. 37]:

Chapter 9. Di�erentiating Problem-Solving Methods 175

\mole is an expert system shell that can be used in building systems that use

a specialised form of heuristic classi�cation to solve diagnostic problems."

In the comparison between Cover-and-Di�erentiate and Heuristic Classi�cation in

Sec. 9.4 we will come back to this statement and show that there are a number of funda-

mental di�erences between these two problem solving methods.

9.3.2 Structure of domain-speci�c knowledge in C&D

Concepts Two types of concepts are distinguished: states and quali�ers. States are

the nodes in the causal network. Fig. 9.1 shows the example causal network de�ned in

this section. The start-nodes in the causal network are the initial causes, the end-nodes

are the complaints or symptoms. and the intermediate ones are internal states. Quali�ers

are observations, that do not play the role of symptoms. These are used to qualify (or

disqualify) the \truth" of a state or of a causal relation between states.

coronary artery
obliteration

70%

coronary artery
obliteration

90%

coronary artery
obliteration

100%

myocardial
ischaemia

myocardial
infarction

myocardial
necrosis

retro-sternal
pain

angina
pectoris

blood CPK

physical state
stress

qualifier

initial causes

internal states

symptom

qualifier

FIGURE 9.1: Example causal network for Cover-and-Di�erentiate

Relations In c&d, two types of relations are distinguished between states and/or

quali�ers. These relations are represented in the domain theories as axioms.

Causal relations These relations de�ne a causal network from causes to symptoms, po-

tentially via intermediate states.

176 Pragmatics of the Knowledge Level

The theory causes shows some axioms representing causal relations in a domain of

ischaemic heart diseases1. The axioms can be read as \some state (may) cause some

other state". We use a modal operator 3 (\it is possible that") to indicate that a

state transition is possible, but not necessary.2.

theory causes

axioms

3 (coronary-artery-obliteration(70-percent)

! myocardial-ischaemia(present)) ;

3 (coronary-artery-obliteration(90-percent)
! myocardial-ischaemia(present)) ;

3 (myocardial-ischaemia(present)

! angina-pectoris(present)) ;
3 (angina-pectoris(present)

! retro-sternal-pain(present)) ;

coronary-artery-obliteration(100-percent)

! myocardial-necrosis(present) ;

3 (myocardial-necrosis(present)

! myocardial-infarction(present)) ;
3 (myocardial-infarction(present)

! retro-sternal-pain(present)) ;

Quali�cation relations States can be quali�ed through certain observations. The e�ect

of such a quali�er can be positive (a state becomes more likely) or negative (a

state becomes less likely). In a similar spirit, causal relations between states can be

quali�ed through observations. The e�ect of such a quali�er can be positive (a causal

relation becomes more likely) or negative (a causal relation becomes less likely).

theory manifestations

axioms

blood-CPK(high)

! myocardial-necrosis(present) ;

physical-state(stress)

! 3

(coronary-artery-obliteration(70-percent)

! myocardial-ischaemia(present)) ;

Lift de�nition The required domain structure for c&d is speci�ed by providing

meaningful names (see Sec. 9.2) for the domain speci�c axioms shown above. This is

done in a so-called lift de�nition. The connection between axioms and their names is

realised through a set of rewrite rules, that specify the relation between object-level (=

domain-speci�c) and meta-level (= psm-speci�c) knowledge structures.

In the lift de�nition domain-schemata below we show how the axioms of the theories

presented above can be mapped onto names on a meta-level. The names are in this case

1To save space, we have left out the declaration of the signature (sorts, constants, functions, and

predicates) and also of some import operations. For more details on these issues, see [Akkermans et al.,

1992]
2This use of modal logic presents no problems, as we do not deduce new theorems in this theory. See

also Sec. 9.3.3

Chapter 9. Di�erentiating Problem-Solving Methods 177

uninterpreted function terms such as cover-relation(S1, S2) and correspond to what we

call a meaningful name. The �rst argument of the mapping function lift in the rewrite

rules is the name of some object-level theory; the second argument speci�es an axiom

schema in this theory. The right-hand side of the rewrite rule maps instances of such a

schema onto names in the meta-theory, such as a complex term of type cover-relation.

lift-de�nition domain-schemata

from causes, manifestations

to cover-theory, anticipate-theory, prefer-theory, ...
signature

sorts:
% event has two sub-sorts

(event (state quali�er))

functions:
cover-relation: state � state ! ...

anticipate-relation: state � state ! ..

prefer-state: quali�er � state ! ..
rule-out-state: quali�er � state ! ..

prefer-connection: quali�er � state � state ! ..

rule-out-connection: quali�er � state � state ! ..
lift-variables: P1, P2, P3: atom

mapping

lift(causes, 3 (P1 ! P2))
7! cover-relation(dP1e:state, dP2e:state) ;

lift(causes, P1 ! P2)

7! cover-relation(dP1e:state, dP2e:state) ;
lift(causes, P1 ! P2)

7! anticipate-relation(dP1e:state, dP2e:state) ;

lift(manifestations, P1 ! P2)

7! prefer-state(dP1e:quali�er, dP2e:state) ;

lift(manifestations, P1 ! : P2)

7! rule-out-state(dP1e:quali�er, dP2e:state) ;

lift(manifestations, P1 ! (P2 ! P3))

7! prefer-connection(dP1e:quali�er, dP2e:state, dP2e:state) ;

lift(manifestations, P1 ! : (P2 ! P3))

7! rule-out-connection(dP1e:quali�er, dP2e:state, dP2e:state) ;

The approach of separating the two views of knowledge structures (domain-speci�c

and psm-speci�c) has important advantages. Domain-speci�c theories could be re-used

in other psm's. Multiple mappings can facilitate multiple use of essentially the same

knowledge. For example, the non-modal implications in the causes theory are mapped

onto two di�erent names: P1 ! P2 maps to both a cover-relation symbol and a anticipate-

relation symbol (see the second and third lift rule). In c&d , this separation also keeps

intact two distinct views on nodes in the causal network, namely the node as an expression

about a value of an attribute of the system (at the object level) and the node as an object

in its own right (at the meta level).

9.3.3 Inference knowledge in C&D Cover-and-di�erentiate operates on a causal

network of states. This network is actually present in two forms:

1. The causal network itself as de�ned by the cover relations. These relations describe

possible explanations.

178 Pragmatics of the Knowledge Level

2. The explanation network that is built during problem solving. The explanation

network is a subset of the causal network and can be viewed as its instantiation for

a particular problem.

The explanation network consists of three subsets, namely considered explanations, ac-

cepted (= preferred) explanations and rejected explanations.

The inference theories operate on the following data elements:

1. Element of the three subsets of the explanation network: (i) considered explanations,

(ii) accepted explanations, or (iii) rejected explanations.

2. A focus: a state in the considered or accepted explanation network that is not

explained by a another state.

3. A �nding: some observed state or quali�er.

These data elements correspond to what were called roles earlier.

theory role-defs

use domain-schemata

signature

predicates

considered-explanation: state � state

accepted-explanation: state � state
rejected-explanation: state � state

focus: state

�nding: state _ quali�er

The phrase \explanation network" as used in the rest of this text refers to the consid-

ered solutions. Note that inference theories specify elementary inference steps. Updates

of the sets of considered, accepted and rejected explanations are handled in the control

knowledge. Through the use clause one declares that the theory needs access to the

object-level terms provided by the lift de�nition domain-schemata.

The elementary inference steps are described as a set of �rst-order theories, that use

the domain schemata described in Sec. 9.3.2. Fig. 9.2 depicts the inference steps (the

ovals) we have speci�ed for c&d and their input-output (the boxes).3 The inferences can

be divided into two groups:

1. Inferences that use the domain knowledge de�ned by the lift de�nition domain-

schemata. Examples of these inferences are cover, anticipate, prefer and rule-out.

2. Inferences that reason only about the current state of working memory, e.g. the

current contents of the explanation network. Examples of such inferences are the

theories describing the principles of exhaustivity and exclusivity.

Cover Inference The cover inference generates considered explanations. It uses

the cover-relation to �nd a potential explanation of a state that is not yet explained

(the focus). The cover inference step builds the explanation network by going backwards

through the causal network. Covermodels one aspect of the exhaustivity principle of c&d:

all symptoms should be explained, whenever possible.

3Note that this diagram does not prescribe a particular order in which the actual problem-solving should

be carried out. This is speci�ed as separate control knowledge.

Chapter 9. Di�erentiating Problem-Solving Methods 179

focus
state

considered
explanation

accepted
explanation

rejected
explanation

cover

anticipate-2 rule out

prefer

select

exhaustivity

exclusivity

anticipate-1

finding

FIGURE 9.2: Inferences in Cover-and-Di�erentiate: their input-output dependencies.

theory cover
use domain-schemata

import role-defs

axioms

focus(S1) ^ ask2(causes, cover-relation(S2, S1))

! considered-explanation(S2, S1)

Ask2 is one of the re
ective predicates. It requests the lift de�nition domain-schemata

to �nd out whether the complex cover-relation term can be mapped onto an axiom of the

\potential-causes" theory. Note that the predicate considered-explanation is an example

of a description of the role that an object (or in this case, a tuple of objects) plays in

the inference process. These role predicates are de�ned in the role-defs theory speci�ed

earlier. This theory is imported into the inference theory.

The structure of the de�ning axiom of inferences that make use of domain knowledge

is typically:

< inputs > ^ ask2(domain knowledge)!< output >

where the inputs and outputs are role-names of objects in the reasoning process.

Anticipate Inference The di�erentiation part of c&d is more complicated than

covering and consists of a number of elementary inferences (see also below). The antici-

pate inference is part of this di�erentiation process, in which the considered explanations

generated by cover are pruned. The anticipate theory de�nes that if a state S1, that is

considered as an explanation for a state S2, should always cause some other state S3, then

S3 should be true. If this is the case, then S1 should be accepted as an explanation of S2

(and S3), else it should be rejected.

As inference in kads have only one output type (cf. Ch. 5), the anticipate inference is

de�ned in two separate theories. Anticipate-1 produces accepted explanations; anticipate-2

produces rejected explanations.

180 Pragmatics of the Knowledge Level

theory anticipate-1

use domain-schemata

import role-defs
axioms

considered-explanation(S1, S2)

^ ask2(causes, anticipate-relation(S1, S3))
^ �nding(S3)

! accepted-explanation(S1, S2) ^ accepted-explanation(S1, S3)

theory anticipate-2

use domain-schemata

import role-defs

axioms

considered-explanation(S1, S2)
^ ask2(causes, anticipate-relation(S1, S3))

^ : �nding(S3)

! rejected-explanation(S1, S2) ^ rejected-explanation(S1, S3)

We do not de�ne finding here. It is assumed to �nd out whether a state is part of

the explanation network or to query the user for a value, whatever is appropriate.

Prefer & Rule-out Inferences Prefer and rule-out are also part of the di�erenti-

ation step of c&d.

The prefer theory uses two prefer relations (prefer-state and prefer-connection) to prefer

a particular state as the explanation of a state over other states that are not explicitly

preferred. The preference is established by the presence of quali�ers for this state or

causal relation. E.g., in the example causal network of Fig. 9.1 the �nding that a patient

is physically stressed would give rise to a preference for the state with a smaller degree

of coronary artery obliteration as the explanation of myocardial ischaemia (i.e. oxygen

shortage in the heart muscle).

theory prefer

use domain-schemata

import role-defs
axioms

considered-explanation(S1, S2)

^ ask2(manifestations, prefer-state(S1, Q))
^ �nding(Q) !

accepted-explanation(S1, S2)) ;

considered-explanation(S1, S2)

^ ask2(manifestations, prefer-connection(S1, S2, Q))

^ �nding(Q) !

accepted-explanation(S1, S2) ;

The structure of the rule-out theory is similar to the prefer theory. This inference

produces rejected instead of accepted explanations using another partition of the domain

knowledge (rule-out-state and rule-out-connection).

theory rule-out

use domain-schemata

import role-defs

Chapter 9. Di�erentiating Problem-Solving Methods 181

axioms

considered-explanation(S1, S2)

^ ask2(manifestations, rule-out-state(S1, Q))
^ �nding(Q) !

rejected-explanation(S1, S2)) ;

considered-explanation(S1, S2)

^ ask2(manifestations, rule-out-connection(S1, S2, Q))

^ �nding(Q) !

rejected-explanation(S1, S2) ;

Exhaustivity c&d assumes that every state that can be explained, must be ex-

plained. This is called the exhaustivity principle. This principle can be used to accept an

explanation by ruling out the candidate explanations.

The theory below speci�es this use of the exhaustivity principle. The axiom states

that a potential explanation of a state can be accepted, if there are no other potential

explanations of the state. This is the case if all other explanations were ruled out or if the

explaining state was the only explaining state in the causal network.

theory exhaustivity

import role-defs
axioms

considered-explanation(S1, S2) AND

: 9 S3 considered-explanation(S3, S2)
!

accepted-explanation(S1, S2)

N.B. We assume that the task knowledge speci�cation ensures that explanations that

are rejected are no longer member of the set of considered explanations.

Exclusivity Exclusivity models the exclusivity principle of cover-and-di�erentiate.

Exclusivity is a form of Occam's razor: all things being equal, parsimonious explanations

are preferred.

The axiom below says that if a state S1 explains a state S3 and also some other state

S4, then this explanation should be preferred above a competing explanation S2 for S3
where the explaining state explains only S2.

theory exclusivity
import role-defs

axioms

considered-explanation(S1, S3) ^ considered-explanation(S2, S3)
^ (9 S4 considered-explanation(S1, S4) ^ S3 6= S4)

^ : (9 S5 considered-explanation(S2, S5) ^ S3 6= S5)

! accepted-explanation(S1, S3)

An interesting feature of these last two theories is that, unlike the other theories, these

do not make use of domain knowledge (i .e. there is no ask statement). This is fully in

accordance with the generality of the principles. To re-use the theories in another psm it

would be su�cient to rename the predicate-symbols.

182 Pragmatics of the Knowledge Level

Establish focus The establish-focus inference searches for states which are consid-

ered (or accepted) as an explanation for another state, but need themselves to be explained

as well.

theory establish-focus

import role-defs

axioms

(9 S2 considered-explanation(S1, S2))

AND

(: 9 S3 considered-explanation(S3, S1))

! focus-state(S1)

This last theory also does not apply domain-speci�c knowledge.

9.4 Analysing Cover-and-Di�erentiate

Given a formal account of cover-and-di�erentiate as a problem solving method for a di-

agnosis task, we are now in a position to use the formalisation for analysing the relation

of c&d to other methods for diagnosis. Eshelman [Eshelman, 1988] states that c&d is a

form of heuristic classi�cation (hc) [Clancey, 1985b]. A formal description of parts of hc

is presented in [Akkermans et al., 1992]. When we compare c&d and hc there appear to

be a number of fundamental di�erences.

1. A crucial elementary inference step in hc is the abstraction inference: the left part

of Clancey's \horseshoe" [Clancey, 1985b] (see Fig. 5.16). This abstraction step in

the hc problem solving method is used to abstract speci�c �ndings (e.g. patient is

alcoholic) to more general ones such as \compromised host". These general �ndings

are then used in an association step to generate hypotheses. It is clear from the

formal de�nition of c&d that there is no equivalent of such abstraction steps in the

c&d method. Findings are either symptoms or quali�ers and are directly associated

with hypotheses (states that explain other states). Of course abstraction could be

added to c&d, but this would require an additional domain theory describing the

relations to be used in the abstraction inferences. In addition it would require the

de�nition of an abstract problem solving step, changes to the cover-theory would

be needed and a new role would have to be de�ned: abstracted-data. Although

these changes are not very di�cult to make in the formal model, they would yield a

di�erent structure of the knowledge at several levels.

2. A second di�erence concerns the way in which hypotheses (considered-explanations)

are generated. In the cover-theory these hypotheses are generated through a query

of the potential-causes theory concerning cover-relations. This means that only

those hypotheses are generated which are directly linked to the symptom being

focussed on. In hc hypotheses can be generated from an etiological hierarchy through

trigger relations. A trigger relation can relate one or more symptoms to a hypothesis

anywhere in the hierarchy. So, the method for generating hypotheses in hc is more

exible and more of a heuristic nature than the one in c&d. Changing the c&d

model to incorporate such heuristic associations would require signi�cant changes.

In order to maintain the exhaustivity principle (all symptoms are explained) a new

Chapter 9. Di�erentiating Problem-Solving Methods 183

inference would be needed. This inference would establish an explanation path

between hypotheses somewhere in the causal network and the symptoms. Moreover

the simple control structure of c&d would need to be replaced by a more complex

one, since the set of covered symptoms would have to be derived.

3. A third di�erence between c&d and hc concerns the way in which the di�erential is

reduced. In c&d the set of hypotheses is reduced by applying rule-out anticipation

and preference inferences. Each of these inferences applies to a single hypothesis.

The hc method di�erentiates between competing hypotheses by searching for dis-

criminating evidence. For example, the equivalent in hc of the anticipate inference

would look like the theory below.

theory hc-anticipate

axioms

considered-explanation(S1, S3) ^ considered-explanation(S2, S3) AND
ask2(causes, anticipate-relation(S1, S4)) AND

ask2(causes, anticipate-relation(S2, : S4))

!

(�nding(S4) ^ rejected-explanation(S2, S3)) OR

(: �nding(S4) ^ rejected-explanation(S1, S3))

The premise of the theory mentions two considered-explanation atoms. The rea-

son why in c&d di�erentiation can be performed on single hypotheses is that the

exhaustivity principle allows c&d to prefer hypotheses by ruling out alternatives.

There are thus essential di�erences between what is called di�erentiation in c&d

and hc.

4. In hc hypotheses (internal states) are structured in a hierarchy which is used to

generalise or specialise a hypothesis. No such hierarchical relations are present in

the c&d domain theories, nor are they used in the inferences. Again such knowledge

could be incorporated in a new domain theory and inferences and tasks could be

updated accordingly.

In fact, there are many more di�erences. The solution in hc contains in principle one

cause; in c&d the solution can consist of multiple causes and includes the causal pathways

to these causes.

If we step back and take a global view on both c&d and hc, we observe some simi-

larities. Both psm's are specialisations of a general generate and test schema. In c&d the

generate process is simply represented by the cover-theory. In hc this process is repre-

sented by a more complex combination of abstraction and heuristic association. The test

process in c&d is realised by the di�erentiate task, which in turn applies the rule-out,

prefer and anticipate inferences. In hc the test is performed through a di�erent di�eren-

tiate task using the hierarchy of hypotheses. Concerning the principles that underlie hc

and c&d we see that both psm's are based on abductive generation of hypotheses, but

that c&d requires the symptoms to be fully explained by the solution, and that hc only

requires that a solution is consistent with the symptoms.

All in all, we can conclude that c&d and hc have some similarities when viewed at a

su�ciently high level of abstraction, but that the di�erences at a more detailed level turn

184 Pragmatics of the Knowledge Level

out to be considerable. The given formal account has thus shown that is not warranted

to view c&d as a special form of hc. In addition we can see how new psm's can be

constructed by combining the ingredients of both models.

9.5 Conclusions

We have sketched in this chapter a framework for the analysis of problem solving methods.

This has been illustrated by constructing a speci�cation of the Cover-and-Di�erentiate

method that can be used for certain types of diagnosis tasks. On this basis, we have

brought to light considerable di�erences with the heuristic classi�cation method, although

in the original literature Cover-and-Di�erentiate was claimed to be a variant of it. Di�erent

speci�cations of the Cover-and-Di�erentiate method are conceivable. We are not claiming

that our model is the only correct one, nor that it fully re
ects the actual implementation

in mole. However, the account given in this chapter can be a starting point for a precise

de�nition of what Cover-and-Di�erentiate is.

The main conclusion is that analysis and speci�cation of problem solving methods of

a type as exercised in this chapter, is a useful means for clarifying and communicating

the precise nature of problem-solving knowledge that underlies reasoning in knowledge-

based systems. Informal statements in the literature about methods such as Cover-and-

Di�erentiate appear to be imprecise, and sometimes misguided, if not incorrect. Thus,

we need speci�cation methods for psm's that are better than saying that the computer

program is the ultimate speci�cation. This chapter has suggested some ways how this may

be achieved.

A long-term goal behind the present work is the idea to combine components of various

problem-solving methods into new psm's that are tailored to the domain application. For

example, one could add to a Cover-and-Di�erentiate psm an abstraction inference (an

element of Heuristic Classi�cation not present in Cover-and-Di�erentiate) if it appears

that the domain data space is too large. This is a constructive use of psm's and their

components which however requires speci�cations of psm's that are well-structured into

components and clearly de�ne the nature of these components, as well as the assumptions

under which they may be used. Ultimately, this should result in knowledge-engineering

libraries of reusable and combinable psm components. Although mainly used for analysis

purposes here, we believe that the methods discussed in this chapter provide a useful step

in this direction.

Chapter 10

Conclusions

In this thesis we studied the application of Newell's idea of a \knowledge level" in the

process of constructing knowledge-based systems. In our view a knowledge-level descrip-

tion is an essential ingredient in any principled approach to building intelligent systems.

This is surely not to say that the approach outlined here is the only one. It should just

be considered as a attempt to put the the knowledge-level idea to work in a consistent

manner to the level of detail necessary for practical usage in knowledge engineering.

10.1 Explication of Assumptions behind KADS

In Ch. 2 and Ch. 3 assumptions behind kads were explicated. A central assumption is

that the kads models of expertise can be seen as an attempt to reify the knowledge-level

hypothesis for practical use in knowledge engineering.

A second assumption of kads is that a knowledge-level description is necessarily under-

speci�ed for the purpose of constructing a symbol-level system that implements this de-

scription. Just like a physical law is no recipe for building a numerical simulation program,

a knowledge-level model is no blue print for the artefact. In each case, a number of de-

tailed \symbol-level" decisions still have to be made. It is possible to construct for some

subset of knowledge-level descriptions automated transformation procedures which prede-

�ne symbol-level decisions and translate the descriptions into a working system, but this

does not corrupt the premise that a knowledge level model (the kads model of expertise)

and its symbol-level realisation are fundamentally di�erent levels of descriptions.

A third assumption of kads is that a knowledge-level typology of the elements nec-

essary for the required problem-solving behaviour provides important safe-guards against

computationally intractable systems. This is fully in line with McCarthy's point that

epistemological adequacy is directly related to computational adequacy. Finer grained

epistemological distinctions prevent unrestricted application of domain knowledge and

thus lead to more e�cient and tractable systems.

An assumption is also that the knowledge-level provides the possibility of both ex-

plaining and predicting the behaviour of the resulting system. These predications are of a

particular type, namely at the level of reasoning steps (which type, under what conditions)

that we can expect an intelligent to perform.

186 Pragmatics of the Knowledge Level

10.2 Principles and Techniques Developed

With respect to the nature and role of kads model of expertise we studied a number of

more detailed methodological topics, notably (i) the speci�cation of domain knowledge, (ii)

the construction of inference structures, and (iii) the design process: mapping a knowledge-

level description onto a symbol-level representation.

Domain-knowledge speci�cation Data modelling methods in conventional soft-

ware engineering and those used in knowledge engineering are converging. The ddl de-

veloped in this thesis already is a synthesis between conventional data modelling and ai

representation languages. The ddl is based on an analysis of kbs-speci�c requirements

for data modelling. It provides a generalisation over various symbolic representation lan-

guages. This is exactly what one would want from a knowledge-level description of domain

knowledge, because it provides the key to reusability. What is still needed is a more formal

theory of the constructs in languages such as this ddl, comparable to Chen's theory of

er models and its extensions.

Construction of inference structures Any methodology for kbs development

needs to provide structured techniques for model construction in order to turn this process

from an art (which it currently often basically is) into structured engineering. Ch. 5

presents a structured analysis of the process of constructing inference structures: a crucial

ingredient of kads models of expertise. The notion of top-down construction of inference

models and the identi�cation of generic components that can support this approach is a

promising approach for this knowledge engineering activity.

The methodology underlying model construction needs to be further developed. The

operations, methods and criteria discussed need to be worked out in more detail. For ex-

ample, it is worthwhile to study various sub-types of the knowledge-di�erentiation method

in more depth and try to link these to the type of operations that need to be performed

on the inference structure. Also, criteria used in this process are an important subject for

further research. Work on this last topic is being done in the skbs-a2 project [Benjamins

et al., 1992a] and in the kads-ii project.

Operationalisation: from knowledge level to symbol level Operationalisation

of a knowledge-level model should be guided by the \structure-preserving principle": both

the content and the structure of the information in the model should be preserved in the

�nal artefact. The skeletal architecture which follows from this principle and from the

structure of the kads model gives strong guidance for the design and implementation

process and can be the basis for powerful support tools.

Currently, there are a number of research programs that attempt to bridge the

gap between informal knowledge-level models and operational systems, namely (see also

Fig. 10.1):

� Language approach Informal knowledge-level descriptions are mapped onto dedi-

cated operational languages (OMOS, Model-K, etc.), possibly via intermediate for-

mal knowledge-level descriptions. The mapping is a partial one, because the opera-

tional languages limit the expressivity due to executability requirements.

Chapter 10. Conclusions 187

� Reusable-architecture approach The structure of the knowledge-level model is �xed

to a large extent. This skeletal model is operationalised through a prede�ned map-

ping onto a reusable, task-speci�c architecture. This architecture can be instantiated

by the knowledge engineer and/or the expert to derive the actual application.

� Con�guration of reusable components and methods The knowledge-level model is

con�gured from a library of reusable, generic model components (tasks, inference

components, domain schemata). This model is mapped onto operational constructs

in an environment that is based on a structure-preserving skeletal architecture and

which contains a library of reusable pieces of code for implementing particular model

components.

This last approach is the most promising one because it combines the \best of both

worlds": it facilitates
exibility, reusability as well as executability. The systematic-

diagnosis system (see Ch. 6) is a �rst step in this direction.

10.3 Applicability

In a methodological study such as this one it is di�cult to provide su�cient empirical

evidence for the claims being made. We have made an e�ort to use as much as possible real-

life examples to illustrate applications of the ideas, principles and techniques presented.

The applications in the audio domain illustrate the general principles underlying kads,

the proposed data modelling language, the re�nement of inference structures and the

realisation of a dedicated support environment based on the structure-preserving principle.

The Sisyphus application illustrates the use of the ddl. It provides a detailed example

of a principled process of model construction. It also shows clearly how the structure-

preserving principle can be applied to build a working system that meets the requirements

set out in Ch. 6. The resulting system is a clear example of an instantiation of the skeletal

architecture de�ned in Sec. 6.4.

The model of heuristic classi�cation, as realised in the neomycin, was used in many

places as a reference point: particularly in the description of model construction, but also

in the example operationalisation of the \abstract & specify" example.

The Fraudwatch application [Killin, 1992; Porter, 1992] illustrates the advantages of

the combination of knowledge-level modelling and structure-preserving design with respect

to the maintenance and re�nement of the operational system.

The StatCons application [de Greef et al., 1987], although not described in detail in

this thesis, has served as a source of inspiration for many ideas presented.

10.4 Evidence for Newell's Claim

In the introduction it was pointed out that Newell formulated his knowledge-level hypoth-

esis in response to confusion in the knowledge-representation community. The knowledge

level was his proposal for a platform on which one could discuss and compare the merits

of the various languages and applications.

We view this thesis as an attempt to put Newell's hypothesis to work in the (more

restricted) domain of knowledge engineering. It makes clear that the knowledge-level

1
8
8

P
ra
g
m
a
tics

o
f
th
e
K
n
o
w
led

g
e
L
ev
el

informal
KL model

formal
KL model

restrictions on
modelling

expressivity

restrictions
caused by

executability
requirements

 compiled system

 task-specific
 executable language

 general-purpose
 executable languageLanguage

approach

Reusable
Architecture
approach

Configuration
approach

task model

domain
schema

task-specific
KL model

predefined
design

 partially
 instantiated
 architecture

shell

 application

 KA editor/
 KA Tool

KL
model

 control
 methods &
 constructs

 library of inference
 components

 domain schema
 language

editor

configurator

control
structure

inference
components

domain
KB

 application

skeletal
architecture

editor

F
IG
U
R
E
1
0
.1
:
S
ch
em

a
tic

o
v
erv

iew
o
f
ch
a
ra
cteristics

o
f
th
e
th
ree

a
p
p
ro
a
ch
es

to
su
p
p
o
rtin

g
th
e
o
p
era

tio
n
a
l-

isa
tio

n
o
f
k
n
ow

led
g
e-lev

el
(K

L
)
m
o
d
els.

Chapter 10. Conclusions 189

view point is indeed useful in this context. Up till now, most ke theories were either

described informally or through example pieces of code with their inherent computational

biases. In our opinion, this study shows that the knowledge-level is indeed a medium for

discussing and comparing problem solving methods employed by knowledge-based systems

(cf. Ch. 9). It also provides the necessary anchor points for describing a methodological

approach to knowledge engineering.

10.5 Perspectives for Knowledge Engineering

It is necessary and essential for the �eld to start working on comparing and unifying

the various approaches. Some initial e�orts in this direction have been undertaken. At

the 1990 European Knowledge Acquisition Workshop the Sisyphus project was initiated,

aiming (amongst other things) at a comparison of approaches to modelling problem solving

by applying these to a standard data-set. Similar activities are also planned for the

1992 Ban� Knowledge Acquisition Workshop. In the kads-ii project the University of

Amsterdam and the Free University of Brussels are investigating a uni�cation of kads as

presented in this thesis and the Components of Expertise framework developed in Brussels,

while incorporating also ideas from other approaches.

In the short term, cross-validation studies could help in de�ning a common vocabulary

for describing models of problem solving for knowledge-based systems. This could pave

the way for an exchange of models between research groups and a standardisation of

ingredients of such models. In the longer term, we envisage a research e�ort aimed at

de�ning a comprehensive set of commonly shared problem solving methods and generic

domain structures. This is an important (if not the only) route towards improving the

state of the art in kbs development.

In our view, the knowledge-level is the appropriate level for theory development about

knowledge-based systems in general and thus should be a major focus of attention in ke

research. Such theories can be of various nature:

� The de�nition of the problem solving strategy for carrying out a task (the \problem

solving method", see e.g. Ch. 9)

� The de�nition of the relation between input and output of a problem-solving task

(as for diagnosis, e.g. [Console & Torasso, 1990; Konolige, 1992]).

� Task-independent theories about problem solving (e.g. soar [Laird et al., 1987]).

Knowledge-level theories also provide a starting point for theory uni�cation. Some

work on this last point has been carried out in the reflect project [van Harmelen et al.,

1992].

In summary, knowledge-level modelling in combination with structure-preserving op-

erationalisation o�ers both a principled approach to the engineering of knowledge-based

systems, as well as a theoretical platform for theory formation about knowledge engineer-

ing.

Appendix A

DDL De�nition of the Sisyphus Domain

Knowledge

concept employee;

properties:

smoker: [true, false];

hacker: [true, false];

relation works-with;

argument-1: instance(employee);

argument-2: instance(employee);

semantics: symmetric;

relation smoker-and-non-smoker

argument-1: instance(employee);

argument-2: instance(employee);
semantics: symmetric;

axioms:

8 E1,E2:employee
smoker-and-non-smoker(E1,E2)

$

smoker(E1) = true AND
smoker(E2) = false;

relation on-di�erent-projects

argument-1: instance(employee);

argument-2: instance(employee);
semantics: symmetric;

axioms:

8 E1,E2:employee, P1,P2:project

on-di�erent-projects(E1,E2)

$

works-on(E1, P1) AND
works-on(E1, P1)

^ P1 6= P2;

192 Pragmatics of the Knowledge Level

relation hacker-and-non-hacker

argument-1: instance(employee);

argument-2: instance(employee);
semantics: symmetric;

axioms:

8 E1,E2:employee
hacker-and-non-hacker(E1,E2)

$

hacker(E1) = true AND

hacker(E2) = false;

concept project;

properties:

size: [small, medium, large]

relation works-on;
argument-1: instance(employee);

argument-2: instance(project);

relation head-of;

argument-1: instance(employee);
argument-2: instance(project);

cardinality: min 0 max 1;

concept department-role;

properties:
occupancy: single, shared ;

concept head-of-group;
sub-type-of: department-role;

axioms:

occupancy(head-of-group) = single;

concept head-of-project;
sub-type-of: department-role;

occupancy(head-of-project) = single;

concept researcher;

sub-type-of: department-role;

axioms:

occupancy(researcher) = shared ;

concept manager;

sub-type-of: department-role;

occupancy(manager) = single;

Appendix A. DDL De�nition of the Sisyphus Domain Knowledge 193

concept secretary;

sub-type-of: department-role;

axioms:
occupancy(secretary) = shared ;

relation role-interaction;
argument-1: department-role;

argument-2: department-role;

properties:

level: universal;

semantics: symmetric;

axioms:

Level of interaction with

head of group in descending order:

secretary, manager, head of project

relation boss-of;

argument-1: department-role;

argiment-2: department-role;
semantics: transitive;

tuples:

< head-of-group, manager >
< head-of-group, head-of-project >

< manager, secretary >

< head-of-project, researcher >;

relation employee-role;

argument-1: instance(employee);

argument-2: department-role;

axioms:

8 E;employee

employee-role(E, head-of-project)

$

9 P:project
boss-of(E, P) ^ size(P) = large

8 E: employee
employee-role(E, researcher)

$

9 P:project works-on(E, P) AND

: employee-role(E, head-of-group) AND

: employee-role(E, head-of-project);

concept room;

properties:

oor: string;
number: nat;

size: [small, medium, large];

type: [o�ce, other];

location: [central, peripheral];

194 Pragmatics of the Knowledge Level

relation distance;

argument-1: instance(room);

argument-2: instance(room);
properties:

value: nat;

semantics: symmetric;

relation next-to;

argument-1: instance(room);

argument-2: instance(room);

semantics: symmetric;

relation room-preference;

argument-1: department-role;

argument-2: expression(room);
tuples:

< department-role, type(room) = o�ce >

< head-of-group, location(room) = central >
< head-of-group, size(room) = large >

< head-of-project, size(room) = small >

< researcher, size(room) = large >
< manager, size(room) = small >

< secretary, size(room) = large >

relation near-to-preference;

argument-1: department-role;

argument-2: department-role;

properties:

strength: universal;
semantics: symmetric;

tuples:

< head-of-group, head-of-project >
< head-of-group, manager >

< head-of-group, secretary > ;

axioms:
8 R1,R2,R3:department-role

level(role-interaction(R1, R2) >

level(role-interaction(R1, R3)
!

strength(near-to-pref(R1, R2)) >

strength(near-to-pref(R1, R3));

structure
oor-plan;

parts:

rooms:
set(instance(room));

room-relations:

set(tuple(distance));
set(tuple(next-to);

properties:

oor: string;
axioms:

8 R1,R2:room 2 rooms

Appendix A. DDL De�nition of the Sisyphus Domain Knowledge 195

value(distance(R1, R2)) =

jnumber(R1) - number(R2)j

8 R1,R2:room 2 rooms

next-to(R1, R2) $

value(distance(R1, R2)) = 1;

structure department;

parts:
employees:

set(instance(employee));

projects:
set(instance(project));

assignments:

set(tuple(works-on));

set(tuple(head-of));

employee-relations:

set(tuple(works-well-with));
set(tuple(head-of));

set(tuple(employee-role));

properties:
name: string;

structure requirements;
parts:

room-related:
set(tuple(room-pref));

positional:

set(tuple(near-to-pref));
interactions:

set(tuple(allocation-interaction));

Appendix B

Source Code Sisyphus Application

This appendix contains the source code for the example Sisyphus application. It constitutes an
operationalisation of the model of expertise of the o�ce-planning problem described in Ch. 7. The
implementation follows the structure-preserving principles de�ned in Ch. 6.

B.1 Top-level module

Main

:- module(main, [off_plan/1]).

:- use_module(

['task-interpreter.pl'

, 'domain-access.pl'

]).

:- dynamic

trace/1,

trace/2.

:- assert(main:trace(task)).

:- assert(main:trace(inference)).

off_plan(Allocations) :-

domain_retrieval(find_all, component, Employees),

domain_retrieval(find_all, resource, Rooms),

exec_task('propose allocations',

['components' = Employees

, 'resources' = Rooms

],

'allocations' = Allocations).

B.2 Task-level modules

B.2.1 Generic modules

Task interpreter

198 Pragmatics of the Knowledge Level

:- module('task-interpreter.pl', [exec_task/3]).

:- use_module(

['task-declarations.pl'

, 'task-working-memory.pl'

, 'inference-functions.pl'

]).

%

% Task execution primitives

%

exec_task(Task, Input, Output) :-

ignore(write_task(start, Task, Input)),

task_interpreter(Task, Input, Output),

ignore(write_task(end, Task, Output)).

task_interpreter(Task, Input, Output) :-

init_task(Task, Input, Output),

init_task_procedure(Task),

once(task_procedure(Task)),

retrieve_output(Task, Output).

init_task(Task, Input, Output) :-

init(input, Task, Input),

init(output, Task, Output),

init(control_term, Task), !.

init(Type, Task, Arg) :-

is_list(Arg), !,

checklist(init(Type, Task), Arg).

init(input, Task, Name = Value) :-

task_input(Task, Name),

data_type(Name, DataType),

data_operation(create, DataType, Name, Value).

init(input, Task, Name) :-

task_input(Task, Name).

init(output, Task, Name = _) :-

task_output(Task, Name),

data_type(Name, DataType),

data_operation(create, DataType, Name, []).

init(output, Task, Name) :-

task_output(Task, Name).

init(control_term, Task) :-

forall(control_term(Task, Name),

(data_type(Name, DataType)

, data_operation(create, DataType, Name, [])

)).

init_task_procedure(Task) :-

(clause(task_procedure(Task), _)

; task_structure(Task, TaskStructure)

, assert((task_procedure(Task) :- TaskStructure))

).

retrieve_output(Task, Output) :-

Appendix B. Source Code Sisyphus Application 199

is_list(Output), !,

checklist(retrieve_output(Task), Output).

retrieve_output(Task, Name = Value) :-

task_output(Task, Name),

data_operation(retrieve, Name, Value).

retrieve_output(Task, Name) :-

task_output(Task, Name).

%

% Inference execution

%

exec_inference(Inference, Input, Output) :-

maplist(map(input), Input, In),

invoke_inference(Inference, In, Out),

map(output, Output, Out).

map(input, Input, In) :-

nonvar(Input),

data_type(Input, _), !,

data_operation(retrieve, Input, In).

map(output, Output, Out) :-

nonvar(Output),

data_type(Output, _), !,

data_operation(store, Output, Out).

map(_, Arg, Arg).

%

% Control primitives

%

repeat(Body, until(Condition)) :-

repeat,

once(Body),

once(Condition), !.

transfer_task(obtain, Attribute, Attribute = Value) :-

writef('\n Please enter the value of %w: ', [Attribute]),

read(Value),

nl.

%

% Trace info

%

write_task(start, Task, Input) :-

(main:trace(task) ; main:trace(task, Task)) ->

(writef('\nActivating task "%w" \n', [Task])

, write_arg('input ', Input)

).

write_task(end, Task, Output) :-

(main:trace(task) ; main:trace(task, Task)) ->

(writef('\nTask "%w" terminated \n', [Task])

, write_arg(output, Output)

).

200 Pragmatics of the Knowledge Level

write_arg(Type, Arg) :-

is_list(Arg), !,

checklist(write_arg(Type), Arg).

write_arg(Type, Name = Value) :-

writef(' %w: %w = %w\n', [Type, Name, Value]).

write_arg(Type, Name) :-

data_operation(retrieve, Name, Value),

writef(' %w: %w = %w\n', [Type, Name, Value]).

Working memory

:- module('task-working-memory.pl',

[data_operation/3

, data_operation/4

]).

:- use_module(['task-declarations.pl']).

:- dynamic

data_store/3.

%

% Working memory primitives

%

data_operation(create, set, SetName, InitialValue) :-

retractall(data_store(set, SetName, _)),

assert(data_store(set, SetName, InitialValue)).

data_operation(create, list, ListName, InitialValue) :-

retractall(data_store(list, ListName, _)),

assert(data_store(list, ListName, InitialValue)).

data_operation(create, element, ElName, InitialValue) :-

retractall(data_store(element, ElName, _)),

assert(data_store(element, ElName, [InitialValue])).

data_operation(Op, Name, Store) :-

nonvar(Store),

data_type(Store, _), !,

operation(retrieve, Store, Value),

operation(Op, Name, Value),

ignore(write_operation(Op, Name, Value)).

data_operation(Op, Name, Value) :-

operation(Op, Name, Value),

ignore(write_operation(Op, Name, Value)).

%

% Operations on all types (set, list, element)

% store

% retrieve

%

operation(store, SetName, Arg) :-

check_arg(Arg, Set),

retract(data_store(set, SetName, _)),

assert(data_store(set, SetName, Set)).

operation(store, ListName, Arg) :-

check_arg(Arg, List),

Appendix B. Source Code Sisyphus Application 201

retract(data_store(list, ListName, _)),

assert(data_store(list, ListName, List)).

operation(store, ElName, Element) :-

retract(data_store(element, ElName, _)),

assert(data_store(element, ElName, [Element])).

operation(retrieve, SetName, Set) :-

data_store(set, SetName, Set), !.

operation(retrieve, ListName, List) :-

data_store(list, ListName, List).

operation(retrieve, ElName, Element) :-

data_store(element, ElName, [Element]).

% Set operations:

%

% member (returns a member randomly)

% select (idem)

% add

% subtract

% empty

operation(member, SetName, Member) :-

data_store(set, SetName, Set),

rnd_member(Member, Set).

operation(select, SetName, Member) :-

retract(data_store(set, SetName, Set)),

rnd_member(Member, Set),

select(Set, Member, NewSet),

assert(data_store(set, SetName, NewSet)), !.

operation(add, SetName, Arg) :-

check_arg(Arg, Additions),

retract(data_store(set, SetName, Set)),

union(Set, Additions, NewSet),

assert(data_store(set, SetName, NewSet)), !.

operation(subtract, SetName, Arg) :-

check_arg(Arg, Deletions),

retract(data_store(set, SetName, Set)),

subtract(Set, Deletions, NewSet),

assert(data_store(set, SetName, NewSet)), !.

operation(empty, Store, Bool) :-

data_operation(retrieve, Store, []) -> Bool = true ; Bool = false.

% List operations:

%

% member (from first to last)

% select (idem)

% select random

% append

% delete

% empty (similar to set operation)

operation(member, ListName, Member) :-

data_store(list, ListName, List),

member(Member, List).

operation(select, ListName, Selection) :-

retract(data_store(list, ListName, List)),

select(List, Selection, NewList),

202 Pragmatics of the Knowledge Level

assert(data_store(list, ListName, NewList)), !.

operation('select random', ListName, Member) :-

retract(data_store(list, ListName, List)),

rnd_member(Member, List),

select(List, Member, NewList),

assert(data_store(list, ListName, NewList)), !.

operation(append, ListName, Arg) :-

check_arg(Arg, Additions),

retract(data_store(list, ListName, List)),

append(List, Additions, NewList),

assert(data_store(list, ListName, NewList)), !.

operation(delete, ListName, Element) :-

retract(data_store(list, ListName, List)),

delete(Element, List, NewList),

assert(data_store(list, ListName, NewList)), !.

check_arg(Arg, Arg) :-

is_list(Arg), !.

check_arg(Arg, [Arg]) :- !.

% Trace output

write_operation(Op, Store, Value) :-

main:trace(working_memory, Ops),

member(Op, Ops)

-> write_op(Op, Store, Value).

write_op(Op, Store, Value) :-

((Op==select ; Op=='select random' ; Op==member ; Op==empty)

, writef('\nWorking memory operation "%w" on "%w"\n', [Op, Store])

, writef(' with result: "%w"\n', [Value])

; writef('\nWorking memory operation "%w %w" on "%w"\n', [Op, Value, Store])

).

B.2.2 Application-speci�c modules

Task declarations This module contains the model-of-expertise information about task
knowledge.

:- module('task-declarations.pl',

[task/1

, task_input/2

, task_output/2

, control_term/2

, task_structure/2

, data_type/2

]).

:- discontiguous

task/1,

task_input/2,

task_output/2,

control_term/2,

task_structure/2,

data_type/2.

Appendix B. Source Code Sisyphus Application 203

%

% Task knowledge

%

task('propose allocations').

task_input('propose allocations', 'components').

task_input('propose allocations', 'resources').

task_output('propose allocations', 'allocations').

control_term('propose allocations', 'allocation plan').

control_term('propose allocations', 'plan element').

task_structure('propose allocations',

(exec_task('assemble plan', 'components', 'allocation plan')

, forall(data_operation(member, 'allocation plan', Element),

(data_operation(store, 'plan element', Element)

, exec_task('assign resources', ['plan element', 'resources'], 'allocations')

))

)).

task('assemble plan').

task_input('assemble plan', 'components').

task_output('assemble plan', 'allocation plan').

control_term('assemble plan', 'component types').

task_structure('assemble plan',

(exec_task(classify, 'components', 'component types')

, exec_task(order, 'component types', 'allocation plan')

)).

task(classify).

task_input(classify, 'components').

task_output(classify, 'component types').

task_structure(classify,

(forall(data_operation(member, components, C),

(exec_inference(classify, [C], CType)

, data_operation(add, 'component types', CType)

))

)).

task(order).

task_input(order, 'component types').

task_output(order, 'allocation plan').

control_term(order, 'sorted types').

control_term(order, 'prime').

task_structure(order,

(exec_inference(select_1, ['component types'], 'prime')

, exec_inference(sort, ['component types', 'prime'], 'sorted types')

, data_operation(append, 'allocation plan', 'prime')

, data_operation(append, 'allocation plan', 'sorted types')

)).

task('assign resources').

task_input('assign resources', 'plan element').

task_input('assign resources', 'resources').

204 Pragmatics of the Knowledge Level

task_output('assign resources', 'allocations').

control_term('assign resources', 'groupings').

control_term('assign resources', 'grouping').

task_structure('assign resources',

(exec_task(group, 'plan element', groupings)

, data_operation(select, 'groupings', Grouping)

, data_operation(store, 'grouping', Grouping)

, forall(data_operation(member, 'grouping', Unit),

exec_task(assign,

['plan element'

, unit = Unit

, resources

, allocations

],

allocations)

)

)).

task(group).

task_input(group, 'plan element').

task_output(group, 'groupings').

control_term(group, 'possible groupings').

control_term(group, 'selected groupings').

task_structure(group,

(exec_inference(transform, ['plan element'], 'possible groupings')

, exec_inference(select_2, ['possible groupings'

, criterion(minimise, major_conflict)

],

'selected groupings')

, exec_inference(select_2, ['selected groupings'

, criterion(maximise, major_synergy)

],

'selected groupings')

, exec_inference(select_2, ['selected groupings'

, criterion(maximise, minor_synergy)

],

'selected groupings')

, exec_inference(select_2, ['selected groupings'

, criterion(minimise, minor_conflict)

],

'groupings')

)).

task(assign).

task_input(assign, 'plan element').

task_input(assign, 'unit').

task_input(assign, 'allocations').

task_input(assign, 'resources').

task_output(assign, 'allocations').

task_output(assign, 'resources').

control_term(assign, 'suitable resources').

task_structure(assign,

(exec_inference(select_3,

Appendix B. Source Code Sisyphus Application 205

['plan element'

, 'resources'

],

'suitable resources')

, exec_inference(select_4,

['plan element'

, 'suitable resources'

, 'allocations'

],

'suitable resources')

, data_operation(select, 'suitable resources', Resource)

, data_operation(retrieve, 'unit', Unit)

, data_operation(add, 'allocations', [[Resource, Unit]])

, data_operation(subtract, 'resources', Resource)

)).

data_type('components', set).

data_type('resources', set).

data_type('allocations', set).

data_type('allocation plan', list).

data_type('plan element', element).

data_type('component types', set).

data_type('sorted types', list).

data_type('prime', element).

data_type('groupings', set).

data_type('selected groupings', set).

data_type('possible groupings', set).

data_type('grouping', set).

data_type('unit', element).

data_type('suitable resources', set).

B.3 Inference-level modules

B.3.1 Generic modules

Generic inference activation primititves

invoke_inference(Inference, Input, Output) :-

(once(inference_function(Inference, Input, Output))

, ignore(write_trace(Inference, Input, Output))

; Output = []

).

write_trace(Inference, Input, Output) :-

(main:trace(inference)

; main:trace(inference, Inference)

) ->

write_inf(Inference),

write_mc(Inference, Input),

write_mc(Inference, Output, output).

write_inf(Inf) :-

inference(Inf, String),

(String == [] -> Name = Inf ; Name = String),

writef('\nInvoking inference %w\n', [Name]).

write_mc(Inference, Input) :-

206 Pragmatics of the Knowledge Level

forall(nth1(Num, Input, MC), write_mc(Inference, MC, input(Num))).

write_mc(Inference, Value, input(Num)) :-

metaclass(Inference, input(Num), GenName, SpecName),

domain_retrieval(find_type, GenName, DomainEntity),

(var(SpecName) -> Name = GenName ; Name = SpecName),

writef(' input : %w "%w" (a %w)\n', [Name, Value, DomainEntity]).

write_mc(Inference, Value, output) :-

metaclass(Inference, output, GenName, SpecName),

domain_retrieval(find_type, GenName, DomainEntity),

(var(SpecName) -> Name = GenName ; Name = SpecName),

writef(' output: %w "%w" (a %w)\n', [Name, Value, DomainEntity]).

B.3.2 Application-speci�c modules

Inference functions

:- module('inference-functions.pl', [invoke_inference/3]).

:- ensure_loaded(['inference-activation.pl']).

:- use_module(

['inference-methods.pl'

, 'inference-declarations.pl'

, 'domain-access.pl'

]).

:- discontiguous

inference_function/3.

inference_function(classify, [In], Out) :-

domain_retrieval(find_one, type_association, [In, Out]).

inference_function(select_1, _, Out) :-

domain_retrieval(find_all, hierarchy, Hierarchy),

hierarchy_search(Out, Hierarchy, is_root_node).

inference_function(sort, [In, Prime], Out) :-

delete(In, Prime, Rest),

predsort(compare_interaction(Prime), Rest, Out).

compare_interaction(Prime, C1, C2) :-

domain_retrieval(find_one, interaction_level, [V1, Prime, C1]),

domain_retrieval(find_one, interaction_level, [V2, Prime, C2]),

domain_retrieval(find_one, level, Values),

nth1(N1, Values, V1),

nth1(N2, Values, V2),

N1 > N2.

inference_function(transform, [Ctype], Structures) :-

domain_retrieval(find_all, type_association, Ass),

findall(C, member([C, Ctype], Ass), Cset),

domain_retrieval(find_one, structure, [StrucType, Ctype]),

(StrucType = single

, Structures = [Cset]

; StrucType = shared

, pair_permutations(Cset, Structures)

Appendix B. Source Code Sisyphus Application 207

).

inference_function(select_2, [Set, criterion(MinMax, CritType)], SubSet) :-

partition_set(Set, SubSet, MinMax, _, grouping_criterion(CritType),

(grouping_criterion(Criterion, Structure, Num) :-

findall(Pair,

(member(Pair, Structure)

, 'inference-functions.pl':domain_retrieval(find_one, Criterion, Pair)

),

Pairs),

length(Pairs, Num)

)

).

inference_function(select_3, [Type, Resources], SubSet) :-

partition_set(Resources, SubSet, minimise, 0, resource_criterion,

(resource_criterion(Res, Num) :-

'inference-functions.pl':domain_retrieval(find_all,

resource_requirement,

Reqs),

assert(number_of_conflicts(0)),

forall(member([Type, Expression], Reqs),

(Expression =.. [equal, Prop, Value]

, 'inference-functions.pl':domain_retrieval(find_one,

resource_expr,

[Res, Prop, Value])

; Expression =.. [not_equal, Prop, Value]

, 'inference-functions.pl':domain_retrieval(find_one,

resource_expr,

[Res, Prop, Value])

; retract(number_of_conflicts(OldNum))

, succ(OldNum, NewNum)

, assert(number_of_conflicts(NewNum))

)

),

retract(number_of_conflicts(Num))

)

).

inference_function(select_4, [Type, Resources, Allocations], SubSet) :-

partition_set(Resources, SubSet, minimise, _, positional_criterion(Allocations),

(positional_criterion(Allocations, Res, Num) :-

('inference-functions.pl':domain_retrieval(find_one,

positional_requirement,

[Type, C])

, 'inference-functions.pl':domain_retrieval(find_all,

type_association,

Ass)

, member([I, C], Ass)

, (member([IRes, I], Allocations)

; member([IRes, Is], Allocations)

, member(I, Is)

)

, 'inference-functions.pl':domain_retrieval(find_one,

position,

[Num, Res, IRes])

208 Pragmatics of the Knowledge Level

; Num = 0

)

)

).

Inference declarations This module contains the model-of-expertise information about
inference knowledge.

:- module('inference-declarations.pl',

[inference/2

, metaclass/4

, domain_view/2

]).

:- discontiguous

inference/2,

metaclass/4,

domain_view/2.

inference(classify, 'Classify components').

metaclass(classify, input(1), component, _).

metaclass(classify, output, component_type, _).

domain_view(classify, relation(type_association, component, component_type)).

inference(select_1, 'Select prime').

metaclass(select_1, input(1), set(component_type), all_types).

metaclass(select_1, output, component_type, prime).

domain_view(select_1, relation(hierarchy, component_type, component_type)).

inference(sort, 'Sort types').

metaclass(sort, input(1), set(component_type), unsorted_types).

metaclass(sort, input(2), component, sort_criterion).

metaclass(sort, output, list(component_type), sorted_types).

domain_view(sort, relation(interaction_level,

level,

component_type,

component_type)).

inference(transform, 'Transform into possible groupings').

metaclass(transform, input(1), component_type, _).

metaclass(transform, output, set(structure(component)), groupings).

domain_view(transform, relation(structure, structure_type, component_type)).

domain_view(transform, relation(type_association, component, component_type)).

inference(select_2, 'Select suitable groupings').

metaclass(select_2, input(1), set(structure(component)),

'current groupings').

metaclass(select_2, input(2), criterion,

'selection criterion').

metaclass(select_2, output, set(structure(component)),

'subset of groupings').

domain_view(select_2, relation(major_conflict, component, component)).

domain_view(select_2, relation(minor_conflict, component, component)).

domain_view(select_2, relation(major_synergy, component, component)).

domain_view(select_2, relation(major_synergy, component, component)).

Appendix B. Source Code Sisyphus Application 209

inference(select_3, 'Select on resource requirements').

metaclass(select_3, input(1), component_type, _).

metaclass(select_3, input(2), set(resource),

'available resources').

metaclass(select_3, output, set(resource),

'suitable resources').

domain_view(select_3, relation(resource_requirement,

component_type, expression(resource))).

inference(select_4, 'Select on positional requirements').

metaclass(select_4, input(1), component_type, _).

metaclass(select_4, input(2), set(resource),

'available resources').

metaclass(select_4, input(3), structure(resource, list(component)),

'current positions').

metaclass(select_4, output, set(resource),

'suitable resources').

domain_view(select_4, relation(positional_requirement,

component_type, compoenent_type)).

domain_view(select_4, relation(position, integer,

instance(resource),

instance(resource))).

Inference methods This module de�nes the inference methods for realising particluar
inferences. The partitionsetmethod is used by three inference functions, but for di�erent purposes.

:- module('inference-methods.pl',

[hierarchy_search/3

, partition_set/6

, pair_permutations/2

]).

% Computational techniques useed by inferences

% (NB. the sort method is a built-in SWI-Prolog method}

hierarchy_search(Root, Hierarchy, is_root_node) :-

member([Root, _], Hierarchy),

\+ member([_, Root], Hierarchy).

partition_set(Set, SubSet, MinMax, Rating, CritHead, CritClause) :-

assert(CritClause),

findall(Num/E,

(member(E, Set)

, CritHead =.. Head

, append(Head, [E, Num], TermList)

, Pred =.. TermList

, once(Pred)

),

Rated),

keysort(Rated, Sorted),

(MinMax == minimise

, first(Rating/Element, Sorted)

; MinMax == maximise

, last(Rating/Element, Sorted)

),

210 Pragmatics of the Knowledge Level

retract(CritClause),

findall(E, member(Rating/E, Sorted), SubSet).

first(E, L) :-

member(E, L), !.

pair_permutations(Set, Perms) :-

findall(Perm, pair_perm(Set, Perm), Perms).

pair_perm(Set, [E | Rest]):-

length(Set, L),

odd(L), !,

select(Set, E, SubSet),

pair_perm2(SubSet, Rest).

pair_perm(Set, Perm) :-

pair_perm2(Set, Perm).

pair_perm2([], []).

pair_perm2(Set, [[E1, E2] | Rest]) :-

select(Set, E1, Tmp), !,

select(Tmp, E2, SubSet),

pair_perm2(SubSet, Rest).

odd(N) :-

Rem is N mod 2,

Rem == 1.

even(N) :-

\+ odd(N).

B.4 Domain-level modules

B.4.1 Generic modules

Domain access This module de�nes the access functions that can be used by the inference
functions to retrieve domain knowledge from the knowledge base. The module uses indices de�ned
in the module domain-index to to map the inference-level names onto domain-speci�c queries.

:- module('domain-access.pl', [domain_retrieval/3]).

:- discontiguous

concept/1, concept/2, set/2, structure/2, relation/3, property/3,

semantics/2, instance/3, value/3, tuple/2.

:- dynamic

concept/1, concept/2, set/2, structure/2, relation/3, property/3,

semantics/2, instance/3, value/3, tuple/2.

:- multifile

value/3, tuple/2.

:- use_module(['domain-index.pl']).

:- ensure_loaded(['domain-data.pl', 'domain-theory.pl']).

%

Appendix B. Source Code Sisyphus Application 211

% Domain-knowledge access primitives

%

domain_retrieval(find_one, InfRelation, Tuple) :-

domain_index(relation, InfRelation, DomainKnowTypes),

member(Type, DomainKnowTypes),

get_relation(Type, Tuple), !.

domain_retrieval(find_one, InfObject, Obj) :-

domain_index(entity, InfObject, DomainKnowTypes),

member(Type, DomainKnowTypes),

get_entity(Type, Obj), !.

domain_retrieval(find_one, InfExpr, Expr) :-

domain_index(expression, InfExpr, DomainKnowTypes),

member(Type, DomainKnowTypes),

get_expression(Type, Expr), !.

domain_retrieval(find_all, InfRelation, Knowledge) :-

domain_index(relation, InfRelation, DomainKnowTypes), !,

findall(KnowElement,

(member(Type, DomainKnowTypes)

, get_relation(Type, KnowElement)

),

Knowledge).

domain_retrieval(find_all, InfObject, Knowledge) :-

domain_index(entity, InfObject, DomainKnowTypes), !,

findall(KnowElement,

(member(Type, DomainKnowTypes)

, get_entity(Type, KnowElement)

),

Knowledge).

domain_retrieval(find_type, structure(I1, I2), structure(D1, D2)) :-

domain_retrieval(find_type, I1, D1),

domain_retrieval(find_type, I2, D2).

domain_retrieval(find_type, structure(InfName), structure(DomainEntity)) :-

domain_retrieval(find_type, InfName, DomainEntity).

domain_retrieval(find_type, set(InfName), set(DomainEntity)) :-

domain_retrieval(find_type, InfName, DomainEntity).

domain_retrieval(find_type, list(InfName), list(DomainEntity)) :-

domain_retrieval(find_type, InfName, DomainEntity).

domain_retrieval(find_type, InfName, one_of(Defs)) :-

domain_index(def, InfName, Defs).

domain_retrieval(find_type, InfName, DomainEntity) :-

domain_index(_, InfName, DomainEntity).

get_relation(relation(RelationName), Tuple) :-

get_tuple(RelationName, Tuple).

get_relation(property(Prop, ObjectType), [Value, Object]) :-

get_object(ObjectType, Object),

get_value(Object, Prop, Value).

get_relation(property(Prop, relation(RelType)), [Value, Obj1, Obj2]) :-

get_value(tuple(RelType, [Obj1, Obj2]), Prop, Value).

get_entity(instance(C), I) :-

get_instance(C, I).

get_entity(concept(C), SubC) :-

212 Pragmatics of the Knowledge Level

get_concept(C, SubC).

get_entity(value_set(Prop, Type), Values) :-

property(Type, Prop, Values).

get_entity(A, A) :-

atom(A).

get_expression(expression(ObjType), [Obj, Prop, Value]) :-

get_object(ObjType, Obj),

get_value(Obj, Prop, Value).

get_object(Type, Object) :-

get_instance(Type, Object).

get_object(Type, Object) :-

get_concept(Type, Object).

get_instance(C, I) :-

instance(C, I, _).

get_concept(C1, C2) :-

sub_concept(C2, C1).

sub_concept(C1, C2) :-

concept(C1, Supers),

memberchk(C2, Supers).

sub_concept(C1, C2) :-

concept(C1, Supers),

member(C, Supers),

sub_concept(C, C2).

get_value(Object, Property, Value) :-

value(Object, Property, Value).

get_value(Object, Property, Value) :-

instance(_, Object, PropValues),

memberchk(Property = Value, PropValues).

get_tuple(Relation, Tuple) :-

tuple(Relation, Tuple).

get_tuple(Relation, [Arg1, Arg2]) :-

semantics(relation(Relation), symmetric),

tuple(Relation, [Arg2, Arg1]).

get_tuple(Relation, [Arg1, Arg2]) :-

semantics(relation(Relation), transitive),

tuple(Relation, [Arg1, Tmp]),

get_tuple(Relation, [Tmp, Arg2]).

B.4.2 Application-speci�c modules

Domain index The domain index de�nes the mapping from inference-level terms (meta-
classes, domain views) onto domain-speci�c terminology.

:- module('domain-index.pl', [domain_index/3]).

domain_index(entity, component, [instance(employee)]).

domain_index(entity, component_type, [concept(department_role)]).

domain_index(relation, type_association, [relation(employee_role)]).

domain_index(relation, hierarchy, [relation(boss_of)]).

domain_index(relation, interaction_level, [property(

Appendix B. Source Code Sisyphus Application 213

level,

relation(interaction))]).

domain_index(entity, level, [value_set(level, interaction)]).

domain_index(entity, resource, [instance(room)]).

domain_index(relation, resource_requirement, [relation(room_preference)]).

domain_index(expression, resource_expr, [expression(room)]).

domain_index(relation, positional_requirement, [relation(nearto_preference)]).

domain_index(relation, position, [property(value, relation(distance))]).

domain_index(entity, structure_type, [value_set(occupancy, department_role)]).

domain_index(relation, structure, [property(occupancy, department_role)]).

domain_index(relation, major_conflict, [relation(smoker_and_non_smoker)]).

domain_index(relation, major_synergy, [relation(on_different_projects)]).

domain_index(relation, minor_conflict, [relation(hacker_and_non_hacker)]).

domain_index(relation, minor_synergy, [relation(works_with)]).

domain_index(def, criterion, [minimise(major_conflict)

, minimise(minor_conflict)

, maximise(major_synergy)

, maximise(minor_synergy)

]).

Domain theory This �le contains the operationaled version of the Sisyphus domain knowl-
edge de�ned in Appendix A.

concept(employee).

property(employee, hacker, bool).

property(employee, smoker, bool).

relation(employee_role, instance(employee), department_role).

relation(works_on, instance(employee), instance(project)).

relation(head_of, instance(employee), instance(project)).

relation(allocation, set(instance(employee)), instance(room)).

relation(works_with, instance(employee), instance(employee)).

relation(smoker_and_non_smoker, instance(employee), instance(employee)).

relation(on_different_projects, instance(employee), instance(employee)).

relation(hacker_and_non_hacker, instance(employee), instance(employee)).

semantics(relation(works_with), symmetric).

semantics(relation(smoker_and_non_smoker), symmetric).

semantics(relation(on_different_projects), symmetric).

semantics(relation(hacker_and_non_hacker), symmetric).

tuple(smoker_and_non_smoker, [Emp1, Emp2]) :-

get_value(Emp1, smoker, false),

get_value(Emp2, smoker, true).

tuple(hacker_and_non_hacker, [Emp1, Emp2]) :-

get_value(Emp1, hacker, false),

get_value(Emp2, hacker, true).

tuple(on_different_projects, [Emp1, Emp2]) :-

get_tuple(works_on, [Emp1, Project1]),

get_tuple(works_on, [Emp2, Project2]),

Project1 \== Project2.

concept(department_role).

concept(head_of_group, [department_role]).

concept(manager, [department_role]).

concept(secretary, [department_role]).

214 Pragmatics of the Knowledge Level

concept(head_of_project, [department_role]).

concept(researcher, [department_role]).

property(department_role, occupancy, [single, shared]).

relation(boss_of, department_role, department_role).

semantics(relation(boss_of), transitive).

tuple(boss_of, [head_of_group, manager]).

tuple(boss_of, [head_of_group, head_of_project]).

tuple(boss_of, [manager, secretary]).

tuple(boss_of, [head_of_project, researcher]).

tuple(employee_role, [Employee, head_of_project]) :-

get_instance(project, Project),

get_value(Project, size, large),

tuple(head_of, [Employee, Project]).

tuple(employee_role, [Employee, researcher]) :-

tuple(works_on, [Employee, _SomeProject]),

\+ tuple(employee_role, [Employee, head_of_project]),

\+ tuple(employee_role, [Employee, head_of_group]).

value(head_of_group, occupancy, single).

value(head_of_project, occupancy, single).

value(manager, occupancy, single).

value(secretary, occupancy, shared).

value(researcher, occupancy, shared).

relation(interaction, department_role, department_role).

property(interaction, level, [normal, above_normal, high, very_high]).

value(tuple(interaction, [head_of_group, secretary]), level, very_high).

value(tuple(interaction, [head_of_group, manager]), level, high).

value(tuple(interaction, [head_of_group,head_of_project]),level, above_normal).

value(tuple(interaction, [head_of_group, researcher]), level, normal).

concept(project).

property(project, size, [small, medium, large]).

concept(room).

property(room, floor, string).

property(room, number, nat).

property(room, size, [small, medium, large]).

property(room, type, [office, other]).

property(room, location, [central, peripheral]).

relation(next_to, instance(room), instance(room)).

relation(distance, instance(room), instance(room)).

property(distance, value, nat).

semantics(relation(next_to), symmetric).

semantics(relation(distance), symmetric).

tuple(next_to, [Room1, Room2]) :-

get_value(Room1, number, Num1),

get_value(Room2, number, Num2),

Diff = Num1 - Num2,

abs(Diff) == 1.

value(tuple(distance, [Room1, Room2]), value, Distance) :-

get_value(Room1, number, Num1),

Appendix B. Source Code Sisyphus Application 215

get_value(Room2, number, Num2),

Diff = Num1 - Num2,

Distance is abs(Diff).

relation(room_preference, department_role, expr(room)).

tuple(room_preference, [head_of_group, equal(location, central)]).

tuple(room_preference, [head_of_group, equal(type, office)]).

tuple(room_preference, [head_of_group, equal(size, large)]).

tuple(room_preference, [manager, equal(size, small)]).

tuple(room_preference, [manager, equal(type, office)]).

tuple(room_preference, [secretary, equal(size, large)]).

tuple(room_preference, [secretary, equal(type, office)]).

tuple(room_preference, [head_of_project, equal(size, small)]).

tuple(room_preference, [head_of_project, equal(type, office)]).

tuple(room_preference, [researcher, equal(size, large)]).

tuple(room_preference, [researcher, equal(type, office)]).

relation(nearto_preference, department_role, department_role).

semantics(relation(nearto_preference), symmetric).

property(nearto_preference, strength, [normal, above_normal, high, very_high]).

tuple(nearto_preference, [head_of_group, secretary]).

tuple(nearto_preference, [head_of_group, manager]).

tuple(nearto_preference, [head_of_group, head_of_project]).

value(nearto_preference(Role1, Role2), strength, Value) :-

get_value(role_interaction(Role1, Role2), level, Value).

Domain data This �le contains the Sisyphus example data set.

instance(employee, 'Werner L.', [smoker = false, hacker = true]).

instance(employee, 'Marc M.', [smoker = false, hacker = true]).

instance(employee, 'Angi W.', [smoker = false, hacker = false]).

instance(employee, 'Juergen L.', [smoker = false, hacker = true]).

instance(employee, 'Andy L.', [smoker = true, hacker = false]).

instance(employee, 'Michael T.', [smoker = false, hacker = true]).

instance(employee, 'Harry C.', [smoker = false, hacker = true]).

instance(employee, 'Uwe T.', [smoker = true, hacker = true]).

instance(employee, 'Thomas D.', [smoker = false, hacker = false]).

instance(employee, 'Monika X.', [smoker = false, hacker = false]).

instance(employee, 'Ulrike U.', [smoker = false, hacker = false]).

instance(employee, 'Hans W.', [smoker = true, hacker = false]).

instance(employee, 'Eva I.', [smoker = false, hacker = false]).

instance(employee, 'Joachim I.', [smoker = false, hacker = false]).

instance(employee, 'Katharina N.', [smoker = true, hacker = true]).

tuple(employee_role, ['Thomas D.', head_of_group]).

tuple(employee_role, ['Eva I.', manager]).

tuple(employee_role, ['Monika X.', secretary]).

tuple(employee_role, ['Ulrike U.', secretary]).

instance(project, 'BABYLON Product', [size = large]).

instance(project, 'ASERTI', [size = large]).

216 Pragmatics of the Knowledge Level

instance(project, 'MLT', [size = large]).

instance(project, 'RESPECT', [size = medium]).

instance(project, 'EULISP', [size = medium]).

instance(project, 'KRITON', [size = small]).

instance(project, 'TUTOR2000', [size = small]).

instance(project, 'Autonomous systems', [size = small]).

tuple(head_of, ['Hans W.', 'BABYLON Product']).

tuple(head_of, ['Joachim I.', 'ASERTI']).

tuple(head_of, ['Katharina N.', 'MLT']).

tuple(head_of, ['Angi W.', 'RESPECT']).

tuple(head_of, ['Thomas D.', 'EULISP']).

tuple(works_on, ['Werner L.', 'RESPECT']).

tuple(works_on, ['Marc M.', 'KRITON']).

tuple(works_on, ['Angi W.', 'RESPECT']).

tuple(works_on, ['Juergen L.', 'EULISP']).

tuple(works_on, ['Harry C.', 'BABYLON Product']).

tuple(works_on, ['Thomas D.', 'EULISP']).

tuple(works_on, ['Michael T.', 'BABYLON Product']).

tuple(works_on, ['Andy L.', 'TUTOR2000']).

tuple(works_on, ['Uwe T.', 'Autonomous systems']).

tuple(works_on, ['Hans W.', 'BABYLON Product']).

tuple(works_on, ['Joachim I.', 'ASERTI']).

tuple(works_on, ['Katharina N.', 'MLT']).

tuple(works_with, ['Werner L.', 'Angi W.']).

tuple(works_with, ['Werner L.', 'Marc M.']).

tuple(works_with, ['Angi W.', 'Marc M.']).

tuple(works_with, ['Angi W.', 'Werner L.']).

tuple(works_with, ['Michael T.', 'Hans W.']).

tuple(works_with, ['Thomas D.', 'Harry C.']).

tuple(works_with, ['Thomas D.', 'Juergen L.']).

tuple(works_with, ['Harry C.', 'Juergen L.']).

tuple(works_with, ['Eva I.', 'Thomas D.']).

tuple(works_with, ['Eva I.', 'Monika X.']).

tuple(works_with, ['Eva I.', 'Ulrike U.']).

tuple(works_with, ['Monika X.', 'Thomas D.']).

tuple(works_with, ['Monika X.', 'Ulrike U.']).

tuple(works_with, ['Thomas D.', 'Ulrike U.']).

instance(room, 'C5-113', [number = 113, size = small, type = office]).

instance(room, 'C5-114', [number = 114, size = small, type = office]).

instance(room, 'C5-115', [number = 115, size = small, type = office]).

instance(room, 'C5-116', [number = 116, size = small, type = office]).

instance(room, 'C5-117', [number = 117, size = large, type = office]).

instance(room, 'C5-118', [number = 118, size = large, type = other]).

instance(room, 'C5-119', [number = 119, size = large, type = office]).

instance(room, 'C5-120', [number = 120, size = large, type = office]).

instance(room, 'C5-121', [number = 121, size = large, type = office]).

instance(room, 'C5-122', [number = 122, size = large, type = office]).

instance(room, 'C5-123', [number = 123, size = large, type = office]).

value('C5-117', location, central).

value('C5-118', location, central).

value('C5-119', location, central).

Appendix B. Source Code Sisyphus Application 217

B.5 Example output

B.5.1 Full task-level trace

4 ?- off_plan(_).

Activating task "propose allocations"

input : components = [Werner L.,Marc M.,Angi W.,Juergen L.,Andy

L.,Michael T.,Harry C.,Uwe T.,Thomas D.,Monika X.

,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina N.]

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-117,C5-118

,C5-119,C5-120,C5-121,C5-122,C5-123]

Activating task "assemble plan"

input : components = [Werner L.,Marc M.,Angi W.,Juergen L.,Andy

L.,Michael T.,Harry C.,Uwe T.,Thomas D.,Monika

X. ,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina N.]

Activating task "classify"

input : components = [Werner L.,Marc M.,Angi W.,Juergen L.,Andy

L.,Michael T.,Harry C.,Uwe T.,Thomas D.,Monika

X. ,Ulrike U. ,Hans W. ,Eva I.,Joachim I.,Katharina N.]

Task "classify" terminated

output: component types =

[manager,head_of_group,head_of_project,secretary,researcher]

Activating task "order"

input : component types =

[manager,head_of_group,head_of_project,secretary,researcher]

Task "order" terminated

output: allocation plan =

[head_of_group,secretary,manager,head_of_project,researcher]

Task "assemble plan" terminated

output: allocation plan =

[head_of_group,secretary,manager,head_of_project,researcher]

Activating task "assign resources"

input : plan element = head_of_group

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-117,C5-118

,C5-119,C5-120,C5-121,C5-122,C5-123]

Activating task "group"

input : plan element = head_of_group

Task "group" terminated

output: groupings = [[Thomas D.]]

Activating task "assign"

input : plan element = head_of_group

input : unit = Thomas D.

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-117,C5-118

,C5-119,C5-120,C5-121,C5-122,C5-123]

input : allocations = []

218 Pragmatics of the Knowledge Level

Task "assign" terminated

output: allocations = [[C5-117,Thomas D.]]

Task "assign resources" terminated

output: allocations = [[C5-117,Thomas D.]]

Activating task "assign resources"

input : plan element = secretary

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-118,C5-119

,C5-120,C5-121,C5-122,C5-123]

Activating task "group"

input : plan element = secretary

Task "group" terminated

output: groupings = [[[Monika X.,Ulrike U.]]]

Activating task "assign"

input : plan element = secretary

input : unit = [Monika X.,Ulrike U.]

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-118,C5-119

,C5-120,C5-121,C5-122,C5-123]

input : allocations = [[C5-117,Thomas D.]]

Task "assign" terminated

output: allocations = [[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]]]

Task "assign resources" terminated

output: allocations = [[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]]]

Activating task "assign resources"

input : plan element = manager

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-118,C5-120

,C5-121,C5-122,C5-123]

Activating task "group"

input : plan element = manager

Task "group" terminated

output: groupings = [[Eva I.]]

Activating task "assign"

input : plan element = manager

input : unit = Eva I.

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-118,C5-120

,C5-121,C5-122,C5-123]

input : allocations = [[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.]]

Task "assign resources" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.]]

Appendix B. Source Code Sisyphus Application 219

Activating task "assign resources"

input : plan element = head_of_project

input : resources = [C5-113,C5-114,C5-115,C5-118,C5-120,C5-121,C5-122,C5-123]

Activating task "group"

input : plan element = head_of_project

Task "group" terminated

output: groupings = [[Hans W.,Joachim I.,Katharina N.]]

Activating task "assign"

input : plan element = head_of_project

input : unit = Joachim I.

input : resources = [C5-113,C5-114,C5-115,C5-118,C5-120,C5-121,C5-122,C5-123]

input : allocations =[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.]]

Activating task "assign"

input : plan element = head_of_project

input : unit = Katharina N.

input : resources = [C5-113,C5-114,C5-118,C5-120,C5-121,C5-122,C5-123]

input : allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.]]

Activating task "assign"

input : plan element = head_of_project

input : unit = Hans W.

input : resources = [C5-113,C5-118,C5-120,C5-121,C5-122,C5-123]

input : allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.]]

Task "assign resources" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.]]

Activating task "assign resources"

input : plan element = researcher

input : resources = [C5-118,C5-120,C5-121,C5-122,C5-123]

220 Pragmatics of the Knowledge Level

Activating task "group"

input : plan element = researcher

Task "group" terminated

output: groupings = [

[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]]]

Working memory operation "select" on "groupings"

with result: "

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]]"

Activating task "assign"

input : plan element = researcher

input : unit = [Andy L.,Uwe T.]

input : resources = [C5-118,C5-120,C5-121,C5-122,C5-123]

input : allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]]]

Activating task "assign"

input : plan element = researcher

input : unit = [Marc M.,Angi W.]

input : resources = [C5-118,C5-121,C5-122,C5-123]

input : allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]]]

Activating task "assign"

input : plan element = researcher

input : unit = [Werner L.,Michael T.]

input : resources = [C5-118,C5-121,C5-123]

input : allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]],

[C5-121,[Werner L.,Michael T.]]]

Appendix B. Source Code Sisyphus Application 221

Activating task "assign"

input : plan element = researcher

input : unit = [Juergen L.,Harry C.]

input : resources = [C5-118,C5-123]

input : allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]],

[C5-121,[Werner L.,Michael T.]]]

Task "assign" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]],

[C5-121,[Werner L.,Michael T.]],[C5-123,[Juergen L.,Harry C.]]]

Task "assign resources" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]],

[C5-121,[Werner L.,Michael T.]],[C5-123,[Juergen L.,Harry C.]]]

Task "propose allocations" terminated

output: allocations =

[[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]],[C5-116,Eva I.],

[C5-115,Joachim I.],[C5-114,Katharina N.],[C5-113,Hans W.],

[C5-120,[Andy L.,Uwe T.]],[C5-122,[Marc M.,Angi W.]],

[C5-121,[Werner L.,Michael T.]],[C5-123,[Juergen L.,Harry C.]]]

B.5.2 Tracing the grouping of researchers

Activating task "group"

input : plan element = researcher

Invoking inference Transform into possible groupings

input : component_type "researcher" (a [concept(department_role)])

output: groupings < 105 groupings, not listed to save space (GS) >

(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings

input : current groupings < 105 groupings, not listed to save space (GS) >

(a set(structure([instance(employee)])))

input : selection criterion "criterion(minimise, major_conflict)"

(a one_of([major_conflict,major_synergy,minor_conflict,minor_synergy]))

output: subset of groupings

"[[[Werner L.,Angi W.],[Marc M.,Harry C.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Angi W.],[Marc M.,Juergen L.],[Harry C.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Angi W.],[Marc M.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Harry C.],[Marc M.,Angi W.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Harry C.],[Marc M.,Juergen L.],[Angi W.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Harry C.],[Marc M.,Michael T.],[Angi W.,Juergen L.],[Andy L.,Uwe T.]],

[[Werner L.,Juergen L.],[Marc M.,Angi W.],[Harry C.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Juergen L.],[Marc M.,Harry C.],[Angi W.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Juergen L.],[Marc M.,Michael T.],[Angi W.,Harry C.],[Andy L.,Uwe T.]],

222 Pragmatics of the Knowledge Level

[[Werner L.,Marc M.],[Angi W.,Harry C.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Marc M.],[Angi W.,Juergen L.],[Harry C.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Harry C.],[Angi W.,Juergen L.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Juergen L.],[Angi W.,Harry C.],[Andy L.,Uwe T.]]]"

(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings

input : current groupings < see output previous inference (GS) >

(a set(structure([instance(employee)])))

input : selection criterion "criterion(maximise, major_synergy)"

(a one_of([major_conflict,major_synergy,minor_conflict,minor_synergy]))

output: subset of groupings

" [[[Werner L.,Harry C.],[Marc M.,Angi W.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Harry C.],[Marc M.,Juergen L.],[Angi W.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Harry C.],[Marc M.,Michael T.],[Angi W.,Juergen L.],[Andy L.,Uwe T.]],

[[Werner L.,Juergen L.],[Marc M.,Harry C.],[Angi W.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Juergen L.],[Marc M.,Michael T.],[Angi W.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Marc M.],[Angi W.,Harry C.],[Juergen L.,Michael T.],[Andy L.,Uwe T.]],

[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Harry C.],[Angi W.,Juergen L.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Juergen L.],[Angi W.,Harry C.],[Andy L.,Uwe T.]]]"

(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings

input : current groupings < see output previous inference (GS) >

(a set(structure([instance(employee)])))

input : selection criterion "criterion(maximise, minor_synergy)"

(a one_of([major_conflict,major_synergy,minor_conflict,minor_synergy]))

output: subset of groupings

[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]]]"

(a set(structure([instance(employee)])))

Invoking inference Select suitable groupings

input : current groupings < see output previous inference (GS) >

(a set(structure([instance(employee)])))

input : selection criterion "criterion(minimise, minor_conflict)"

(a one_of([major_conflict,major_synergy,minor_conflict,minor_synergy]))

output: subset of groupings

[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]]]"

(a set(structure([instance(employee)])))

Task "group" terminated

output: groupings =

[[Werner L.,Marc M.],[Angi W.,Michael T.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]],

[[Werner L.,Michael T.],[Marc M.,Angi W.],[Juergen L.,Harry C.],[Andy L.,Uwe T.]]]"

B.5.3 Tracing the room selection inferencing

Activating task "assign"

input : plan element = manager

input : unit = Eva I.

Appendix B. Source Code Sisyphus Application 223

input : resources = [C5-113,C5-114,C5-115,C5-116,C5-118,

C5-120,C5-121,C5-122,C5-123]

input : allocations = [[C5-117,Thomas D.],[C5-119,[Monika X.,Ulrike U.]]]

Invoking inference Select on resource requirements

input : component_type "manager" (a [concept(department_role)])

input : available resources "[C5-113,C5-114,C5-115,C5-116,C5-118,

C5-120,C5-121,C5-122,C5-123]"

(a set([instance(room)]))

output: suitable resources "[C5-113,C5-114,C5-115,C5-116]"

(a set([instance(room)]))

Invoking inference Select on positional requirements

input : component_type "manager" (a [concept(department_role)])

input : available resources "[C5-113,C5-114,C5-115,C5-116]"

(a set([instance(room)]))

input : current positions "[[C5-117,Thomas D.],

[C5-119,[Monika X.,Ulrike U.]]]"

(a structure([instance (room)], list([instance(employee)])))

output: suitable resources " [C5-116]" (a set([instance(room)]))

Working memory operation "select" on "suitable resources"

with result: "C5-116"

Working memory operation "add [[C5-116,Eva I.]]" on "allocations"

Working memory operation "subtract C5-116" on "resources"

Task "assign" terminated

output: allocations = [[C5-117,Thomas D.],

[C5-119,[Monika X.,Ulrike U.]],

[C5-116,Eva I.]]

Appendix C

Example Implementation: Abstract &

Specify

In this appendix only the application-specifc modules are listed. The generic modules can be found
in Appendix B.

C.1 Application-speci�c modules

Task declarations

:- module('task-declarations.pl',

[task/1

, task_input/2

, task_output/2

, control_term/2

, task_structure/2

, data_type/2

]).

:- discontiguous

task/1,

task_input/2,

task_output/2,

control_term/2,

task_structure/2.

%

% Task knowledge

%

% task(Task name).

% task_input(Task name, Input name).

% task_output(Task name, Output name).

% control_term(Task name, Term name).

%

% task_structure(Task name, Procedure).

task('Abstract new evidence').

task_input('Abstract new evidence', 'new evidence').

task_output('Abstract new evidence', 'new findings').

226 Pragmatics of the Knowledge Level

control_term('Abstract new evidence', 'focus set').

task_structure('Abstract new evidence',

(data_operation(store, 'focus set', 'new evidence'),

repeat((

data_operation(select, 'focus set', Focus),

exec_inference(abstract, [Focus], NewFinding),

data_operation(add, 'focus set', NewFinding),

data_operation(add, 'new findings', NewFinding)),

until(data_operation(empty, 'focus set', true)))

)).

task('Clarify finding').

task_input('Clarify finding', 'finding').

task_output('Clarify finding', 'new observation').

task_structure('Clarify finding',

(exec_inference(specify, ['finding'], Observable)

, transfer_task(obtain, Observable, Observation)

, data_operation(store, 'new observation', Observation)

)).

data_type('new evidence', set).

data_type('new findings', set).

data_type('focus set', set).

data_type('finding', element).

data_type('new observation', element).

Inference declarations

:- module('inference-declarations.pl',

[inference/2

, metaclass/4

, domain_view/2

]).

:- discontiguous

inference/2,

metaclass/4,

domain_view/2.

% inference(Internal name, External name)

% metaclass(Inference, Input/Output, General name, Specialised name).

% domain_view(Inference, , Inference knowledge).

inference(abstract, 'Abstract').

metaclass(abstract, input(1), finding, 'Specific finding').

metaclass(abstract, output, finding, 'General finding').

domain_view(abstract, relation(abstraction, finding, finding)).

inference(specify, 'Specify').

metaclass(specify, input(1), finding, 'Finding to be clarified').

metaclass(specify, output, observable, 'Dependent observable').

domain_view(specify, relation(specification, finding, finding)).

Inference functions

:- module('inference-functions.pl', [invoke_inference/3]).

Appendix C. Example Implementation: Abstract & Specify 227

:- ensure_loaded(['inference-activation.pl']).

:- use_module(

['inference-methods.pl'

, 'inference-declarations.pl'

, 'domain-access.pl'

]).

inference_function(abstract, [In], Out) :-

domain_retrieval(find_all, abstraction, Rules),

rule_interpreter(Rules, In, Out, forward, single_pass, find_one).

inference_function(specify, [In], Out) :-

domain_retrieval(find_all, specification, Rules),

rule_interpreter(Rules, In, Out, backward, multi_pass, find_one).

Inference methods

:- module('inference-methods.pl',

[rule_interpreter/6

]).

%

% Computational techniques useed by inferences

%

rule_interpreter(Rules, In, Out, forward, single_pass, find_one) :-

member([Premise, Conclusion], Rules),

consistent(In, Premise),

Out = Conclusion.

rule_interpreter(Rules, In, Out, backward, multi_pass, find_one) :-

member([Premise, Conclusion], Rules),

consistent(In, Conclusion),

operand_of(Premise, Op),

(rule_interpreter(Rules, Premise, Out, backward, multi_pass, find_one)

; Out = Op

).

consistent(X = Y, X = Y).

consistent(X = Y, X > Z) :-

Y > Z.

consistent(X = Y, X >= Z) :-

Y >= Z.

consistent(X = Y, X < Z) :-

Y < Z.

consistent(X = Y, X =< Z) :-

Y =< Z.

operand_of(X = _, X).

operand_of(X > _, X).

operand_of(X >= _, X).

operand_of(X < _, X).

operand_of(X =< _, X).

Domain index

228 Pragmatics of the Knowledge Level

:- module('domain-index.pl', [domain_index/3]).

% Inference -> domain mappings

%

domain_index(expression, finding, [expr(patient_data)]).

domain_index(entity, observable, [property(patient_data)]).

domain_index(relation, abstraction, [relation(qual_abstraction),

relation(definition)]).

domain_index(relation, specification, [relation(qual_abstraction),

relation(definition)]).

Domain theory

% Domain knowledge format

%

% concept(Concept name, Supertyes)

% property(Concept, Property name, Valueset)

% relation(Relation name, Type first argument, Type second argument)

% tuple(Relation name, [First argument, Second argument])

concept(patient_data, []).

concept(quantitative_data, [patient_data]).

concept(qualitative_data, [patient_data]).

property(quantitative_data, temperature, numberrange(35.0, 42.0)).

property(quantitative_data, diastolic_pressure, numberrange(0, 300)).

property(qualitative_data, fever, [present, absent]).

property(qualitative_data, blood_pressure, [normal, elevated]).

property(qualitative_data, hypertension, [present, absent]).

relation(qual_abstraction, expr(quantitative_data), expr(qualitative_data)).

relation(definition, expr(qualitative_data), expr(qualitative_data)).

tuple(qual_abstraction, [temperature >= 38.0, fever = present]).

tuple(qual_abstraction, [temperature < 38.0, fever = absent]).

tuple(qual_abstraction, [diastolic_pressure >= 95, blood_pressure = elevated]).

tuple(qual_abstraction, [diastolic_pressure < 95, blood_pressure = normal]).

tuple(definition, [blood_pressure =elevated, hypertension = present]).

tuple(definition, [blood_pressure = normal, hypertension = absent]).

C.2 Example output

3 ?- abstract_example(_).

Activating task "Abstract new evidence"

input : new evidence = [temperature = 40,diastolic_pressure = 100]

Invoking inference Abstract

input : Specific finding "diastolic_pressure = 100" (a [expr(patient_data)])

output: General finding "blood_pressure = elevated" (a [expr(patient_data)])

Invoking inference Abstract

input : Specific finding "blood_pressure = elevated" (a [expr(patient_data)])

output: General finding "hypertension = present" (a [expr(patient_data)])

Appendix C. Example Implementation: Abstract & Specify 229

Invoking inference Abstract

input : Specific finding "temperature = 40" (a [expr(patient_data)])

output: General finding "fever = present" (a [expr(patient_data)])

Task "Abstract new evidence" terminated

output: new findings = [blood_pressure = elevated,hypertension = present,fever = present]

Yes

4 ?- specify_example(_).

Activating task "Clarify finding"

input : finding = hypertension = present

Invoking inference Specify

input : Finding to be clarified "hypertension = present" (a [expr(patient_data)])

output: Dependent observable "diastolic_pressure" (a [property(patient_data)])

Please enter the value of diastolic_pressure: 100.

Task "Clarify finding" terminated

output: new observation = diastolic_pressure = 100

Yes

Bibliography

Abiteboul, S. & Hull, R. (1987). IFO: A formal semantic dabase model. ACM Trans. on
Database Systems, 12:525{565.

Akkermans, J. M., van Harmelen, F., Schreiber, A. T., & Wielinga, B. J. (1992). A
formalisation of knowledge-level models for knowledge acquistion. International Journal of
Intelligent Systems. forthcoming.

Alexander, J. H., Freiling, M. J., Shulman, S. J., Rehfuss, S., & Messick, S. L. (1988).
Ontological analysis: an ongoing experiment. In Boose, J. & Gaines, B., editors, Knowledge-
Based Systems, Volume 2: Knowledge Acquisition Tools for Expert Systems, pages 25{37.
Academic Press, London.

Allemang, D. (1991). Sisyphus part 2: Generic tasks. In Proceedings EKAW'91, Sisyphus
Working Papers.

Angele, J., Fensel, D., Landes, D., & Studer, R. (1991). KARL: An executable language for
the conceptual model. In Proceedings of the 6th Ban� Knowledge Acquisition for Knowledge-
Based Systems Workshop, Ban�, pages 1.1{20, Canada. SRDG Publications, University of
Calgary.

Anjewierden, A., editor (1991). KEW Infrastructure Documentation. Deliverable ESPRIT
Project 2576 ACKnowledge. University of Amsterdam, SWI, Roetersstraat 15, 1018 WB Am-
sterdam. Available from: University of Amsterdam, Social Science Informatics, Roetersstraat
15, 1018 WB, The Netherlands.

Anjewierden, A., Wielemaker, J., & Toussaint, C. (1992). Shelley - computer aided
knowledge engineering. Knowledge Acquisition, 4(1). Special issue:\The KADS approach to
knowledge engineering".

Barth�elemy, S., Edin, G., Toutain, E., & Becker, S. (1987). Requirements Analysis in
KBS Development. ESPRIT Project P1098 Deliverable D3 (task A2), Cap Sogeti Innovation.

Barth�elemy, S., Frot, P., & Simonin, N. (1988). Analysis document experiment F4. ESPRIT
Project P1098, Deliverable E4.1, Cap Sogeti Innovation.

Bauer, C. & Karbach, W., editors (1992). Proceedings Second KADS User Meeting, ZFE BT
SE 21, Otto-Hahn Ring 6, D-8000 Munich 83. Siemens AG.

Benjamins, R., Abu-Hanna, A., & Jansweijer, W. (1992a). Suitability criteria for model
based diagnostic methods. In In Proceedings of ECAI-workshop on Model Based Reasoning,
Vienna. SKBS/A2/92-13.

Benjamins, V. R., Jansweijer, W. N. H., & Abu-Hanna, A. (1992b). Integrating problem
solving methods into KADS. In Bauer, C. & Karbach, W., editors, Proccedings 2nd KADS
User Meeting, Munich. SKBS/A2/92-02.

Bennet, J. S. (1985). ROGET : A knowledge-based system for acquiring the conceptual structure
of a diagnostic expert system. Journal of Automated Reasoning, 1:49{74.

Billault, J. P. (1989). Design and implementation of a con�guration task. ESPRIT Project
P1098, Deliverable E5.2, University of Amsterdam. Available from: University of Amsterdam,
Social Science Informatics, Roetersstraat 15, 1018 WB, The Netherlands.

Boden, M. A. (1977). Arti�cial Intelligence and Natural Man. Basic Books, New York.

232 Pragmatics of the Knowledge Level

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Com-
puter, pages 61{72.

Brachman, R. J. (1979). On the epistemological status of semantic networks. In Findler, N. V.,
editor, Associative Networks, New York. Academic Press.

Brachman, R. J. & Schmolze, J. G. (1985). An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science, 9:171{216.

Brachman, R. J. & Smith, B. C. (1980). Special issue on knowledge representation. SIGART
Newsletter, 70:1{138.

Bredeweg, B. & Wielinga, B. J. (1988). Integrating qualitative reasoning approaches. In
Proceedings of ECAI{88, Munich, pages 195{201.

Breuker, J. A. & Wielinga, B. J. (1984). Techniques for knowledge elicitation and analysis.
ESPRIT Project P12 Report 1.5, University of Amsterdam.

Breuker, J. A. & Wielinga, B. J. (1989). Model Driven Knowledge Acquisition. In Guida,
P. & Tasso, G., editors, Topics in the Design of Expert Systems, pages 265{296, Amsterdam.
North Holland.

Breuker, J. A., Wielinga, B. J., van Someren, M., de Hoog, R., Schreiber, A. T.,

de Greef, P., Bredeweg, B., Wielemaker, J., Billault, J. P., Davoodi, M., &

Hayward, S. A. (1987). Model Driven Knowledge Acquisition: Interpretation Models. ES-
PRIT Project P1098 Deliverable D1 (task A1), University of Amsterdam and STL Ltd.

Brunet, E. & Toussaint, C. (1990). A KADS application in insurance. ESPRIT Project
P1098, Deliverable E9.1, Cap Sesa Innovation.

Bylander, T. & Chandrasekaran, B. (1988). Generic tasks in knowledge-based reasoning:
The right level of abstraction for knowledge acquisition. In Gaines, B. & Boose, J., editors,
Knowledge Acquisition for Knowledge Based Systems, volume 1, pages 65{77. Academic Press,
London.

Bylander, T. & Mittal, S. (1986). CSRL: A language for classi�catory problem solving and
uncertainty handling. AI Magazine, 7.

Chandrasekaran, B. (1988). Generic tasks as building blocks for knowledge-based systems: The
diagnosis and routine design examples. The Knowledge Engineering Review, 3(3):183{210.

Chandrasekaran, B. (1990). Design problem solving: A task analysis. AI Magazine, 11:59{71.
Chen, P. P. S. (1976). The entity relationship model { toward a uni�ed view of data. ACM

Transactions on Database Systems, 1:9{36.
Clancey, W. J. (1983). The epistemology of a rule based system -a framework for explanation.

Arti�cial Intelligence, 20:215{251.

Clancey, W. J. (1985a). Acquiring, representing and evaluating a competence model of diag-
nostic strategy. In Chi, Glaser, & Far, editors, Contributions to the Nature of Expertise.

Clancey, W. J. (1985b). Heuristic classi�cation. Arti�cial Intelligence, 27:289{350.
Clancey, W. J. (1992). Model construction operators. Arti�cial Intelligence, 53(1):1{115.
Clancey, W. J. & Letsinger, R. (1984). NEOMYCIN: Recon�guring a rulebased expert

system for application to teaching. In Clancey, W. J. & Shortli�e, E. H., editors, Readings in
Medical Arti�cial Intelligence: the �rst decade, pages 361{381. Addison-Wesley, Reading.

Coad, P. & Yourdon, E. (1991). Object-Oriented Analysis. Prentice Hall, Englewood Cli�s,
New Jersey.

Console, L. & Torasso, P. (1990). Integrating models of the correct behaviour into abductive
diagnosis. In Aiello, L. C., editor, Proceedings ECAI{90, Stockholm, pages 160{166, London.
ECCAI, Pitman Publishing.

David, J. M. & Krivine, J. P. (1990). Explaining reasoning from knowledge level models. In
Aiello, L., editor, Proceedings ECAI'90, Stockholm, pages 186{188, London. Pitman.

Davis, J. P. & Bonnel, R. P. (1990). Producing visually-based knowledge speci�cations for
acquiring organizational knowledge. In Wielinga, B. J., Boose, J. H., Gaines, B. R., Schreiber,
A. T., & van Someren, M. W., editors, Current Trends in Knowledge Acquisition, pages 105{
122, Amsterdam. IOS Press.

Bibliography 233

Davis, R. (1980). Metarules: Reasoning about control. Arti�cial Intelligence, 15:179{222.

Davis, R. (1984). Diagnostic reasoning based on structure and behavior. Arti�cial Intelligence,
24:347{410.

de Greef, P. (1989). Cooperative statistical problem solving. In Proceedings of the Second
International Workshop on AI and Statistics, Fort Lauderdale, Florida.

de Greef, P. & Breuker, J. A. (1985). A case study in structured knowledge acquisition. In
Proceedings of the 9th IJCAI, pages 390{392, Los Angeles.

de Greef, P. & Breuker, J. A. (1989). A methodology for analysing modalities of system/user
cooperation for KBS. In Boose, J., Gaines, B., & Ganascia, J. G., editors, Proceedings Euro-
pean Knowledge Acquisiton Workshop, EKAW{89, pages 462{473, Paris, France.

de Greef, P. & Breuker, J. A. (1992). Analysing system-user cooperation. Knowledge Acqui-
sition, 4(1). Special issue `The KADS approach to knowledge engineering'.

de Greef, P., Breuker, J. A., & de Jong, T. (1988a). Modality: An analysis of functions, user
control and communication in knowledge-based systems. ESPRIT Project P1098, Deliverable
D6 (task A4), University of Amsterdam. Available from: University of Amsterdam, Social
Science Informatics, Roetersstraat 15, 1018 WB, The Netherlands.

de Greef, P., Breuker, J. A., Schreiber, A. T., & Wielemaker, J. (1988b). StatCons:
Knowledge acquisition in a complex domain. In Proceedings ECAI{88, Munich.

de Greef, P., Schreiber, A. T., & Wielemaker, J. (1987). The StatCons case study. ES-
PRIT Project P1098, Deliverable E2.3 (experiment F2), University of Amsterdam. Available
from: University of Amsterdam, Social Science Informatics, Roetersstraat 15, 1018 WB, The
Netherlands.

de Hoog, R. (1989). Een expertsysteem, bijstand voor bijstand. Informatie & Informatiebeleid,
7(1):47{53. In Dutch.

de Hoog, R., Sommer, K., & Vogler, M. (1990). Designing knowledge-based systems: a
study of organisational aspects. Technical Report Report W17, ISBN 90 346 2400 5, Dutch
Organisation for Technological Aspects Research NOTA. In Dutch.

de Jong, T., de Hoog, R., & Schreiber, A. T. (1988). Knowledge acquisition for an integrated
project mnagament system. Information Processing and Management, 24(6):681{691.

de Kleer, J. (1986). An assumption-based TMS. Arti�cial Intelligence, 28:127{162.

DeMarco, T. (1978). Structured Analysis and System Speci�cation. Yourdon Press, New York.

DeMarco, T. (1982). Controlling Software Projects. Yourdon Press, New York.
Diaper, D., editor (1989). Knowledge Elicitation: principles, techniques and applications. Series

in Expert Systems. Ellis Horwood Ltd., Chichester.

Eshelman, L. (1988). MOLE: A knowledge-acquisition tool for cover-and-di�erentiate systems.
In Marcus, S., editor, Automating Knowledge Acquisition for Expert Systems, pages 37{80.

Kluwer Academic Publishers, The Netherlands.

Eshelman, L., Ehret, D., McDermott, J., & Tan, M. (1988). MOLE: a tenacious knowledge
acquisition tool. In Boose, J. H. & Gaines, B. R., editors, Knowledge Based Systems, Volume
2: Knowledge Acquisition Tools for Expert Systems, pages 95{108, London. Academic Press.

Fikes, R. & Kehler, T. (1985). The role of frame based representation in reasoning. Commu-
nications of the ACM, 28(9):904{920.

Genesereth, M. R. & Nilsson, N. J. (1987). Logical Foundations of Arti�cial Intelligence.
Morgan Kaufmann, Los Altos, California.

Goel, A., Soundarajan, N., & Chandrasekaran, B. (1987). Complexity in classi�catory
reasoning. In AAAI{87, pages 421{425.

Gruber, T. R. (1989). The Acquisition of Strategic Knowledge. Perspectives in Arti�cial Intelli-
gence, Volume 4. Academic Press, San Diego.

Harel, D. (1987). State charts: a visual formalism for complex systems. Science of Computer
Programming, 8:231{274.

Harmon, P. (1991). A brief overview of software methodologies. Intelligent Software Strategies,
VII(1):1{19. Newsletter. Circulation o�ce: 37 Broadway, Arlington. MA 02174 USA.

234 Pragmatics of the Knowledge Level

Hayes-Roth, B. (1985). A blackboard architecture for control. Arti�cial Intelligence, 26(3):251{
321.

Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. (1983). Building Expert Systems.

Addison-Wesley, New York.

Hayward, S. A. (1987). How to build knowledge systems; techniques, tools, and case studies. In
Proceedings of 4th annual ESPRIT conference, pages 665{680, Amsterdam. North-Holland.

Hayward, S. A., Wielinga, B. J., & Breuker, J. A. (1987). Structured analysis of knowledge.
International Journal of Man-Machine Studies, 26:487{498.

Hull, R. & King, R. (1987). Semantic database modelling: Survey, applications, and research
issues. ACM Computing Surveys, 19:201{260.

Jansweijer, W. N. H. (1988). PDP. PhD thesis, University of Amsterdam.

Jansweijer, W. N. H., Elshout, J. J., & Wielinga, B. J. (1986). The expertise of novice
problem solvers. In Proceedings ECAI{86, Brigthon.

Jansweijer, W. N. H., Elshout, J. J., & Wielinga, B. J. (1989). On the multiplicity of
learning to solve problems. In Mandl, H., de Corte, E., Bennett, N., & Friedrich, H. F.,
editors, Learning and Instruction: European research in an international context, pages 127{
145. Pergamon Press, Oxford, UK.

Karbach, W., Linster, M., & Vo�, A. (1989). OFFICE-PLAN: Tackling the synthesis fron-
tier. In Metzing, D., editor, GWAI{89: 13th German Workshop on Arti�cial Intelligence,
Informatik Fachberichte 216, pages 379{387, Berlin. Springer Verlag.

Karbach, W., Linster, M., & Vo�, A. (1990). Model-based approaches: One label - one
idea? In Wielinga, B., Boose, J., Gaines, B., Schreiber, G., & van Someren, M., editors,
Current Trends in Knowledge Acquisition, pages 173{189. IOS Press, Amsterdam.

Karbach, W., Tong, X., & Vo�, A. (1988). Filling in the knowledge acquisition gap: via
KADS models of expertise to ZDEST{2 expert systems. In Proceedings of EKAW 88, Bonn.

Karbach, W., Vo�, A., Schukey, R., & Drouwen, U. (1991). Model-K: Prototyping at the
knowledge level. In Proceedings Expert Systems{91, Avignon, France, pages 501{512.

Kerschberg, L., editor (1986). Expert Database Systems. The Benjamin/Cummings Publishing
Company, Inc.

Killin, J. (1992). The management and maintenance of an operational KADS system. In
Schreiber, A. T., Wielinga, B. J., & Breuker, J. A., editors, KADS: A Principled Approach to
Knowledge-Based System Development. Academic Press, London. Forthcoming.

Klinker, G., Bhola, C., Dallemagne, G., Marques, D., & McDermott, J. (1991). Usable
and reusable programming constructs. Knowledge Acquisition, 3:117{136.

Konolige, K. (1992). Abduction versus closure in causal theories. AI Journal, 53:255{272.

Koster, J. (1990). Rule modelling: A comparison of three data modelling techniques. Technical
report, University of Amsterdam, Social Science Informatics.

Krickhahn, R., Nobis, R., Mahlmann, A., & Schachter, M. (1988). Applying the KADS
methodology to develop a knowledge-based system. In Proceedings ECAI{88, Munich, pages
11{17, London. Pitman.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: an architecture for general
intelligence. Arti�cial Intelligence, 33:1{64.

Lemmers, M. (1991). A shell for systematic diagnosis: Structure-preserving design of a KBS.
Master's thesis, University of Amsterdam, Social Science Informatics.

Lenat, D. B. & Guha, R. V. (1990). Building large knowledge-based systems. Representation
and inference in the Cyc project. Addison-Wesley, Reading Massachusetts.

Linster, M. (1992). Knowledge acquisition based on explicit methods of problem{solving. PhD
thesis, University of Kaiserslautern.

Linster, M. & Musen, M. A. (1992). Use of KADS to create a conceptual model of the ON-
COCIN task. Knowledge Acquisition, 4(1). Special issue:`The KADS approach to knowledge
engineering'.

Bibliography 235

Maes, P. (1987). Computational re
ection. Technical report 87-2, Free University of Brussels,
AI Lab.

Marcus, S., editor (1988). Automatic knowledge acquisition for expert systems. Kluwer.
Marcus, S. & McDermott, J. (1989). SALT: A knowledge acquisition language for propose-

and-revise systems. Arti�cial Intelligence, 39(1):1{38.
Mars, N. J. I. (1987). Onderzoek van niveau: Kennistechnologie in wording. Inaugurale rede,

17 september, Universiteit Twente.
McDermott, J. (1988). Preliminary steps towards a taxonomy of problem-solving methods. In

Marcus, S., editor, Automating Knowledge Acquisition for Expert Systems, pages 225{255.
Kluwer Academic Publishers, The Netherlands.

Meyer, M. A. & Booker, J. M. (1991). Eliciting and Analyzing Expert Judgement: A Practical
Guide, volume 5 of Knowledge-Based Systems. Academic Press, London.

Morik, K. (1989). Sloppy modelling. In Morik, K., editor, Knowledge Representation and Or-
ganisation in Machine Learning. Springer Verlag.

Musen, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition Tools. Pit-
man, London. Research Notes in Arti�cial Intelligence.

Musen, M. A., Fagan, L. M., Combs, D. M., & Shortliffe, E. H. (1987). Use of a domain-
model to drive an interactive knowledge-editing tool. International Journal of Man-Machine
Studies, 26:105{121.

Neale, I. M. (1988). First generation expert systems: a review of knowledge acquisition method-
ologies. The Knowledge Engineering Review, 3(2):105{145.

Neches, R., Swartout, W. R., & Moore, J. D. (1985). Enhanced maintenance and expla-
nation of expert systems through explicit models of their development. IEEE Trans. Softw.

Eng., 11:1337{1351.
Newell, A. (1982). The knowledge level. Arti�cial Intelligence, 18:87{127.

Newell, A. & Simon, H. A. (1963). GPS { a program that simulates human thought. In
Computers and Thought, pages 279{296. MacGraw-Hill, New York.

Nilsson, N. J. (1991). Logic and arti�cial intelligence. Arti�cial Intelligence, 47:31{56.
Patil, R. S. (1988). Arti�cial intelligence techniques for diagnostic reasoning in medicine. In

Shobe, H. E. & AAAI, editors, Exploring Arti�cial Intelligence: Survey Talks from the Na-
tional Conferences on Arti�cial Intelligence, pages 347{379. Morgan Kaufmann, San Mateo,
California.

Pople, H. (1982). Heuristic methods for imposing structure on ill-structured problems: The
structuring in medical diagnosis. In Szolovits, P., editor, Arti�cial Intelligence in Medicine,

pages 119{190. Westview Press, Boulder CO.
Porter, D. (1992). An inference strcuture for use in the fraud assessment domain. In Bauer, C.

& Karbach, W., editors, Proceedings Second KADS User Meeting, ZFE BT SE 21, Otto-Hahn
Ring 6, D-8000 Munich 83. Siemens AG.

Puerta, A., Egar, J., Tu, S. W., & Musen, M. A. (1991). A multiple-method knowledge-
acquisition shell for the automatic generation of knowledge-acquisition tools. In Proceedings
of the 6th Knowledge Acquisition for Knowledge-Based Systems Workshop, Ban�, Canada,
pages 20.1{19. SRDG Publications, University of Calgary.

Puppe, F. (1990). Probleml�osungsmethoden in Expertensystemen. Studienreihe Informatik.
Springer Verlag.

Readdie, M. & Innes, N. (1987). Network management: Requirements analysis and feasibility
analysis. ESPRIT Project P1098, Deliverable E3.1a, SciCon Ltd. (UK).

Reichgelt, H. & van Harmelen, F. (1986). Criteria for choosing represenation languages and
control regimes for expert systems. Knowledge Engineering Review, 1:2{17.

Reinders, M., Vinkhuyzen, E., Vo�, A., Akkermans, J. M., Balder, J. R., Bartsch-

Sp�orl, B., Bredeweg, B., Drouven, U., van Harmelen, F., Karbach, W., Karssen,

Z., Schreiber, A. T., & Wielinga, B. J. (1991). A conceptual modelling framework for
knowledge-level re
ection. AI Communications, 4(2-3):74{87.

236 Pragmatics of the Knowledge Level

Roth, E. M. & Woods, D. D. (1989). Cognitive task analysis: An approach to knowledge
acquisition for intelligent system design. In Guida, P. & Tasso, G., editors, Topics in Expert
System Design, pages 233{264, Amsterdam. North Holland.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object-
Oriented Modelling and Design. Prentice Hall, Englewood Cli�s, New Jersey.

Russell, B. (1961). History of Western Philosophy { and its connection with political and social
circumstances from the earliest times to the present day. Allen & Urwin, London.

Schachter, M. & Wermser, D. (1988). A sales assistant for chemical measurement equipment.
In Proceedings ECAI{88, Munich, pages 191{193, London. Pitman.

Schank, R. (1975). Conceptual information processing. North Holland, Amsterdam.

Schoenmakers, E. T. M. (1992). Control of a blackboard system for acoustic analysis. Master's
thesis, Technical University of Delft, Faculty of Electrical Engineering, Delft, The Netherlands.
In Dutch.

Schreiber, A. T. (1992). The KADS approach to knowledge engineering. editorial special issue.
Knowledge Acquisition, 4(1):1{4.

Schreiber, A. T., Akkermans, J. M., & Wielinga, B. J. (1991a). On problems with the

knowledge level perspective. In Steels, L. & Smith, B., editors, AISB{91: Arti�cial Intelligence
and Simulation of behaviour, pages 208{221, London. Springer Verlag. Also in: Proceedings
Ban�{90 Knowledge Acquisition Workshop, J. H. Boose and B. R. Gaines (editors), SRDG
Publications, University of Calgary, pages 30-1 { 30-14.

Schreiber, A. T., Bartsch-Sp�orl, B., Bredeweg, B., van Harmelen, F., Karbach,

W., Reinders, M., Vinkhuyzen, E., & Vo�, A. (1991b). Designing architectures for
knowledge-level re
ection. ESPRIT Basic Research Action P3178 REFLECT, Deliverable
IR.4 RFL/UvA/III.1/4, REFLECT Consortium. Available from: University of Amsterdam,
Social Science Informatics, Roetersstraat 15, 1018 WB, The Netherlands.

Schreiber, A. T., Bredeweg, B., Davoodi, M., & Wielinga, B. J. (1987). Toward a design
methodology for KBS. ESPRIT Project P1098, Deliverable D8 Uva/Stc-B2-Pr{001, Vf Memo
97, SWI, University Of Amsterdam. Available from: University of Amsterdam, Social Science
Informatics, Roetersstraat 15, 1018 WB, The Netherlands.

Schreiber, A. T., Bredeweg, B., de Greef, P., Terpstra, P., Wielinga, B. J., Brunet,

E., Simonin, N., & Wallyn, A. (1989a). A KADS approach to KBS design. ESPRIT
Project 1098, deliverable B6 UvA-B6-PR{010, University of Amsterdam & Cap Sogeti Inno-
vation. Available from: University of Amsterdam, Social Science Informatics, Roetersstraat
15, 1018 WB, The Netherlands.

Schreiber, A. T., Breuker, J. A., Bredeweg, B., & Wielinga, B. J. (1988). Mod-
elling in KBS development. In Proc. 2th European Knowledge Acquisition Workshop, Bonn,
GMD-Studien 143, pages 7.1{ 7.15, St. Augustin. GMD. Also in: Proc. 8th Expert Systems
Workshop, Avignon, 1988.

Schreiber, A. T., Wielinga, B. J., Hesketh, P., & Lewis, A. (1989b). A KADS design
description language. ESPRIT Project 1098, deliverable B7 UvA-B7-PR{007, University of
Amsterdam & STC Technology Ltd. Available from: University of Amsterdam, Social Science
Informatics, Roetersstraat 15, 1018 WB, The Netherlands.

Schrijnen, L. M. & Wagenaar, G. (1988). Autopes: the development of an expert system
for process control. In van Someren, M. W. & Schreiber, A. T., editors, Proceedings First
Dutch AI Conference NAIC{88, pages 58{71, University of Amsterdam. Department of Social
Science Informatics. In Dutch.

Shadbolt, N. & Wielinga, B. J. (1990). Knowledge based knowledge acquisition: the next
generation of support tools. In Wielinga, B. J., Boose, J., Gaines, B., Schreiber, G., & van
Someren, M. W., editors, Current Trends in Knowledge Acquisition, pages 313{338, Amster-
dam. IOS Press.

Shortliffe, E. H., Scott, A. C., Bischoff, M. B., Cambell, A. B., van Melle, W., &

Jacobs, C. D. (1981). ONCOCIN: An expert system for oncology protocol management. In

Bibliography 237

IJCAI{81, pages 876{881.

Smith, B. C. (1985). Prologue to \re
ection and semantics in a procedural language". In Brach-
man, R. J. & Levesque, H. J., editors, Readings in Knowledge Representation, pages 31{40.
Morgan Kaufman, California.

Sowa, J. F. (1984). Conceptual Structures. Addison-Wesley.
Sprenger, M. (1991). Explanation strategies for KADS-based expert systems. DIAMOD Project

Bericht Nr. 10, GMD, St. Augustin, Germany.

Steels, L. (1990). Components of expertise. AI Magazine. Also as: AI Memo 88-16, AI Lab,
Free University of Brussels.

Sticklen, J. (1989). Problem solving architecture at the knowledge level. Journal of Experimental
and Theoretical Arti�cial Intelligence.

Taylor, R., Porter, D., Hickman, F., Streng, K.-H., Tansley, S., & Dorbes, G. (1989).
System evolution - principles and methods (the life-cycle model). ESPRIT Project P1098,
Deliverable Task G9, Touche Ross.

Tong, X., He, Z., & Yu, R. (1988). A survey of the expert system tool ZDEST{2. In Proceedings
ECAI{88, Munich, pages 113{118, London. Pitman.

Ueberreiter, B. & Vo�, A., editors (1991). Materials KADS User Meeting, Munich, February
14/15 1991. Siemens AG ZFE IS INF 32, Munich Perlach. In German.

van der Molen, R. & Kruizinga, E. P. (1990). OKS GAK: a feasibility study. Master's thesis,
University of Amstrerdam, Department of Social Science Informatics. In Dutch.

van der Spek, R., van der Wouden, H., & Ysbrandy, C. (1990). The paint advisor. Expert
Systems, 7(4):190{198.

van Harmelen, F. (1989). Classi�cation of meta-level architectures. In Jackson, P., Reichgelt,
H., & van Harmelen, F., editors, Logic-Based Knowledge Representation, chapter 2, pages 13{
36. MIT Press. Also in: Meta-Programming in Logic Programming (META88), Abramson, H.
and Rogers, M. H. (eds.), MIT Press, 1989, pp. 103-122.

van Harmelen, F., Akkermans, J. M., Balder, J. R., Schreiber, A. T., & Wielinga,

B. J. (1990). Formal speci�cations of knowledge models. ESPRIT Basic Research Action
P3178 REFLECT, Deliverable R.1 RFL/ECN/I.4/1, Netherlands Energy Research Founda-
tion ECN. Available from: University of Amsterdam, Social Science Informatics, Roetersstraat
15, 1018 WB, The Netherlands.

van Harmelen, F., Akkermans, J. M., Bartsch-Sp�orl, B., Bredeweg, B., Coulon,

C. H., Drouven, U., Karbach, W., Reinders, M., Schreiber, A. T., Vinkhuyzen, E.,

Vo�, A., & Wielinga, B. J. (1992). Knowledge-level re
ection: Speci�cations and archi-

tectures. ESPRIT Basic Research Action P3178 REFLECT, Deliverable R.2 RFL/UvA/III.2,
REFLECT Consortium. Available from: University of Amsterdam, Social Science Informatics,
Roetersstraat 15, 1018 WB, The Netherlands.

van Harmelen, F. & Balder, J. R. (1992). (ML)2: a formal language for KADS models of
expertise. Knowledge Acquisition, 4(1). Special issue: `The KADS approach to knowledge
engineering'.

van Heijst, G., Terpstra, P., Wielinga, B. J., & Shadbolt, N. (1992). Using generalised
directive models in knowledge acquisition. In Wetter, T., Altho�, K., Boose, J., Gaines, B.,
Linster, M., & Schmalhofer, F., editors, Current Developments in Knowledge Acquisition:
EKAW-92, Berlin/Heidelberg. Springer-Verlag.

van Langevelde, I. A., Philipsen, A. W., & Treur, J. (1992). Formal speci�cation of compo-
sitional architectures. In Neumann, B., editor, Proceedings ECAI'92, Vienna, pages 272{276,
Chichester. Wiley. To appear. Longer version available as: Report IR-282, Mathematics and
Computer Science, Free University of Amsterdam.

van Melle, W., Scott, A. C., Bennet, J. S., & Peairs, M. A. S. (1981). The EMYCIN
Manual.

Vanwelkenhuysen, J. & Rademakers, P. (1990). Mapping knowledge-level analysis onto
a computational framework. In Aiello, L., editor, Proceedings ECAI{90, Stockholm, pages

238 Pragmatics of the Knowledge Level

681{686, London. Pitman.
Vo�, A., Karbach, W., Drouven, U., & Lorek, D. (1990). Competence assessment in

con�guration tasks. In Aiello, L., editor, Proceedings of the 9th European Conference on AI,
ECAI{90, pages 676{681, London. ECAI, Pitman.

Wetter, T. (1990). First-order logic foundation of the KADS conceptual model. In Wielinga, B.,
Boose, J., Gaines, B., Schreiber, G., & van Someren, M., editors, Current trends in knowledge
acquisition, pages 356{375, Amsterdam. IOS Press.

Wielemaker, J. (1991). SWI-Prolog 1.5: Reference Manual. University of Amsterdam, So-
cial Science Informatics, Roetersstraat 15, 10-18 WB Amsterdam, The Netherlands. E-mail:
jan@swi.psy.uva.nl.

Wielemaker, J. & Billault, J. P. (1988). A KADS analysis for con�guration. ESPRIT
Project P1098, Deliverable E5.1 Uva-F5-PR{001, SWI, University of Amsterdam. Available
from: University of Amsterdam, Social Science Informatics, Roetersstraat 15, 1018 WB, The
Netherlands.

Wielinga, B. J., Akkermans, J. M., Schreiber, A. T., & Balder, J. R. (1989). A
knowledge acquisition perspective on knowledge-level models. In Boose, J. H. & Gaines,
B. R., editors, Proceedings Knowledge Acquisition Workshop KAW{89, Ban�, pages 36{1 {
36{22, University of Calgary. SRDG Publications.

Wielinga, B. J. & Bredeweg, B. (1988). Knowledge and expertise in expert systems. In
van der Veer, G. C. & Mulder, G., editors, Human-Computer Interaction: Psychonomics
Aspects, pages 290{297, Berlin. Springer-Verlag.

Wielinga, B. J. & Breuker, J. A. (1984). Interpretation of verbal data for knowledge ac-
quisition. In OShea, T., editor, Advances in Arti�cial Intelligence, pages 41{50, Amsterdam.
ECAI, Elsevier Science publishers. Also as: Report 1.4, ESPRIT Project 12, University of
Amsterdam.

Wielinga, B. J. & Breuker, J. A. (1986). Models of expertise. In Proceedings ECAI{86, pages
306{318.

Wielinga, B. J., Schreiber, A. T., & Breuker, J. A. (1992a). KADS: A modelling approach
to knowledge engineering. Knowledge Acquisition, 4(1). Special issue `The KADS approach
to knowledge engineering'.

Wielinga, B. J., van de Velde, W., Schreiber, A. T., & Akkermans, J. M. (1992b).
Towards a uni�cation of knowledge modelling approaches. In David, J.-M., Krivine, J.-P., &
Simmons, R., editors, Second Generation Expert Systems. Springer-Verlag. To appear. Also
as: Technical Report ESPRIT Project P5248, KADS-II/T1.1/TR/UvA/004/3.0.

Winkels, R. G. F., Achthoven, W., & van Gennip, A. (1989). Methodology and modularity
in ITS design. In Arti�cial Intelligence and Education, pages 314{322, Amsterdam. IOS Press.

Wright, I., Hayball, C., Land, L., & Mulhall, T. (1988). Analysis report experiment F6.
ESPRIT Project P1098, Deliverable E6.1, STC Technology Ltd. & Knowledge Based Systems
Centre.

Yourdon, E. (1989a). Managing the Structured Techniques. Yourdon Press, Englewood Cli�s,
New Jersey.

Yourdon, E. (1989b). Modern Structured Analysis. Prentice Hall, Englewood Cli�s, New Jersey.

Samenvatting

De vraag of het mogelijk is intelligente, \denkende" machines te bouwen wordt tegenwoor-

dig veelvuldig gesteld. Het onderzoek naar kunstmatige intelligentie (arti�cial intelligence

ofwel AI) houdt zich bezig met deze vraagstelling. In de AI gaat men ervan uit dat het mo-

gelijk is intelligent gedrag te simuleren middels formele manipulaties van symbolen in een

computerprogramma. Een bekend voorbeeld van AI systemen zijn de zgn. kennissystemen,

soms ook wel `expertsystemen" genoemd. Een kennissysteem is een computerprogramma

dat in staat is om bepaalde probleemoplostaken uit te voeren, zoals het stellen van een

diagnose bij een pat��ent of het ontwerpen van een apparaat. Een kennissysteem bestaat

uit een kennisbank, die een of andere expliciete symbolische representatie van kennis in

een bepaald domein (bv. ischaemische hartziekten) bevat, en uit redeneermechanismen die

deze kennis gebruiken om een bepaald probleem op te lossen.

De eerste kennissystemen, die in de jaren zeventig ontwikkeld werden, hadden een

simpele organisatiestructuur. Het systeem bestond uit een verzameling van brokjes kennis

in eenzelfde formaat (meestal zgn. als/dan regels) en �e�en standaard redeneermechanisme.

Aan deze aanpak bleken echter een aantal fundamentele problemen te kleven. Zo was het

moeilijk, zo niet onmogelijk, om de benodigde kennis te vergaren, omdat er een wereld

van verschil bestaat tussen de kennis zoals een expert die (verbaal of schriftelijk) uit

en de voorgeschreven representatie van kennis in een systeem. Ook het onderhoud van

de kennisbank en het geven van adequate uitleg over het gevolgde redeneerspoor bleek

problematisch.

Deze beperkingen van de eerste kennissystemen waren in feite een uiting van een breder

probleem van het AI onderzoek in de jaren zeventig. Men hield zich voornamelijk bezig

met hoe men kennis kan representeren in een symbolische vorm, zonder zich af te vragen

wat men nu eigenlijk wilde representeren en waarom. Als antwoord hierop formuleerde

Newell (1982) zijn kennisnivo-hypothese (\knowledge-level hypothesis"). Het kennisnivo

beschrijft de rationaliteit van een systeem (de \agent") in termen van doelen, acties en

kennispartities, onafhankelijk van de feitelijke realisatie in bv. als/dan regels of logica

(het symbolische nivo ofwel `symbol level").

Kennisnivo-beschrijvingen spelen tegenwoordig een belangrijke rol bij het ontwikkelen

van kennissystemen. Het centrale thema van dit onderzoek is de vraag hoe Newell's idee

van een kennisnivo op een princip��ele manier toegepast kan worden in dit ontwikkelpro-

ces. Centraal daarin staat het \kennismodel". Een kennismodel beschrijft de organisatie

van kennis en de rol die de verschillende kenniselementen spelen tijdens het probleem-

oplosproces, in een implementatie-onafhankelijk en voor mensen begrijpelijk vocabulair.

Kennismodellen kunnen gezien worden als een concretisering van Newell's conceptie. Uit-

gangspunt van dit onderzoek is dat de kads modellen van expertise zoals beschreven door

Wielinga en Breuker (1986) beschouwd kunnen worden als dergelijke kennismodellen.

De rol van kennisnivo-beschrijvingen bij het bouwen van kennissystemen is niet on-

omstreden. Als punten van kritiek worden onder meer genoemd de onmogelijkheid om

controle-kennis te beschrijven, de mogelijke computationele inadequaatheid, het ontbre-

ken van voorschriften voor ontwerp en implementatie en het feit dat de modellen geen

voorspellingen kunnen genereren over het verwachte gedrag van het systeem. In Hoofd-

stuk 2 worden deze kritiekpunten besproken en verworpen. Zo wordt beargumenteerd dat

kennismodellen noodzakelijk ondergespeci�ceerd zijn t.a.v. het te bouwen systeem. Ook

240 Pragmatics of the Knowledge Level

biedt de uitgebreide typering in het kennismodel voldoende garanties m.b.t. de computa-

tionele adequaatheid. Tevens wordt duidelijk gemaakt dat een kennismodel gebruikt kan

worden om relevante voorspellingen te doen over het verwachte gedrag van het systeem en

dus in zekere zin gezien kunnen worden als de theorie die aan een systeem ten grondslag

ligt.

Hoofdstuk 3 geeft een overzicht van de aard van de kennismodellen zoals die in kads

gebruikt worden. kads kennismodellen bestaan uit een viertal categor��en van kennis, die

gezien kunnen worden als kennislagen met onderling een beperkte interactie. De domein-

laag bevat een declaratieve beschrijving van alle domeinspeci�eke kennis voor een bepaalde

applicatie, zoals de concepten, attributen, relaties en structuren die onderscheiden wor-

den. De inferentielaag beschrijft alle basale redeneerstappen die men wil maken tijdens

het probleemoplossen. Elke redeneerstap wordt beschreven in een domeinonafhankelijk

vocabulair, waarbij voor elke inferentieterm, ook wel \rol" genoemd, wordt aangegeven

welke delen van de domeinkennis deze rol kunnen vervullen. Inferentiekennis kan gra-

�sch worden gerepresenteerd in een zgn. inferentiestructuur. Deze inferentiestructuur be-

schrijft de afhankelijkheden tussen de verschillende basale redeneerstappen. De taaklaag

beschrijft vervolgens hoe redeneerstappen dynamisch gecombineerd kunnen worden om

bepaalde probleemoplostaken of -subtaken uit te voeren. Deze taakprocedures kunnen

gezien worden als standaard-strateg��en om een (sub-)probleem op te lossen. De strategie-

laag tenslotte beschrijft hoe het systeem eventueel toch tot een oplossing kan komen in

het geval dat de standaard-strateg��en zoals beschreven op de taaklaag falen.

Een belangrijk kenmerk van de kads kennismodellen is dat de beschrijving van het

probleemoplosproces, op de domeinkennis na, terminologie gebruikt die onafhankelijk is

van het speci�eke domein. Dit opent de mogelijkheid om delen van een kennismodel te her-

gebruiken voor andere domeinen, waarin een vergelijkbare taak moet worden uitgevoerd.

Dergelijke part��ele, generieke kennismodellen, die typisch bestaan uit en beschrijving van

inferentiekennis en taakkennis, beschrijven in feite een bepaalde methode om een probleem

zoals diagnose op te lossen. Deze modellen worden wel interpretatiemodellen genoemd,

omdat deze veel gebruikt worden om het probleemoplosgedrag van een domein-expert te

interpreteren. Herbruikbare elementen van kennismodellen zorgen ervoor dat een kenni-

singenieur (een term, die gebruikt wordt om degenen, die kennissystemen ontwikkellen,

aan te duiden) niet steeds opnieuw het wiel hoeft uit te vinden.

In Hoofdstuk 4, 5 en 6 wordt nader ingegaan op een aantal meer gedetailleerde onder-

werpen met betrekking tot kennismodellen. Hoofdstuk 4 beschrijft een modelleertaal voor

het speci�ceren van de structuur van de domeinkennis. In een kennisnivo-analyse van de

domein-speci�eke kennis is men met name ge��nteresserd in een schematische beschijving

van de structuur van de kennis: het \domein schema". De invulling van de kennis in deze

structuur kan dan in een latere ver�jningsfase geschieden. In de literatuur wordt voor

dit soort beschrijvingen gewoonlijk �ofwel een speci�eke kennisrepresentatietaal �ofwel een

conventionele datamodelleertaal gebruikt. De eerste oplossing is sub-optimaal, omdat het

vereist dat men zich vastlegt op een bepaalde symbolische representatie. De tweede op-

lossing is evenmin bevredigend, omdat kennissystemen een aantal speci�eke eisen stellen,

waarvoor deze conventionele talen geen oplossing bieden. Een belangrijke eis is bijvoor-

beeld dat de modelleertaal primitieven bevat om de structuur van een groep als/dan

regels te beschrijven. De domeinmodelleertaal, die in Hoofdstuk 4 beschreven wordt, is

gebaseerd op bestaande modelleertalen, maar bevat een aantal additionele primitieven, die

Samenvatting 241

voor kennissystemen noodzakelijk zijn. We laten zien dat deze taal gezien kan worden als

een generalisatie van een aantal \symbol-level" kennisrepresentatietalen, hetgeen precies

is wat men zou willen van een kennisnivo-beschrijving van domeinkennnis. Een aantal

aspecten van de formele semantiek van deze taal moeten echter nog verder uitgezocht

worden.

Hoofdstuk 5 bevat een conceptuele beschrijving van het speci�ceren van inferentie-

kennis in kennismodellen. Zoals reeds opgemerkt, is de inferentiekennis het eerste nivo

waarop men abstraheert van het applicatie-domein en vervult dus een cruciale rol in het

hergebruik van modellen. Een interpretatiemodel verschaft vaak wel een eerste versie van

een inferentiestructuur, maar meestal moet deze enigzins aangepast worden om geschikt te

zijn voor een nieuw domein. Een aantal technieken en methoden worden beschreven, die

gebruikt kunnen worden tijdens dit proces, zoals kennisdi�erentiatie en taakdecompositie.

Ook wordt een voorbeeld gegeven van een volledige \top-down" speci�catie van een infe-

rentiestructuur, waarbij een eenvoudig init��eel hypothetico-deductief model stap-voor-stap

ver�jnd wordt. Dit soort ver�jning kan ondersteund worden door generieke modelcompo-

nenten van een kleiner omvang dan complete interpretatiemodellen. Dergelijke generieke

componenten worden voor het voorbeeld-model beschreven.

Als eenmaal een kennismodel gebouwd is, rijst de vraag hoe men op basis hiervan

een systeem kan construeren. Men staat dan feitelijk voor het probleem een adequate

symbolische realisatie te vinden van de elementen van het kennismodel door het kie-

zen van geschikte computationele en representatie-technieken. Dit operationalisatie-proces

moet ervoor zorgdragen dat het uiteindelijke systeem voldoet aan een aantal voorwaarden

met betrekking tot onderhoud, aanpasbaarheid, herbruikbaarheid en uitlegfaciliteiten. In

Hoofdstuk 6 worden de verschillende stappen en beslissingen in het ontwerp- en implemen-

tatieproces besproken. De notie van structuur-behoudend ontwerp wordt ge��ntroduceerd

als een centraal principe voor de transformatie van een kennisnivo-beschrijving naar een

beschrijving op symbolisch nivo. Met structuur-behoud wordt hier bedoeld dat zowel de

inhoud als de structuur van informatie in een kennismodel bewaard blijven in het uiteinde-

lijke artefact. Met behulp van dit principe kan men een prototypische systeem-architectuur

speci�ceren die logisch volgt, maar niet identiek is aan, de structuur van het kennismodel.

Deze architectuur wordt ge��llustreerd middels een voorbeeld.

Ook wordt de ondersteuning, die gegeven kan worden d.m.v. gespecialiseerde pro-

grammeeromgevingen, besproken. Daarbij wordt geconstateerd dat de meeste van deze

omgevingen �ofwel de kennisingenieur teveel inperken in zijn/haar mogelijkheden om het

gewenste systeem te realiseren, �ofwel te weinig ondersteuning bieden. Een alternatieve

aanpak wordt voorgesteld, ge��llustreerd door een prototype-omgeving, die gezien kan wor-

den als een poging om de kennisingenieur zowel
exibiliteit als maximale ondersteuning

te bieden d.m.v. kleine herbruikbare code-modules,

Hoofdstuk 7 beschrijft een applicatie van de beschreven technieken in een domein

waarin kamers aan werknemers moeten worden toegewezen. Dit domein is gebruikt als

voorbeeld-domein in het \Sisyphus" project, met als doelstelling de verschillende aanpak-

ken voor kennismodellering te vergelijken. Dit hoofdstuk bevat een gedetailleerd voorbeeld

van een kads kennismodel en laat zien hoe de ontwerpprincipes beschreven in Hoofdstuk 6

gebruikt kunnen worden om op basis van dit model een systeem te bouwen. In Appendices

A en B zijn respectievelijk de beschrijving van de structuur van de domeinkennis en de

uiteindelijke systeemcode te vinden.

242 Pragmatics of the Knowledge Level

In Hoofdstuk 8 wordt de kads aanpak vergeleken met twee vooraanstaande metho-

dieken voor het ontwikkelen van conventionele systemen, te weten de functionele aanpak

van Yourdon en de object-geor��enteerde aanpak. Dit soort vergelijkingen zijn belangrijk,

omdat kennissystemen meestal niet ge��soleerd worden toegepast, maar in combinatie met

meer conventionele applicaties. De verschillende aanpakken worden vergeleken door aan

te geven welke modelleerprimitieven elke aanpak biedt voor het beschrijven van drie ge-

zichtspunten die men kan innemen op een systeem, te weten het funtionele, het data- en

het dynamische (of controle-) gezichtspunt. Ondanks de verschillen in terminologie blij-

ken er veel overeenkomsten te zijn. De gevonden overeenkomsten en verschillen worden

besproken.

Er zijn momenteel een aantal verschillende methoden voor kennismodellering. Er be-

staat dan ook een groeiende behoefte om te komen tot een uni�catie van de verschillende

aanpakken, zodat modellen onderling uitgewisseld kunnen worden. Daarvoor zijn aller-

eerst vergelijkende studies nodig. Hoofdstuk 9 beschrijft een dergelijke studie. Hierin

wordt een kennismodel geconstrueerd van de \cover & di�erentiate" probleemoplosme-

thode. Dit model wordt vervolgens vergeleken met het heuristische-classi�catie model.

Hierbij komen een aantal verschillen aan het licht, die bij een informele of computatio-

nele beschrijving gemakkelijk over het hoofd gezien kunnen worden. De modelleertaal,

die in dit hoofdstuk gebruikt wordt, is een vroege versie van een formele taal voor de

representatie van kads modellen.

Hoofdstuk 10 tenslotte vat de conclusies van dit onderzoek samen.

Curriculum Vitae

August Theodoor (Guus) Schreiber was born on June 24 1956 in Heerlen. He went to

grammar school at the Bischoppelijk College in Roermond, In 1974, he took up a study

in medicine at the University of Utrecht. During his studies he worked as a tutor on

courses for interviewing techniques, as an information o�cer for the Faculty of Medicine

and as a volunteer for the alternative health care organisation Release Utrecht. In 1983

he received a M.Sc. in medicine and followed a post-graduate programme in computer

science. From 1984 to 1986 he was with the Medical Informatics Unit of the University

of Leiden, where he worked on the development of knowledge-based systems for medical

decision support. Since 1986, he is with the Department of Social Science Informatics of

the University of Amsterdam. He worked as a research scientist and project manager on

a number of EC-sponsored research projects in the area of methodologies for knowledge-

based system development. He is currently project manager for UvA on an EC-project

for medical knowledge-based systems and works also on the kads-ii project in which

a European standard for knowledge-based systems is developed. In 1988 he organised

together with Maarten van Someren the �rst Dutch AI Conference (NAIC'88). In 1990

he was co-organiser of the European Knowledge Acquisition Workshop (EKAW'90).

