Knowledge Acquisition (1992) 4, 5-53

KADS: a modelling approach to knowledge
engineering

B. J. WIELINGA, A. TH. SCHREIBER AND J. A. BREUKER

Department of Social Science Informatics, University of Amsterdam, Roetersstraat
15, NL-1018 WB Amsterdam, The Netherlands

This paper discusses the KADs approach to knowledge engineering. In KADS, the
development of a knowledge-based system (KBS) is viewed as a modelling activity.
A KBS is not a container filled with knowledge extracted from an expert, but an
operational model that exhibits some desired behaviour that can be observed in
terms of real-world phenomena. Five basic principles underlying the KADS
approach are discussed, namely (i) the introduction of partial models as a means to
cope with the complexity of the knowledge engineering process, (ii) the KADS
four-layer framework for modelling the required expertise, (iii) the re-usability of
generic model components as templates supporting top-down knowledge acquisition,
(iv) the process of differentiating simple models into more complex ones and (v) the
importance of structure—preserving transformation of models of expertise into
design and implementation. The actual activities that a knowledge engineer has to
undertake are briefly discussed. We compare the KADS approach to related
approaches and discuss experiences and future developments. The approach is
illustrated throughout the paper with examples in the domain of troubleshooting
audio equipment.

1. Introduction

This paper discusses results of a European research project commonly known as the
KADS project (ESPRIT-I P1098). This project aimed at the development of a
comprehensive, commercially viable methodology for knowledge-based system
(KBS) construction. When the KADS project was conceived, in 1983, little interest
in methodological issues existed in the Al community. The prevailing paradigm for
building knowledge-based systems was rapid prototyping using special-purpose
hard- and software, such as LISP machines, expert system shells etc. Since then,
many organizations have become aware of the fact that KBS development from an
organizational point of view does not differ much from the development of other
types of information systems. Aspects of KBS development such as information
analysis, application selection, project management, user requirement capture,
modular design, re-usability etc, are similar to those encountered in conventional
system development. Problems that frequently occur in conventional information
system development projects are amplified in the case of KBS development. The
wider capabilities of KBS technology allow more complex applications, which have a
stronger impact on organizational structure than most conventional systems and
often require a more sophisticated user—system interaction than is the case with
conventional systems. Additionally, KBS development poses a number of problems
of its own.

1042-8143/92/010005 + 49$03.00/0 © 1992 Academic Press Limited

6 B. J. WIELINGA ET AL.

An often-cited problem in KBS construction is the knowledge acquisition
bottleneck. It turns out to be very difficult to extract the knowledge that an expert
has about how to perform a certain task efficiently in such a way that the knowledge
can be formalized in a computer system. The actual realization of a KBS often
poses problems as well. The reasoning methods that are used in KBSs are not
always fully understood. Although the AI literature abounds in methods and
techniques for modelling reasoning processes, their description is not uniform and
unambiguous. So, the need for a sound methodology for KBS development has
become recognized over the last few years.

In this paper we will discuss the principles that comprise the framework on which
the KADS methodology is founded and describe its main ingredients.

2. Views on knowledge acquisition

During the knowledge acquisition process the knowledge that a KBS needs in order
to perform a task, is defined in such a way that a computer program can represent
and adequately use that knowledge. Knowledge acquisition involves, in our view, at
least the following activities: eliciting the knowledge in an informal—usuaily
verbal—form, interpreting the elicited data using some conceptual framework, and
formalizing the conceptualizations in such way that the program can use the
knowledge. In this paper we will mainly focus on the interpretation and formaliza-
tion activities in knowledge acquisition. Elicitation techniques have been the subject
of a number of recent papers and their role in the knowledge acquisition process is
now reasonably well-understood (Breuker & Wielinga, 1987; Neale, 1988; Diaper,
1989; Meyer & Booker, 1991).

Traditionally the knowledge acquisition process was viewed as a process of
extracting knowledge from a human expert and transferring the extracted knowl-
edge into the KBS. In practice this often means that the expert is asked what rules
are applicable in a certain problem situation and the knowledge engineer translates
the natural language formulation of these rules into the appropriate format. Several
authors (Hayward, Wielinga & Breuker, 1987; Morik, 1989) have pointed out that
this transfer-view of knowledge acquisition is only applicable in very few cases. The
expert, the knowledge engineer and the KBS should share a common view on the
problem solving process and a common vocabulary in order to make knowledge
transfer a viable way of knowledge acquisition. If the expert looks at the problem or
the domain in a way different from the knowledge engineer, asking for rules or
similar knowledge structures and translating them into the knowledge representation
language of the system does not work.

A different view of knowledge acquisition is that of a modelling activity. A KBS is
not a container filled with knowledge extracted from an expert, but an operational
model that exhibits some desired behaviour observed or specified in terms of
real-world phenomena. The use of the models is a means of coping with the
complexity of the development process.

Constructing a KBS is seen as building a computational model of desired
behaviour. This behaviour can coincide with behaviour exhibited by an expert. If
one wants to construct a KBS that performs medical diagnosis, the behaviour of a
physician in asking questions and explaining the problem of a patient may be a good

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 7

starting point for a description of the intended problem-solving behaviour of the
KBS. However, a KBS is hardly ever the functional and behavioural equivalent of
an expert. There are a number of reasons for this. Firstly, the introduction of
information technology often involves new distributions of functions and roles of
agents. The KBS may perform functions which are not part of the experts repertory.
Secondly, the underlying reasoning process of the expert cannot often be explained
fully. Knowledge, principles and methods may be documented in a domain, but
these are aimed at a human interpreter and are not descriptions of how to solve
problems in a mechanical way. Thirdly, there is an inherent difference between the
capabilities of machines and humans. For example, in an experiment in a domain of
configuring moulds (Barthélemy, Frot & Simonin, 1988) a decision was made to
generate all possible solutions instead of the small set generated by experts. The
decision was guided by the fact that, for a machine, it presents no problem to store a
large number of hypotheses in short-term memory, whereas for humans this is
impossible.

So, in the modelling view, knowledge acquisition is essentially a constructive
process in which the knowledge engineer can use all sorts of data about the
behaviour of the expert, but in which the ultimate modelling decisions have to be
made by the knowledge engineer in a constructive way. In this sense knowledge
engineering is similar to other design tasks: the real world only provides certain
constraints on what the artefact should provide in terms of functionality, the
designer will have to aggregate the bits and pieces into a coherent system.

In this paper we will adopt the modelling perspective of knowledge acquisition.
We discuss the principles that underlie the KADS approach to building knowledge-
based systems, namely:

(i) The introduction of multiple models as a means to cope with the complexity
of the knowledge engineering process (Section 3).

(i) The KADS four-layer framework for modelling the required expertise
(Section 4).

(iii) The re-usability of generic model components as templates supporting
top-down knowledge acquisition (Section 5).

(iv) The process of differentiating simple models into more complex ones
(Section 6).

(v) The importance of structure-preserving transformation of models of expertise
into design and implementation (Section 7).

Although a description of the use of KADS in practical KBS projects is outside
the scope of this article, we look briefly at the actual knowledge engineering process
(Section 8). We also compare the KADS approach to other approaches (Section 9).
Finally we discuss experiences and future developments (Sections 10 and 11).

The approach is illustrated throughout the paper with examples, most of them in
the domain of diagnosing and correcting malfunctions of an audio system.

3. Principle 1: multiple models

The construction of a knowledge-based system is a complex process. It can be
viewed as a search through a large space of knowledge-engineering methods,

8 B. J. WIELINGA ET AL.

techniques and tools. Numerous choices have to be made with regard to elicitation,
conceptualization and formalization. Knowledge engineers are thus faced with a
jungle of possibilities and find it difficult to navigate through this space.

The idea behind the first principle of KADs is that the knowledge-engineering
space of choices and tools can to some extent be controlled by the introduction of a
number of models. A model reflects, through abstraction of detail, selected
characteristics of the empirical system in the real world that it stands for (DeMarco,
1982). Each model emphasizes certain aspects of the system to be built and abstracts
from others. Models provide a decomposition of knowledge-engineering tasks: while
building one model, the knowledge engineer can temporarily neglect certain other
aspects. The complexity of the knowledge-engineering process is thus reduced
through a divide-and-conquer strategy.

In this section we discuss a number of models, namely (i) the organizational
model, (ii) the application model, (iii)) the task model, (iv) the model of
cooperation, (v) the model of expertise, (vi) the conceptual model and (vii) the
design model.

We use the term knowledge engineering in a broad sense to refer to the overall
process of KBS construction (i.e. the construction of all these models and the
artefact) and the term knowledge acquisition in a more restricted sense to refer to
those parts of this construction process that are concerned with the information
about the actual problem solving process. The scope of the present article is limited
to the knowledge acquisition aspects. Other knowledge engineering aspects are only
briefly addressed.

3.1. ORGANIZATIONAL MODEL, APPLICATION MODEL AND TASK MODEL

In KADS we distinguish three separate steps in defining the goals of KBS
construction, namely, (i) defining the problem that the KBS should solve in the
organization, (ii) defining the function of the system with respect to future users
(which can be either humans or possibly other systems) and (iii) defining the actual
tasks that the KBS will have to perform.

In this section we discuss three models that address parts of this three-step
process. The first two are discussed briefly as these are outside the scope of this
article.

Organizational model

An organizational model provides an analysis of the socio-organizational environ-
ment in which the KBS will have to function. It includes a description of the
functions, tasks and bottlenecks in the organization. In addition, it describes
(predicts) how the introduction of a KBS will influence the organization and the
people working in it. This last activity can be viewed as a type of technology
assessment (de Hoog, Sommer & Vogler, 1990)). We have found (de Hoog, 1989;
van der Molen & Kruizinga, 1990) that it is dangerous to ignore the impact of the
interaction between the construction of a KBS and the resulting changes in the
organization. Neglecting this aspect may lead to a system that is not accepted by its
prospective users. It is also important to realize that the process of KBS construction
itself can, by its nature (for instance, through extensive interviewing), change the
organization in such a way that it becomes a “moving target” (van der Molen &

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 9

Kruizinga, 1990). The result may be that the final system is aimed at solving a
problem that does not exist any more in the organization. We are convinced that the
organizational viewpoint is important throughout the KBS construction process.

Application model

An application model defines what problem the system should solve in the
organization and what the function of the system will be in this organization. For
example, the daily operation and fault handling of an audio system can pose serious
problems for people who are not familiar with or just not interested in more than
the superficial ins-and-outs of such a system. A potential solution to this problem
could be the development of a knowledge-based system. The function of this system
would be to ensure that the owner of the audio system is supported in the process
of correcting operational malfunctions of the audio system.

In addition to the function of the KBS and the problem that it is supposed to
solve, the application model specifies the external constraints that are relevant to the
development of the application. Examples of such constraints are the required speed
and/or efficiency of the KBS and the use of particular hardware or software.

Task model
A task model specifies how the function of the system (as specified in the application
model) is achieved through a number of tasks that the system will perform.
Establishing this relation between function and task is not always as straightforward
as it may seem. For example, consider a problem such as the medical care of
patients with acute infections of the bloodstream. One approach to solve this
problem is to perform the following tasks: (i) determine the identity of the
organism that causes the infection and (ii) select, on the basis of that diagnosis, the
optimal combination of drugs to administer to the patient. In real life hospital
practice however, the recovery of the patient is the primary concern. So, if
identification of the organism proves difficult, e.g. because no laboratory data are
available, a therapy will be selected on other grounds. In fact, some doctors show
little interest in the precise identity of the organism causing an infection as long as
the therapy works. Stated in more general terms: given a goal that a system should
achieve, there may be several alternative ways in which that goal can be achieved.
Which alternative is appropriate in a given application depends on the characteris-
tics of that application, on availability of knowledge and data and on requirements
imposed by the user or by external factors.

With respect to the content of the task model, we distinguish three facets: (i) task
decomposition, (ii) task distribution and (iii) task environment.
Task decomposition. A task is identified that would achieve the required function-
ality. This task is decomposed into sub-tasks. A technique such as rational task
analysis is often used to achieve such a decomposition. We call the composite
top-task a ‘‘real-life task”, as it often represents the actual task that an expert solves
in the application domain. The sub-tasks are the starting point for further
exploration, such as the modelling of expertise and cooperation. A simple
decomposition of a real-life task in the audio domain is shown in Figure 1.

Each separate task is described through an input/output specification, where the
output represents the goal that is achieved with the task and the input is the

10 B. J. WIELINGA ET AL.

audio

troubleshooting real-life task

act
sub-tasks

diagnose reconfigure rem\edy
’ f\ \ ! /N
o
]
I
I
[}

/
’

AY

A}

|
\ 1
l
\ 1

FIGURE 1. Task decomposition for the audio example.

information that is used in achieving this goal. What constitutes the goal of a task is
not always self-evident. Even for a seemingly well-understood task such as
diagnosis, it is not always clear what a diagnosis of a faulty system means. A
diagnosis could be the identification of a subsystem (a component of an audio
system) that malfunctions, or it could be a full causal model of how a malfunction
came about. Similarly the result of a design task could be a detailed description of
the structure of a system (e.g. a device for monitoring patients in an intensive care
unit) or it could be a description of the functionality, structure and use of the device.
Task distribution. The task distribution is the assignment of tasks to agents.
Example agents are the KBS, the user or some other system. The last two agents are
called external agents. Given the task decomposition the knowledge engineer has to
decide what sub-tasks to assign to the system and what tasks to the user. These
decisions constitute essentially cognitive engineering problems (Roth & Woods,
1989): they should be made on the basis of an analysis of the user requirements and
expectations, the knowledge and skills that the user has and the potential
capabilities and limitations of the system.

Task environment. The nature of the task-domain itself usually enforces a number
of constraints on how the task can be performed. We call the constraints the task
environment. For example, the task environment of a support system for handling
malfunctions in an audio system could consist of the following constraints:

(i) The KBS is not a physical part of the audio system.
(ii) It has no sensors to make observations (and thus depends on the user to do
this).
(iii) It has no robot arm to perform reconfigurations and/on repairs (and thus
again depends on the user to do this).
(iv) The KBS users will be novices, who are not expected to be able to
understand technical terms or to examine the interiors of the audio system.

The constraints posed by the task environment influence both the scope and the
nature of the models of expertise and cooperation (see below).

The task model and its role in specifying system—user interaction is discussed in
more detail in de Greef and Breuker (1992, this issue).

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 1

3.2. MODEL OF COOPERATION

The task model consists of a decomposition of the real-life task into a number of
primitive tasks and a distribution of tasks over agents. The model of cooperation
contains a specification of the functionality of those sub-tasks in the task model that
require a cooperative effort. These tasks can for instance be data acquisition tasks
activated during problem solving or various types of explanation tasks. Such tasks
are called transfer tasks, as they involve transferring a piece of information from the
system to an external agent or vice versa.

There is thus a clear dependency between the model of cooperation and the
model of expertise. Some of the sub-tasks will be achieved by the system, others
may be realized by the user. For example, in a diagnostic task in the audio example,
the system may suggest certain tests to be performed by the user, while the user will
actually perform the tests and will report the observed results back to the system.
Alternatively, the user may want to volunteer a solution to the diagnostic problem
while the system will criticize that solution by comparing it with its own solutions.

The result is a model of cooperative problem solving in which the user and the
system together achieve a goal in a way that satisfies the various constraints posed
by the task environment, the user and the state-of-the-art of KBS technology. The
modelling of cooperation is outside the scope of this paper, but is discussed in more
detail in de Greef and Breuker (1992, this issue), de Greef, Breuker and de Jong
(19884a) and de Greef and Breuker (1989).

3.3. MODEL OF EXPERTISE

Building a model of expertise is a central activity in the process of KBS
construction. It distinguishes KBS development from conventional system develop-
ment. Its goal is to specify the problem solving expertise required to perform the
problems solving tasks assigned to the system.

One can take two different perspectives on modelling the expertise required from
a system. A first perspective—one that is often taken in Al—is to focus on the
computational techniques and the representational structures (e.g. rules, frames)
that will provide the basis of the implemented system. A second perspective focuses
on the behaviour that the system should display and on the types of knowledge that
are involved in generating such behaviour, abstracting from the details of how the
reasoning is actually realized in the implementation. These two perspectives
correspond to the distinction Newell (1982) makes between respectively the symbol
level and the knowledge level.

We take the second perspective and view the model of expertise as being a
knowledge-level model. The model of expertise specifies the desired problem
solving behaviour for a target KBS through an extensive categorization of the
knowledge required to generate this behaviour. The model thus fulfills the role of a
functional specification of the problem solving part of the artefact. As stated
previously, it is not a cognitive model of the human expert. Although the
construction of the model of expertise is usually guided by an analysis of expert
behaviour, it is biased to what the target system should and can do.

In modelling expertise we abstract from those sub-tasks that specify some form of
cooperation with the user. For example, in the audio domain we could identify two
tasks that require such interactions: performing a test and carrying out a

12 B. J. WIELINGA ET AL.

reconfiguration. In the model of expertise, such interaction or transfer tasks are
specified more or less as a black box (see Section 4.3). The detailed study of the
nature of these transfer tasks is the subject of the modelling of cooperation.

As the model of expertise plays a central role in KBS development, its details are
discussed extensively in Section 4.

3.4. CONCEPTUAL MODEL = MODEL OF EXPERTISE + MODEL OF COOPERATION

Together, the model of expertise and the model of cooperation provide a
specification of the behaviour of the artefact to be built. The model that results from
merging these two models is similar to that is called a conceptual model in database
development. Conceptual models are abstract descriptions of the objects and
operations that a system should know about, formulated in such a way that they
capture the intuitions that humans have of this behaviour. The language in which
conceptual models are expressed is not the formal language of computational
constructs and techniques, but is the language that relates real world phenomena to
the cognitive framework of the observer. In this sense conceptual models are
subjective, they are relative to the cognitive vocabulary and framework of the
human observer. Within KADs we have adopted the term “‘conceptual model” to
denote a combined, implementation-independent, model of both expertise and
cooperation.

3.5. DESIGN MODEL

The description of the computational and representational techniques that the
artefact should use to realize the specified behaviour is not part of the conceptual
model. These techniques are specified as separate design decisions in a design
model. In building a design model, the knowledge engineer takes external
requirements such as speed, hardware and software into account. Although there
are dependencies between conceptual model specifications on the one hand and
design decisions on the other, in our experience building a conceptual model
without having to worry about system requirements makes life easier for the
knowledge engineer.

The separation between conceptual modelling on the one hand and a separate
design step on the other has been identified as both the strength and the weakness of
the KADS approach (Karbach, Linster & Vo8, 1990).

The main advantage lies in the fact that the knowledge engineer is not biased
during conceptual modelling by the restrictions of a computational framework.
KADs provides a more-or-less universal framework for modelling expertise (see the
next section) and although computational constraints play a role in the construction
of such models (cf. Section 6) experiencet has shown that this separation enables
knowledge engineers to come up with more comprehensive specifications of the
desired behaviour of the artefact. The disadvantage lies in the fact that the
knowledge engineer, after having built a conceptual model, is still faced with the
problem of how to implement this specification. In Section 7 we discuss some
principles that can guide the knowledge engineer in this design process.

Figure 2 summarizes the different roles which the conceptual model and the
design model play in the knowledge engineering process. An observer (knowledge

T See Section 10 for an overview of applications developed with the KADS approach.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 13

Phenomena Models
Interpretational
Framework
Observer
> \
problem solving & * .| conceptual
behaviour model
= T
]
1
I
]
1T
I
! Al Techniques
1
¥
design model
4
i
]
Al System
Implementation

FIGURE 2. Role of the conceptual model and the design model in the knowledge acquisition process.

engineer) constructs a conceptual, knowledge-level, model of the artefact by
abstracting from the behaviour of experts. This abstraction process is aided by the
use of an interpretational framework, such as generic models of classes of tasks or
task-domains. The conceptual model is real-world oriented in the sense that, it is
phrased in real-world terminology and can thus be used as a communication vehicle
between knowledge engineer and expert. The conceptual model does not take
detailed constraints, with regard to the artefact, into account. The desing model, on
the other hand, is a model that is phrased in the terminology of the artefact: it
describes how the conceptual model is realized with particular computational and
representational techniques.

Figure 3 shows the dependencies between the models discussed in this section.
Connections indicate that information from one model is used in the construction of
another model. The actual activities in the construction process do not necessarily
have to follow the direction from organization model to system. In fact, several
life-cycle models have been developed, each defining various phases and activities in
building these models. The first life-cycle model developed in KADS (Barthélemy,
Edin, Toutain & Becker, 1987) was of the water-fall type. At the end of the KADS
project, a new life-cycle was defined (Taylor et al., 1989) based on the concept of a
spiral model (Boehm, 1988).

The nature of knowledge engineering thus becomes a process that bridges the gap
between required behaviour and a system that exhibits that behaviour through the

14 B. J. WIELINGA ET AL.

Organisational Application l I
model model

Task
model

Model of Model of
expertise cooperation

Conceptual
model

Design
model

FIGURE 3. Principle 1: Partial models provide a decomposition of the knowledge-engineering task.

creation of a set of models. Summarizing, we can say that the KADS modelling view
of knowledge engineering gives rise to a methodology that involves the construction
of a variety of models in the course of the knowledge engineering process. Each
model represents a particular view on the KBS. They allow the knowledge engineer
to cope with the complexity of the knowledge engineering process through a
“divide-and-conquer” strategy.

The remainder of this article focuses mainly on the model of expertise, as it plays
such a central role in KBS development.

4. Principle 2: modelling expertise

The major challenge for any modelling approach to KBS construction is to find an
adequate answer to the question of how to model expertise. It is this aspect of the
system that distinguishes KBS development from the development of conventional
systems. As discussed previously, we require, of the resulting model of expertise,
that it is independent of a particular implementation. In this section a framework

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 15

for modelling expertise is outlined. Slightly different versions of this KADS
approach to modelling expertise (usually called the “‘four-layer model””) have been
presented in Wielinga and Breuker (1986), Hayward et al. (1987), Schreiber et al.
(1988) and in Breuker and Wielinga (1989).

Two basic premises underly the ideas presented here. First, we assume that it is
possible and useful to distinguish between several generic types of knowledge
according to different roles that knowledge can play in reasoning processes. Second,
we assume that these types of knowledge can be organized into several layers, which
have only limited interaction. A first distinction that is often made is the distinction
between domain knowledge and control knowledge. Here we will take such a
separation of knowledge in two layers one step further, and will argue for a refined
distinction of different types of control knowledge at three levels.

The categories in which the expertise knowledge can be analysed and described
are based on epistemological distinctions: they contain different types of knowledge.
We distinguish between, (i) static knowledge describing a declarative theory of the
application domain (domain knowledge), (ii) knowledge of different types of
inferences that can be made in this theory (first type of control knowledge), (iii)
knowledge representing elementary tasks (second type of control knowledge) and
(iv) strategic knowledge (third type of control knowledge).

Each of these categories of knowledge is described at a separate level. The
separation reflects different ways in which the knowledge can be viewed and used.
In the following sections each of the four categories of knowledge distinguished in
KAD:s is discussed in more detail.

The distinction between different types of knowledge is not new. Several authors
have reported ideas which pertain to the separation of domain and control
knowledge, and have proposed ways to increase the flexibility of control in expert
systems. The work of Davis (1980) introduced explicit control knowledge as a means
of controlling inference processes in a flexible way. In the NEOMYCIN system
(Clancey, 1985a) different functions of knowledge are explicated by separating
domain knowledge and control knowledge and by introducing an explicit description
of the strategies that the system uses. Pople (1982) has stressed the problem of the
right task formulation. He considers it to be a fundamental challenge for Al
research to model the control aspects of the reasoning process of expert diagnos-
ticians which determines the optimal configuration of tasks to perform in order to
solve a problem.

4.1. DOMAIN KNOWLEDGE

The domain knowledge embodies the conceptualization of a domain for a particular
application in the form of a domain theory. The primitives that we use to describe a
domain theory are based on the epistemological primitives proposed by Brachman
and Schmolze (1985): concepts, properties, two types of relations and structures.

Concept
Concepts are the central objects in the domain knowledge. A concept is identified
through its name (e.g. amplifier).

16 B. J. WIELINGA ET AL.

Property fvalue

Concepts can have properties. Properties are defined through their name and a
description of the values that the property can take. For example, amplifier has a
property power with as possible values on/off.

Relation between concepts

A first type of relation is the relation between concepts, for example amplifier
is-a component. The most common relations of this type are the sub-class
relation and the part-of relation. Several variants of these two relations exist, each
with its own semantics.

Relation between property expressions

A second type of relation is the relation between expressions about property values.
An expression is a statement about the value(s) of a property of a concept, e.g.
amplifier : power=on.t Examples of this type of relation are causal relations
and time relations. An example of a tuple of a causal relation in the audio domain
could be:

amplifier : power-button=pressed CAUSES amplifier : power=on

Structure

A structure is used to represent a complex object: an object consisting of a number
of objects/concepts and relations. For example, the audio system as a whole can be
viewed as a structure, consisting of several components and relations (part-of, wire
connections) between these components.t

The choice of this set of primitives is, in a sense, arbitrary and probably somewhat
biased by the types of problems that have been tackled with KADS. The problem is
to find a subset that provides the knowledge-engineer with sufficient expressive
power. One could consider including additional special-purpose primitives such as
mathematical formulae. There is clearly a link here with research in the field of
semantic database modelling (see, for an overview, Hull & King, 1987).

The primitives are used to specify what we call a domain schema for a particular
application. A domain schema is a description of the structure of the statements in
the domain theory. It is roughly comparable to the notion of a signature in logic.§
For example, in a domain schema we could specify that the domain theory contains
part-of relations between component concepts without worrying about the
actual tuples of this relation. We prefer to use the term “schema” rather than
“ontology” to stress the fact that the domain theory is the product of knowledge
engineering and thus, does not necessarily describe an inherent structure in the
domain (as the word “ontology” would suggest).

The domain schema specifies the main decisions that the knowledge engineer
makes with respect to the conceptualization (Genesereth & Nilsson, 1987; Nilsson,

+ We use the shorthand (concept) : (property) for “the (property) of {concept)”.

#The term “structure” as used here should not be confused with the “structural descriptions” in
KL-ONE.

§ The relation between property expressions corresponds to an axiom schema; structures correspond to
a sub-theory.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 17

TasBLE 1
A domain schema for diagnosing faults in an audio-system

Primitive Name Description
Concept component The elements of the audio system
Relation component Sub-type hierarchy of components of the audio
between IS-A system
concepts component
Relation component Part-of hierarchy of components of the audio
between SUB-COMPONENT- system
concepts OF
component
Property component : state-value Components have properties describing the

state that components are in at some
moment in time.

Relation component : state-value Causal relations that specify how normal
between CAUSES state-values of components are causally
expressions component : state-value related
to each other.
Concept test Test that can be performed to establish a state
of an audio system.
Property test: value Possible outcomes of a test.
Relation test: value A relation describing which internal state is
between INDICATES indicated by a particular test outcome.
expressions component : state-value

1991) of the domain. For example, when a domain schema for a diagnostic domain
is constructed, a decision has to be made whether “correct” or “fault” models (or
both) are part of the domain theory. Parts of a domain schema often re-appear in
similar domains and could be re-used (see Section 5 for a more detailed discussion
of re-usability). The domain schema also provides convenient handles for describing
the way in which inference knowledge uses the domain theory. Issues related to the
interaction between domain knowledge and inference knowledge are discussed in
the next section.

An example domain schema of a simple domain theory for diagnosing faults in an
audio system is shown in Table 1.+ Two types of concepts appear in this theory:
components and tests. Both components and tests can have properties: respectively a
state-value and a value. Two relations are defined between concepts of type
“component”: is-a and sub-component-of. In addition, two relations between
property expressions are defined: (i) a causal relation between state values of
components, and (ii) an indicates relations between test values and state values.

Figure 4 shows some domain knowledge in the audio domain. The domain

+ The description of the domain schema given here is rather informal. For example, nothing is said
about cardinality (e.g. can a property have one or more values at some point in time). Techniques exist

for describing these schemata in a more precise and formal way, e.g. (Davis & Bonnel, 1990; Hull &
King, 1987).

B. J. WIELINGA ET AL.

18

‘T JJqR], Ul paquIsap BWIAYDS oY) Juisn wIjsAs oipne ay) jo 33pajmouy urewo(] ' FENOLY

X = uonoajes-indut:ayijdure
sajeoIpul
X = 10399]3s-ndur

uo = ramod-yo3p
sajedIput
passaid = yoyms-1amod-yoap

sa1001pUI

¥oop = [eudis-indino:royydure
sasned

¥o9p = uondapas-indut royidwe

¥oop = [eudis-indur:raydwe

¥oop = jeudis-indut:soyiduwe
sasned
juasaxd = 1ogiduwe Yoop:UOO3UUOI-3[qed
pue fejd = uonouUNy:}o3p
pue uo = 1amod:}oop

$ISNDI

(* *@D *4ounl *Y23p)
(passaid jou ‘passaid)

(- *@D *12um *¥23p)

(130 ‘uo)

(330 *wo)

(osned ‘3 *ma1 ‘Aeid ‘dois)

1039979s-1ndut
‘yonms-1amod-yoap

:$1891 JO
saniadolg

reudis-yndur:rayrdure
1amod:1eyrdure
1amod:yoop

uonduny: P

:syuauoduwod jo
santadoig

-+ Joyeads
VA
Yoop Jowjijdwre wid)sAs

adey

Ipyeads
N

w1d}sAs olpne

Jo-mauodwoor-gns

1ayeads waishs Noop wAsAs
- 9] Ioyeads adey oipne

N\ |

suodwon
v-$1

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 19

knowledge description follows the structure defined in the domain schema of
Table 1.

Domain knowledge can be viewed as a declarative theory of the domain. In fact,
adding a simple deductive capability would enable a system, in theory (but, given
the limitations of theorem-proving techniques, not in practice), to solve all problems
solvable by the theory. The domain knowledge is considered to be relatively
task-neutral, i.e. represented in a form that is independent of its use by particular
problem solving actions. There is ample evidence (Wielinga & Bredeweg, 1988)
showing that experts are able to use their domain knowledge in a variety of ways,
e.g. for problem solving, explanation, teaching etc. Separating domain knowledge
embodying the theory of the domain from its use in a problem solving process, is a
first step towards flexible use and re-usability of domain knowledge.

4.2. INFERENCE KNOWLEDGE

At the first layer of control knowledge, we abstract from the domain theory and
describe the inferences that we want to make in this theory. We call this layer the
inference layer. An inference specified at the inference level is assumed to be
primitive in the sense that it is fully defined through its name, an input/output
specification and a reference to the domain knowledge that it uses. The actual way
in which the inference is carried out is assumed to be irrelevant for the purposes of
modelling expertise. From the viewpoint of the model of expertise no control can be
exercised of the internal behaviour of the inference. One could look upon the
inference as applying a simple theorem prover.

Note that the inference is only assumed to be primitive with respect to the model
of expertise. It is very well possible that such a primitive inference is realized in the
actual system through a complex computational technique.

In the KADS model of expertise we use the following terms to denote the various
aspects of a primitive inference.

Knowledge source

The entity that carries out an action in a primitive inference step is called a
knowledge source.t A knowledge source performs an action that operates on some
input data and has the capability of producing a new piece of information
(“knowledge”) as its output. During this process it uses domain knowledge. The
name of the knowledge source is supposed to be indicative of the type of action that
it carries out.

Meta-class
A knowledge source operates on data elements and produces a new data element.
We describe those elements as meta-classes. A meta-class description serves a dual
purpose, (i) it acts as a placeholder for domain objects, describing the role that
these objects play in the problem solving process, and (ii) it points to the type(s) of
the domain objects that can play this role.
Domain objects can be linked to more than one meta-class. For example, a
+ The term “knowledge source” was inspired by Clancey’s (1983) use of this term as a process that

generates an elementary piece of information. Its intended meaning corresponds only roughly to the
meaning of the term in blackboard architectures.

20 B. J. WIELINGA ET AL.

input output
meta class knowledge source meta class
sra:.t:;rll hypothesis
j i
]]
]]
I t
I]
: decomposition !
1 know‘ledge '
I]
! domain view : ' Inference knowledge
........ | S T T L T T T T U T U TP
i
i V] Domain knowledge
Y amplifier \j
audio system SUB-COMPONENT-OF amplifier

audio-system

FIGURE 5. A primitive inference performing an decomposition action.

particular component of an audio system could play the role of a hypothesis at one
point in time and the role of solution at some other instant. The name ‘‘meta-class”
is inspired by the fact that it provides a “‘meta” description of objects in a domain
“class”.t An input data element of a knowledge source is referred to as an input
meta-class; the output as an output metaclass. Each meta-class can be the input
and/or output of more than one knowledge source.

Domain view
The domain view specifies how particular parts of the domain theory can be used as
a “body of knowledge’ by the knowledge source.

Figure 5 describes a primitive inference in the audio domain with example
references to domain knowledge. At the inference level a decomposition inference is
specified. The action that is performed in this inference is the decomposition of a
composite model of the audio system into sub-models. System model and hypothesis
are examples of meta-classes. They describe the role that domain objects like
audio-system and amplifier can play in the problem solving process. The
decompose knowledge source achieves its goal, the generation of a new hypothesis,
through the application of decomposition knowledge. The domain view of this
inference specifies that tuples of the SUB-COMPONENT-OF relation in the domain
theory can be used as decomposition knowledge. Figure 5 shows one applicable
tupel of this relation.

A somewhat more formal specification of the decompose inference is given below.
The arrow specifies how inference knowledge maps on to domain knowledge.

knowledge-source decompose
input-meta-class:
system-model— component
output-meta-class:
hypothesis— component

It should not be confused with the meaning of this term in object-oriented systems.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 21

domain-view:
decomposition(system-model, hypothesis)—
sub-component-of(component, component)

Note that this specification only refers to elements of the schema of the domain
theory. Both system model and hypothesis are place holders of objects of type
“component” and describe the role these objects play in the inference process. In
this particular example the domain view refers to just one type of knowledge in
the domain theory, namely the SUB-COMPONENT-OF relation. In principle,
however, there could be several of these mappings.t

There are distinct advantages in separating the domain theory from the way it is
viewed and used by the inferences:

(i) The separation allows multiple use of essentially the same domain knowi-
edge. Imagine for example a knowledge source aggregate, that takes as input
a set of components and aggregates them into one composite component.
This knowledge source could use the same SUB-COMPONENT-OF relation,
but view it differently, namely as aggregation knowledge. Such an inference
could very well occur in a system that performs configurations of audio
systems.

(i) Domain knowledge that is used in more than one inference is specified only
once. In this way, knowledge redundancy is prevented.

(iii) It provides a dual way to name} domain knowledge: both use-independent
and use-specific. Knowledge engineers tend to give domain knowledge
elements names that already reflect their intended use in inferencing and
keep changing the names when their usage changes. We would argue that
both types of names can be useful and should be known to the system—for
example, for explanation purposes.

(iv) The scope of the domain theory is often broader than what is required for
problem solving. For example, explanatory tasks (in KADS defined in the
model of cooperation) often require deeper knowledge than is used during
the reasoning process itself.

This is not to say that we claim that a domain theory can in general be defined
completely independent of its use in the problem solving process. The scope and the
structure of the domain knowledge has to meet the requirements posed by the total
set of inferences. In many applications there are interactions between the process of
conceptualizing a domain and specifying the problem solving process. We are
convinced, however, that it is useful to document them at least separately.

As stated previously, the primitive inference steps form the building blocks for an
application problem solver. They define the basic inference actions that the system
can perform and the roles the domain objects can play. The combined set of
primitive inferences specifies the basic inference capability of the target system. The
set of inference steps can be represented graphically in an inference structure. The

+ We omit here the details of specifying the mapping between a domain view and a domain theory. See
for a more detailed discussion, Schreiber et al. (1989b).

1 We would argue that the whole activity of knowledge acquisition is in fact, for a large part, a matter
of giving (meaningful) names.

22 B. J. WIELINGA ET AL.

complaint

select

1

system model

y

deco@

A
observable hypothesis specify

\

Coe
e D e B

i

difference

FIGURE 6. An inference structure for diagnosing faults in an audio system.

inference structure thus specifies the problem solving competence of the target
system.

Figure 6 presents such an inference structure for the audio domain. The
inferences specify a top-down and systematic approach to find a sub-model of the
audio system that behaves inconsistently. The following inferences appear in the
inference structure:

(i) A selection of a (sub-part) of the audio system (system model) on the basis of
a complaint.
(ii) A decomposition of some part of the system into a number of sub-
components that play the role of hypothesis.
(iii) A prediction of a norm-value for a hypothesis. The norm is a value of a test
that is consistent with the normal state of the hypothesis.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 23

(iv) A selection of an observable, for which a value is to be obtained (the
finding).
(v) A comparison of the observed finding and the predicted norm.

The inference structure defines the vocabulary and dependencies for control,{ but
not the control itself. This latter type of knowledge is specified as task knowledge.

4.3. TASK KNOWLEDGE

The third category contains knowledge about how elementary inferences can be
combined to achieve a certain goal. The prime knowledge type in this category is the
task. Tasks can achieve a particular goal. The relations between tasks and goals are
in principle many-to-many. Task knowledge is usually characterized by a vocabulary
of control terms; for instance, indicating that a finding has been processed or a
hypothesis has been verified.

Tasks represent fixed strategies for achieving problem solving goals. Several
researchers (Clancey, 1985a; Gruber, 1989) have pointed out that task knowledge is
an important element of expertise. The competence model of the diagnostic strategy
of NEOMYCIN (Clancey, 1985a) is an example of what we call task knowledge.
Clancey describes the sub-tasks of this strategy via meta-rules. The main difference
between his approach and our approach is that he refers directly in these meta-rules
to the domain knowledge. In KADS, tasks only refer to inferences and not explicitly
to domain knowledge.

We use the following constructs to describe task knowledge:

Task

A task is a composite problem solving action. It implies a decomposition into
sub-tasks. The application of the task to a particular (sub-)problem results in the
achievement of a goal.

Control terms

The vocabulary used. A control term is nothing more than a convenient label for a
set of meta-class elements. The label represents a term used in the control of
problem solving, e.g. “differential” or “focus”. Each control term is defined through
the specification of a mapping of this term on to sets of meta-class elements (e.g.
the differential is the set of all active hypotheses).

Task structure
A decomposition into sub-tasks and a specification of the control dependencies
between these sub-tasks.i The decomposition can involve three types of sub-tasks:
(i) primitive problem solving tasks: inferences specified in the inference layer, (ii)
composite problem solving tasks: a task specified in the task layer. (In principle, this
could be a recursive invocation of the same task.) and (iii) transfer tasks: tasks that
require interaction with an external agent, usually the user.

+ We use the term control here to refer to the process of controlling the execution of knowledge
sources. We are not referring to more detailed, symbol-level forms of control such as search control in

the application of a computational technique. See Schreiber, Akkermans & Wielinga (1991) for a more
elaborate discussion on these different types of control.

+ We agree with Steels (1990) that “control structure” is a more appropriate term for this type of
structure. The term “task structure” is used here mainly for historical reasons.

24 B. J. WIELINGA ET AL.

The dependencies between the sub-tasks are described as a structured-English
procedure such as used in conventional software engineering (DeMarco, 1978), with
selection and iteration operators.

The conditions in these procedures always refer to control terms and/or
meta-class elements, e.g. “If the differential is not empty then. . ..

There is interaction between the task knowledge in the model of expertise on the
one hand and the model of cooperation on the other, with respect to the
specification of the transfer tasks. Transfer tasks are more-or-less specified as a
black box in the model of expertise. We distinguish four types of transfer tasks (for
more details, see de Greef & Breuker, 1992, this issue): (i) obtain: the system
requests a piece of information from an external agent. (The system has the
initiative.), (ii) present: the system presents a piece of information to an external
agent. (The system has the initiative.), (iii) receive: the system gets a piece of
information from an external agent. (The external agent has the initiative.) and (iv)
provide: the system privides an external agent with a piece of information. The
external agent has the initiative.

An example task-knowledge specification for our audio domain is shown below. It
consists of three tasks. The first task is systematic-diagnosis. The goal of this task is
to find a sub-system with inconsistent behaviour at the lowest level of aggregation.
The task works under the single-fault assumption. On the basis of a complaint, an
applicable system model is selected. This selection task corresponds to the
knowledge source select specified in the inference layer. Subsequently, hypotheses in
the differential are generated through the generate-hypotheses sub-task. In the
sub-task test-hypotheses these hypotheses are then tested to find an inconsistent
sub-system. This hypothesis then becomes the focus for further exploration. The
generate-and-test process is repeated, until no new hypotheses are generated (i.e.
the differential is empty).

task systematic-diagnosis
goal
find the smallest component with inconsistent behaviour,
if one.
control-terms
differential=set of currently active hypotheses
inconsistent-sub-system=sub-part of the systemwith
inconsistent behaviour
task-structure
systematic-diagnosis(complaint— inconsistent-sub-
system)=
select(complaint —» system-model)
generate-hypotheses(system-model —differential)
REPEAT
test-hypotheses(differential— inconsistent-sub-
system)
generage-hypotheses(inconsistent-sub-system—
differential)
UNTIL differential=~

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 25

For readability purposes, the names of knowledge sources are italicized in the task
structure. The arrows in the task structure describe the relation between input and
output of the sub-task. Note that all arguments of tasks and conditions are either
explicitly declared control terms (differential) or meta-class names.

The task generate-hypotheses is a very simple task. It just executes the decompose
knowledge source.

task generate-hypotheses
goal
generate new set of hypotheses through decomposition
control-terms-
task-structure
generate(system-model—differential)=
decompose (system-model—differential)

The task test-hypotheses tests the hypotheses in the differential sequentially until
an inconsistency is found (difference = true). Testing is done through a kind of
experimental validation: a norm value is predicted and this value is compared with
what is actually observed. Obtain(observable, finding) is an example of a transfer
task, that starts an iteration with the user to obtain a test value. How the transfer
task is carried out, should be specified in the model of cooperation.

task test-hypotheses
goal
test whether a hypothesis in the differential behaves
inconsistently
control-terms-
task-structure
test(differential >hypothesis)=
DO FOR EACH hypothesisedifferential
specify {(hypothesis—norm)
select(hypothesis— observable)
obtain(observable— finding)
compare (norm+finding— difference)
UNTIL difference=true

If one abstracts from the control relations between sub-tasks and assumes a fixed
task decomposition, the set of task structures can be represented graphically as a
tree. The tree for systematic diagnosis is shown in Figure 7. Such a decomposition of
a task assigned to the system is in fact a further refinement of the decomposition
specified in the task model (see Section 3).

4.4. STRATEGIC KNOWLEDGE

The fourth category of knowledge is the strategic knowledge.} Strategic knowledge
determines what goals are relevant to solve a particular problem. How each goal is
achieved is determined by the task knowledge. Strategic knowledge will also have to
deal with situations where the afore-mentioned knowledge categories fail to produce

t Gruber (1989) uses the term “strategic knowledge” in a different way. His strategic knowledge is, in
many aspects, similar to the task knowledge in KADS.

26 B. J. WIELINGA ET AL.

Systematic
diagnosis
Select Generate Test
system model; hypotheses hypotheses
Decompose

system model

Specify Select Obtain Compare
norm observable finding difference

FiIGURE 7. Task tree of systematic diagnosis. The leaves of such a tree are either knowledge sources or
transfer tasks.

a partial solution. For example, the problem-solving process may reach an impasse
because information is not available or because contradictory information arises. In
such cases the strategic reasoning should suggest new lines of approach or attempt to
introduce new information, e.g. through assumptions (cf. Jansweijer, 1988; Jan-
sweijer, Elshout & Wielinga, 1989).

Strategic knowledge concerns, among other things, the dynamic planning of task
execution. However, most systems developed with the KADS approach used only
fixed task decompositions and had little or no strategic knowledge. In our opinion,
this does not mean that strategic knowledge is unimportant or superfluous. When
knowledge engineers have to construct more complex and flexible knowledge-based
systems than presently is usually the case, we think a much more detailed
exploration of strategic knowledge will be necessary. We have recently started to
work on an ESPRIT project named REFLECT where the central topic is the
exploration of strategic knowledge. Apart from dynamic planning, strategic knowl-
edge can also enable a system to answer questions such as “Can I solve this
problem?”’ (Vo8 et al., 1990). For the moment, however, the study of the nature of
strategic knowledge remains mainly a research topic.

4.5. SYNOPSIS OF THE MODEL OF EXPERTISE

The four knowledge categories (domain, inference, task and strategic knowledge)
can be viewed as four levels with meta-like relations in the sense that each
successive level interprets the description at the lower level. In Figure 8 these four
levels and their interrelations are summarized.

The four-layer framework is a structured but informal framework. This means
that the specifications are sometimes not as precise as one might want them to be
and thus may be interpreted in more than one way. This has led to research aimed
at defining a formal framework for representing models of expertise (van Harmelen

MODELLING APPR

OACH TO KNOWLEDGE ENGINEERING

27

f

knowledge \

N

knowledge organisation
category types
strategic strategies plans
meta rules
controls
task tasks goals
control terms
applies task structures
inference inference knowledge source
structure meta 9Ias§
uses domain view
domain domain concept
theory property
relations

J

FIGURE 8. Synopsis of the KADS Four-Layer Model.

& Balder, 1992, this issue; Wetter, 1990). The price paid for a greater amount of
precision in formal specifications is, however, a reduction in conceptual clarity. In
our view, there is a place for both informal and formal representations in the
knowledge engineering process. The use of both informal and formal model
representations is a major topic of research in the KADS-II project.

The four-layer framework for knowledge modelling has been successfully used as
a basis for structured acquisition and description of knowledge at an intermediate
level between the expertise data obtained from experts, test books etc. and the
knowledge representation in an implemented system (de Greef & Breuker, 1985).
From a knowledge-level viewpoint, the present four-layer model captures knowl-
edge categories that are quite similar to those encountered in other models in the
literature. However, differences in opinion exist about where to situate particular
types of knowledge. This point will be discussed in more detail in Section 9.

5. Principle 3: re-usable model elements

There are several ways in which models of expertise can be used to support the
knowledge acquisition process. A potentially powerful approach is to re-use
(structures of) model elements. When one models a particular application, it is
usually already intuitively clear that large parts of the model are not specific for this
application, but re-occur in other domains and/or tasks. KADS (as do most other
approaches to knowledge modelling) makes use of this observation by providing a
knowledge engineer with predefined sets of model elements. These libraries can be
of great help to the knowledge engineer. They provide the engineer with
ready-made building blocks and prevent him/her from ‘‘re-inventing the wheel”

28 B. J. WIELINGA ET AL.

each time a new system has to be built. In fact, we believe that these libraries are a
conditio sine qua non for improving the state-of-the-art in knowledge engineering.

In this section, two ways of re-using elements of the model of expertise are
discussed: (i) typologies of primitive inference actions (knowledge sources) and (ii)
interpretation models. In principle, however, the re-usability principle holds for all
models in the KBS construction process.

5.1. TYPOLOGIES OF KNOWLEDGE SOURCES

In Breuker et al. (1987) we have defined a tentative typology of primitive problem
solving actions (knowledge sources) which has been the basis of a considerable
amount of models. The typology is based on the possible operations one can
perform on the epistemological primitives defined in KL-ONE (Brachman &
Schmolze, 1985). This set of primitives consists of: concept, attribute (of concept),
value (of attribute), instance (of concept), set (of concepts) and structure (of
concepts).

In the typology of inferences we view these primitives not as data-structures but as
epistemological categories. Their actual representation in a system may be quite
different (e.g. in terms of logical predicates rather than KL-ONE like constructs).

Table 2 gives an overview of the typology of knowledge sources used in KADS.
The inferences are grouped on the basis of the type of operation that is carried out
by the knowledge source: generate concept/instance, change concept, differentiate
values [structures and manipulate structures. A detailed description of the inferences
mentioned in Table 2 is given in Breuker and Wielinga (1989).

Although this typology has been a useful aid in many analyses of expertise, it has
a number of important limitations:

(i) The selected set in Table 2 is in a sense arbitrary. For example, we could
have added other operations on sets such as join, union or merge.

TABLE 2
A typology of knowledge sources

Operation type Knowledge source Arguments
Generate instantiate concept—> instance
concept/instance classify instance — concept
generalize set of instances— concept
abstract concept — concept
specify concent— concept
select set— concept
Change concept assign-value attribute — attribute-value
compute structure — attribute-value
Differentiating compare value + value — value
values/structures match structure + structure — structure
Structure manipulation assemble set of instances — structure
decompose structure — set of instances

transform structure — structure

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 29

(i1)) The ontology on which the typology is based is of a very general nature and
hence weak. The operations are defined more or less independent of tasks
and/or domains. Often, it is difficult for the knowledge engineer to identify
how an inference in a particular application task must be interpreted.

(ili) A more serious limitation is that some inferences cannot be adequately
classified because they require another ontological framework. For example,
operations on causal relations such as abduction and differentiation cannot
be represented in a natural way.

We consider the study of more adequate taxonomies of inferences to be a major
research issue. Potentially, taxonomies are very powerful aids for the knowledge
engineer. In a new research project (KADS-II) we are exploring the possibility of
describing taxonomies that are specific for classes of application domains such as
technical diagnosis. These taxonomies will be based on a much more task-specific
ontology.

It is interesting to see that, from a different angle, the “Firefighter” project
(Klinker et al., 1991) is aiming at similar results. An important goal of this project is
to look at what they call mechanisms that are used in various applications, detect
commonalities between these mechanisms and construct a library of mechanisms
that can be re-used in other applications. These mechanisms appear to have the
same grain size as the knowledge sources in KADS. The main difference is that
mechanisms have a computational flavour.

5.2. INTERPRETATION MODELS

Typologies of elements of a model of expertise, such as a typology of knowledge
sources, represent a first step into the direction of re-usability. A further step would
be to supply partial models of expertise such as models without all the detailed
domain knowledge filled in. Such partial models can be used by the knowledge
engineer as a template for a new domain and thus support top-down knowledge
acquisition. In KADS such models are called interpretation models, because they
guide the interpretation of verbal data obtained from the expert.

The KADS interpretation models are models of expertise with an empty domain
layer. Interpretation models describe typical inference knowledge and rask
knowledge for a particular task. As these descriptions are phrased in domain-
independent terminology, they are prime candidates for re-use in other domains.
For example, the inference and task description of the audio domain could very well
be applied to another domain where some device is being diagnosed. In Breuker et
al. (1987) interpretation models for a large number of tasks are presented. One of
these is the model for systematic diagnosis as presented in this paper.

Example interpretation model

Another model in this library is that of the monitoring task. This model has been
used in applications ranging from process control (Schrijnen & Wagenaar, 1988) to
software project management (de Jong, de Hoog & Schreiber, 1988). It is also
interesting because it illustrates how different tasks can apply the same set of
inferences in different ways.

30 B. J. WIELINGA ET AL.

system
model

@ observable

\

parameter ﬁlw
/
norm @ finding

\

difference

discrepancy @ historical
class data

FIGURE 9. Inference structure of the interpretation model for monitoring.

The inference structure of the interpertation model for the monitoring task
(shown in Figure 9) depicts the following inferences: (i) the selection of a system
parameter, (ii) the instantiation of the normal value of the parameter (the norm),
(iii) the selection of a corresponding observable, (iv) a comparison of observed and
expected values, leading to a difference description and (v) a classification of the
difference into a discrepancy class, e.g. minor or major disturbance. (Often, data
from previous monitoring cycles are used in this inference.)

Two typical tasks (fixed strategies) were identified for monitoring. One could view
them as two different ways of “going through” the inference structure of Figure 9.

The first task, model driven monitoring, describes a monitoring approach where
the system has the initiative. This type of task is usually executed at regular points in
time. The system actively acquires new data for some selected set of parameters and
then checks whether the observed values differ from the expected ones.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 31

task model-driven monitoring
goal
execute amonitoring cycle in which the system
actively acquires new data
control-terms
active-parameters=set of parameter
task-structure
monitor(discrepancy)=
select {system-model, active-parameter)
DO FOR EACH parameter ¢ active-parameters
specify (parameter—norm)
select (parameter — observable)
obtain(observable—flnding)
compare (norm+finding— difference)
classify (difference+historical-data— discrepancy)

The second task, data-driven monitoring, is initiated through incoming data. It
contains a receive statement representing a transfer task in which an external agent
(a human user or another system) has the initiative (see Section 4.3). The values
received are checked against expected values for the observables concerned.
Resulting differences are subsequently classified in discrepancy classes.

task data-driven-monitoring
goal
execute amonitoring cycle when a new value of an
observable is received by the system
task-structure
monitor(discrepancy)=

receive(observable-set —»finding)

DO FOR EACH observable e observable-set
select(observable+system-model —» parameter)
specify (parameter—norm)
compare (norm+finding > difference)
classify (difference+historical-data— discrepancy)

Selecting an interpretation model from the library
The library of interpretation models consists of a number of models that can be used
to describe the reasoning process in various applications.

The knowledge engineer is guided in deciding which interpretation model to
choose for a particular application through a decision tree. Part of this tree is shown
in Figure 10. The decision tree is based on a taxonomy of task types. This taxonomy
is a modified and extended version of Clancey’s (1985b) description of problem
types which in turn was derived from Hayes-Roth, Waterman and Lenat (1983: p
14). The decision points in this tree concern features of the solution space, the
problem space and the required domain knowledge types.

The first decision point concerns the availability of information about the
structure of the system involved in a task. The term “system” refers here to the

32 B. J. WIELINGA ET AL.

structure
of system
given constructed
analysis o {synthesis
f ysis) modified y)
(transformation)
]
: solution
! type

solution
type
sequence physical
of steps structure

state(s) category (planning) {design)
(predict) (identification) X !
H] I

! |

type of
category
discrepancy fault
{monitoring) decision c?tegorY
class (diagnosis)
(assessment)
model type
correct fault
model model

(systematic diagnosis) (heuristic classification)
(cover & differentiate)

FIGURE 10. Partial decision tree of interpretation models.

central entity in the application domain, e.g. the audio system in the audio domain,
the patient in a medical domain, the device in a technical domain etc. Other
decision points concern, for example, the type of solution (state, category, types of
categories etc.) and the nature of the domain knowledge (fault-model or correct-
model of the system). The leaves of the decision tree are associated with one or
more interpretation models that specify typical inference and task knowledge for
modelling this task. For example, the interpretation model for monitoring
presented earlier, is associated with the monitoring task in Figure 10. This model is
chosen if (i) the structure of the system is given, (ii) the solution is a category and
(iii) this solution category is not a fault category nor a decision class, but a simple
discrepancy between observed and expected behaviour.

It should be noted that in many real-life applications the task is a compound one:
it consists of several basic tasks. For example, in the model of expertise for the

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 33

audio domain, we focused only on the diagnostic sub-task. In actual practice the
repair/remedy task also needs to be addressed. This may result in a combination of
(parts of) two or more interpretation models. An example of this process of
combining is described in Hayward (1987).

A number of researchers have developed knowledge acquisiton tools that are
based on the notion of a generic model of the problem solving task. For example,
ROGET (Bennet, 1985), MOLE (Eshelman et al., 1988) and BURN (Klinker et al.,
1991) are all systems that drive the knowledge acquisition dialogue with an expert
through a strong model of the problem solving process. This model prescribes what
domain knowledge is needed to build an actual expert system. In OPAL (Musen et
al., 1988) this approach is taken one step further. The conceptual model is OPAL is
not just a model of the problem solving process (i.e. the upper three layers in the
KADS framework) but also contains templates of the domain knowledge needed.
As a consequence OPAL can present the expert with detailed forms that he or she
can fill in with the details of an application domain. Although this approach is very
powerful indeed, it has limitations in scope and applicability.

6. Principle 4: knowledge differentiation

The use of template descriptions such as interpretation models provides a powerful
tool for knowledge acquisition. However, applying such a template to a particular
domain will often reveal that the model does not completely fit the data on human
expertise. Most interpretation models embody only a minimal set of inferences
necessary for solving a problem with this method. The model needs to be further
refined. This process of refinement is called knowledge differentiation.

Knowledge differentiation is guided by several types of characteristics of the
application domain: e.g. the nature of the knolwedge in an application domain (e.g.
“are causal models available?”), the constraints posed by the task environment (e.g.
the required certainty of a solution) and computational constraints: it is possible to
find computational techniques that realize the specified behaviour.

In the “Components of Expertise” framework (Steels, 1990) these characteristics
are called ““‘task features” and the three categories respectively epistemic, pragmatic
and computational task features. ¥}

6.1. TWO DIFFERENTIATIONS OF SYSTEMATIC DIAGNOSIS
The model of systematic diagnosis can be differentiated in various ways. We discuss
two differentiations relevant to the audio domain.

The plain model of systematic diagnosis (of which the inference structure is shown
in Figure 6) presupposes that the applicable system model is selected using
knowledge about fixed decompositions of the system being diagnosed. However,
the configuration of an audio system is usually not fixed. System elements such as a
CD-player, a second tape-deck, head phones or additional speakers may or may not
be present. This potential problem can be handled by replacing the simple select
inference with a more complicated assemble inference (Figure 11).

+ In the Components approach the task features are used for dynamic run-time task-decomposition in
an actual system. In KADS, knowledge differentiation is primarily seen as a knowledge engineering

activity, which could be (but does not need to be) reflected in the design of the KBS (in other words, it
could result in fixed task decompositions).

34 B. I. WIELINGA ET AL.

Initial

Complaint
data

™. o

~ P

————— Sub-models

FiGURe 11. Differentiating the model of Systematic Diagnosis: system model assembly instead of
selection.

In this assemble step additional data (initial data in Figure 11) about the audio
system are used to construct an applicable system model. An epistemic requirement
for this differentiation is that additional domain knowledge can be made available,
namely: (i) a definition of potential system elements of an audio system, possible
hierarchically organized (cf. the sub-models in Figure 11) and (ii) configuration rules
for assembling an actual model from the possible system elements.

This modification of the plain inference structure of systematic diagnosis thus
leads to a slightly more complex model with additional domain knowledge
requirements. A second, more complicated, differentiation concerns the introduc-
tion of multiple system views. Often, there are various ways of decomposing a
device. Each decomposition represents a different view on the system. Well-known
views are functional and physical decompositions. In the audio domain, one can
think of the system as, for example, an electrical system or as a sound transformation
system. The faulty component can only be found if the right view is selected.

Allowing multiple views also introduces additional complexity in the model of
expertise. It implies an additional decision in the inference process concerning view
selection. Davis (1984) suggests that initial view selection is usually done on the
basis of characteristics of the problem (the complaint) using domain heuristics.
Figure 12 shows the additional inferences necessary for handling muitiple views. In
this case the epistemic requirement on additional decomposition knowledge is even
stronger: for each view sub-models and configuration rules should be present in the
domain theory. In addition, heursitics about how to select a view need to be made
available.

Introducing multiple views also involves additional task structure complexity. If
one view fails to provide a solution, another view needs to be selected and the
process is repeated. We omit here the specification of this extended task structure.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 35

Complaint

Initial Y
data

Select

Sub-models
AN
N
AN
AN
N

Ty S

System

model -

FIGURE 12. Differentiating the model of Systematic Diagnosis: introducing multiple system models
representing different views.

6.2. MODEL CONSTRUCTION OPERATORS

Thus far, we have presented the process of constructing a model of expertise
more-or-less as a two-step process: (i) the selection of an interpretation model from
the library and (ii) the differentiation of the model on the basis of characteristics of
the application domain.

More recently, we are considering a somewhat more dynamic view of the model
constructuion process. This view has been influenced by the work of Patil (1988) on
medical diagnosis. He shows how one can start with a simple model of diagnosis,
such as generate-and-test, and start a gradual refinement process of this model on
the basis of application characteristics, such as the ones discussed earlier. This
approach would require a different organization of the library of template models,
namely not as a flat set of models but as a set of model construction operators. These
model construction operators can be applied to a model and result in a more
complex model. The two differentiations of systematic diagnosis can be viewed as
examples of such operators. Model construction operators can also be identified on
a more general level. If one studies the inference structures of systematic diagnosis
(Figure 6) and of monitoring (Figure 9), it becomes clear that they share a common
set of related inferences, namely the process of checking the expected value of a
parameter against the observed value. Figure 13 shows this set of inferences. One
could view this set as a potential model construction operator.

Representing template models in the form of such model construction operators is
attractive because it captures the way in which knowledge engineers actually build
these models.

36 B. J. WIELINGA ET AL.

Observable Parameter

Select @
Y
Finding ——><*— Norm

Difference

FIGURE 13. Model construction operator: checking the expected value of a parameter against the
observed value.

7. Principle 5: structure-preserving design

Unlike most other approaches to knowledge modelling, the KADS models of
expertise have no direct computational interpretation: they are not executable. In
this section we discuss various issues that are related to the process of operationaliz-
ing the model of expertise:

(i) The trade-off between conceptual modelling and design.
(ii) The structure-preserving approach to design and its advantages.
(iii) An overview of the detailed design decisions in a structure-preserving design
process.
(iv) Support for a structure-preserving design process.
(v) Computational adequacy of systems built on the basis of a non-executable
knowledge-level model.

7.1. TRADE-OFF BETWEEN CONCEPTUAL MODELLING AND DESIGN

It is important to realize that there is a trade-off between (i) extending the
conceptual model and (ii) a more elaborate specification during design. The decision
whether to do the former or the latter depends on whether one is interested from
the conceptual-model point of view in exercising explicit control on the execution of
a computational technique. The borderline between conceptual model and design is
thus, in a sense, governed by the level of granularity that is required of the
conceptual model. For example, in OFFICE-PLAN (a system for allocating offices
to employees, see Karbach, Linster & Vo8B, 1989) the actual allocation inference is
modelled as one knowledge source assign in the conceptual model and is realized in
the actual system through a complex constraint satisfaction technique. If it would
have been necessary to exercise control on this technique, then one would need to
model constraint satisfaction “‘at the knowledge level”.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 37

7.2. APPROACHES TO DESIGN

By definition, knowledge-level models such as the KADS conceptual models do not
contain all information necessary for the implementation of a system. The design
problem can be defined as the selection (or possibly development) of appropriate
representations and computational techniques for the elements in the conceptual
model. In principle, the designer is free to make any set of design decisions that
results in meeting the specifications. In fact, a number of successful applications
have been built that used standard design techniques (Readdie & Innes, 1987a;
Benus & van der Spek, 1988). Often this was due to external requirements that
forced the use of, for example, first-generation expert system shells that supply only
a very limited set of Al techniques.

However, from a methodological point we strongly favour a structure-preserving
design. With structure-preserving we mean that for the final system it should be
possible to relate the elements of conceptual model to identifiable computational
constructs. A structure-preserving design has a number of advantages:

Explanation

One important advantage is a wider possible scope for explanations that can be
generated by the system. First-generation expert systems were only able to give
explanations by paraphrasing their code (e.g. MYCIN). It is now commonly
accepted that this is not sufficient to understand the reasoning process of the KBS.
Preserving the structure of the conceptual model makes it possible to generate
explanations at the level of the language of the conceptual model (Clancey &
Letsinger, 1984).

Figure 14 shows part of the interface of a prototype shell that we developed for
operationalizing models of systematic diagnosis. The shell was used to implement a
KBS for the audio domain (Lemmers, 1991). The interface allows the user to trace
the reasoning of the KBS in the vocabulary of the conceptual model at various levels
through: (i) the task that is being executed and its structure, (ii) the inference
structure in which an inference is highlighted when it is being executed, (iii) the
bindings of control terms and meta-classes (i.e. the current state of ‘‘working
memory”’) and (iv) the domain knowledge that is used by inferences that are
executed.

The interface is a simple example of providing a user insight into the reasoning
process of the KBS.

Maintenance and debugging
Another advantage has to do with the maintenance and the debugging of a KBS.
The preservation of the structure of the conceptual model makes it possible to trace
an omission or inconsistency in the implemented artefact back to a particular part of
the conceptual model. Also, knowledge redundancy is prevented.

+ Similar goals with respect to explanation and maintenance are pursued in the Explainable Expert

Systems (EES) approach (Neches, Swartout & Moore, 1985). In EES the structure-preserving property
is guaranteed through an automatic transformation process.

38 B. J. WIELINGA ET AL.

alsunt -

1 TAS RUCTURS ial
iF _pbtaln_initial _detelinitial_sdets)
assign(used_views, (J)
WHILE not estasblished(conclusion) DO

lookup (used_views. List)

1f_select_view(Complaint. View. List)

add_to liet (View. List, Hew_list)

sssigniused views, New_list)

IF emunl(View, nil) THEM

asetgniconclusion. no_conclusion_ found)

1f_assemble_model (View, Initial_data. Aesertions. Model)
aseignimodei, Model}

store_model (Rssertions)

REPERT

urrent_model : system

Knoul Soui s
Domain Relations :
wuggests_hlerarchy / 2
suggests_norm / 2
pert.of / 2

Knowledge Source : 1f_de€ampose

FIGURE 14. Prototype interface for tracing the execution of a system for systematic diagnosis in the

vocabulary of the model of expertise. The inference structure is shown on the left and is a refined version

of the one presented in this paper. The decompose knowledge source is currently being executed. The

task structure, the bindings (e.g. the system model that is currently being decomposed) and the domain

knowledge used by the decompose knowledge source (a part-of relation) are shown on the right. The

window in the lower-right corner allows the user to trace the reasoning process at the task and/or
inference level.

Knowledge acquisition tools

A related advantage is that the conceptual model and its links to the artefact can be
used to guide the use of knowledge acquisition tools and techniques. For example,
techniques such as repertory grid and induction algorithms can be used to generate
not any knowledge but a particular type of knowledge. This approach to knowledge
acquisition support allows much more focused use of tools and therefore increases
the interpretability and the quality of their results. This approach is currently being
pursued in the ACKNOWLEDGE project (Shadbolt & Wielinga, 1990).

7.3. DETAILED DESIGN DECISIONS

In this sub-section we discuss typical design decisions. The scope of the section is
limited to decisions with respect to elements of the model of expertise. A more
detailed description of these decisions can be found in Schreiber et al. (1987) and
Schreiber er al. (1989a). Decisions concerning the design of inference knowledge
are discussed first, because these decisions influence other decisions, notably the
design of the domain knowledge base.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 39

Inference knowledge

For each knowledge source a corresponding computational technique needs to be
selected that can realize this inference. A technique consists of three types of
elements: (i) an algorithm, (ii) input-output data structures and possibly additional
temporary data structures, and (iii) a representation of domain knowledge.

The algorithm embodies the method for realizing the inference and specifies the
local, symbol-level, control. The representation of the input-output data structures
corresponds to the meta-classes and should be synchronized within the set of
knowledge sources. The chosen domain knowledge representation (e.g. production
rules) implies the requirement that the representation of the domain theory can be
viewed in this way.

In AI research a number of (groups of) computational techniques have been
developed such as production systems, state-space search, parsing, classification and
matching. Detailed studies have been performed to unravel the criteria for choosing
a technique within one group such as hierarchical classification (Goel, Soundarajan
& Chandrasekaran, 1987) and logical representation and deduction (Reichgelt & van
Harmelen, 1986). In Schreiber et al. (1989a) criteria for choosing a particular group of
techniques are discussed. Often, knowledge engineers use, within one system, only
one or two groups of techniques. In that case the chosen group of techniques takes
the role of a design paradigm. For example, in NEOMYCIN (Clancey, 1985a) four
(forward chaining) production system techniques are provided. Each inference
applies one of these production system techniques. Applying only one type of
technique, such as production systems, in one particular KBS minimizes the
interaction problems with the design of other parts of the system (in particular, the
domain theory, as it requires just a single representational formalization), but apart
from that there is no compelling reason to adhere strictly to this approach.

Domain knowledge

We view the domain knowledge as an elaborate database (with much more
sophisticated representational primitives than conventional databases provide).
Computational techniques require an access path into this database. A crucial design
decision concerns the choice of the representation technique(s) for the domain
theory. This representation has to meet the requirement posed by the set of
“domain views”. In other words, one should be able to view (or rewrite) the domain
representation in such a way that it meets the demands of the computational
techniques implementing knowledge sources. In addition, the representational
technique should allow the specification of knowledge needed for other purposes,
such as explanation. These requirements usually follow from the specification of the
model of cooperation.

If the knowledge engineer works within a particular paradigm, such as production
systems, the choice of the representational technique is usually obvious: the domain
representation technique is the same as the representation used by the chosen type
of computational technique.

In most existing systems no clear difference is made between use-specific and
use-independent representations of elements of the domain-theory. In such cases the
design is not fully structure-preserving. It also implies that the advantages of
separating these the domain theory and the domain view (see Section 4.2) do not

40 B.). WIELINGA ET AL.

hold for the final system. This can mean that problems arise, particularly in the area
of maintenance. For example, it could lead to multiple presence in the domain
theory of essentially the same knowledge (knowledge redundancy).

Task knowledge

Given the set of tasks specified in the conceptual model (consisting of both problem
solving tasks and of transfer tasks) the designer has to make two—interrelated—
decisions.

(i) The choice of a control technique for executing tasks. Examples of such
control techniques are an agenda mechanism, a blackboard, a skeletal
planning technique or a simpie procedure hierarchy.

(ii) The choice of how to represent and update the run-time data. These data can
be viewed as the “working memory” of the KBS. This working memory
contains the data that are manipulated by the tasks and the inferences, e.g.
the current state of the differential, the findings etc. The control terms and
the meta-classes specified in the conceptual model form the basis for the
representation of working memory: they often re-appear in the final system
as labels for (sets of) working memory elements.

Most existing KBSs use a simple monotonic technique of updating working
memory. We expect that in the next generation KBS’s more complex
techniques, such as truth-maintenance techniques, will be used more often.
Note that the ue of such a technique can pose additional requirements on the
output produced by computational techniques realizing primitive inferences.
An example of such an additionally required output is the ‘‘justification”
used in an ATMS (de Kleer, 1986).

Strategic knowledge
Most conceptual models that have been constructed do not contain a large amount
of strategic knowledge. In many of these systems the strategic part has been
“compiled out” into fixed task decompositions with possibly a few strategic decision
points that can be influenced by the user (cf. de Greef, Schreiber & Wielemaker,
1987, Part 11, Section 3.4).

If more elaborate strategic knowledge is present, the following techniques could
be applicable:

(i) A production system containing a set of meta-rules with states of working
memory as conditions and task activations and/or changes to working
memory (e.g. assumptions) as actions.

(ii)) An extended blackboard technique such as the “Blackboard Control
Architecture” (Hayes-Roth, 1985), where the scheduling part represents the
strategic knowledge.

(iii) One can also view the strategic knowledge as a separate meta-system, the
PDP system is an example of this approach (Jansweijer, Elshout & Wielinga,
1986). This approach is also currently being pursued in the REFLECT
project (Reinders et al., 1991).

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 41

7.4. SUPPORT FOR THE DESIGN PROCESS

The design decisions should lead to a mapping from the elements of the conceptual
model on to elements of the implementation environment. In KADS we have
developed a notation for supporting this structure-preserving design process through
intermediate design descriptions (Schreiber et al., 1989b). It is also possible to
support the knowledge engineer in this transformation process through the
development of a dedicated computational framework that provides: (i) a number of
predefined representational and computational techniques, and (ii) a programming
environment that more-or-less predefines how elements of the conceptual model
should be mapped on to constructs in this environment (for example, by providing
constructs called “knowledge source” etc.).

In such a computational framework most of the design decisions discussed earlier
are hard-wired. The use of a dedicated framework minimizes the number of design
decisions that have to be made for implementing the system given a conceptual
model, because most of the these decisions have already been taken by the designers
of the environment. Model-K (Karbach et al., 1991) and ZDEST-2 (Tong, He &
Yu, 1988; Karbach, Tong & Vof, 1988) are computational environments that
(partially) allow such a mapping of KADS conceptual models on to an implementa-
tion. A potential problem with this type of approach is that the environment may
not provide all the necessary techniques for a particular application. As any other
design process, the design of a knowledge-based system is by its nature open-ended,
i.e. the solution space is infinite.

7.5. COMPUTATIONAL ADEQUACY

One major objection to the use of knowledge-level models in the KBS development
process is the potential computational inadequacy of such models. Since knowledge-
level models do not specify the control regime in full detail they are apt to potential
combinatorial explosion behaviour. Although it is true in principle that this problem
may occur, the structure of the models proposed here provides important safeguards
against the computational inadequacy. The knowledge that is specified in a KADS
four-layer model cannot be used in arbitrary ways: it has to fulfill certain typing
requirements and can only be applied within the constraints specified by the model.
For instance, a piece of domain knowledge of a certain type can only be used for
abstraction inferences, not for all types of inference steps. Our introduction of
knowledge sources and task structures generally yields the possibility of selecting
specific rules or theories needed to produce a certain inference. In this way the
knowledge-level model provides a role-limiting (McDermott, 1989) constraint to
knowledge. Role limitations translate to access limitations at the symbol level and
hence reduce the combinatorial explosion (Schreiber et al., 1991).

8. The knowledge-acquisition process

The description of the various models can be seen as the product of KBS
construction, With respect to the process of KBS construction, KADS provides two
ways of support: (i) a description of phases, activities and techniques for knowledge
engineering and (ii) computerized support tools. Both are briefly discussed in this
section.

42 B. i. WIELINGA ET AL.

8.1. PHASES, ACTIVITIES AND TECHNIQUES

A phase represents a typical stage in the knowledge engineering process. A phase is
related to a number of activities, that are usually carried out in this phase. One
particular activity can occur in more than one phase. For example, “data collection”
can occur in many different phases. The activities are the central entities in the
process view on knowledge engineering. An activity is a piece of work that has to be
carried out by the knowledge engineer. An activity produces a result. This result
constitutes either directly a part of one or more models or it represents some
intermediate product, that is used by other activities. An activity applies one or
more technqiues. For example, a “‘time estimation” activity can be carried out with
an extrapolation technique. Life cycle models predefine particular phases, activities,
techniques and products and also their interrelations. Life-cycle models for KADS
have been described in Barthélemy et al. (1987) and Taylor et al. (1989). We limit
the discussion here to those activities that are related to building a first model of
expertise. We distinguish two phases in building such a first model of expertise:
knowledge identification and knowledge modelling.

Knowledge identification is more or less a preparation phase before the actual
construction of the model of expertise can begin. Relevant activities for this phase
are shown in Figure 15 together with applicable products and techniques. The
results include a task model and also intermediate products that are used by
activities in other phases, especially the knowledge modelling phase. Example
activities are glossary and lexicon construction. A glossary and a lexicon provide a
way of documenting the application domain without having to be committed to any
formal conceptualization.

In the knowledge modelling phase the knowledge engineer constructs a model of
expertise. Figure 16 summarizes the main activities relevant for knowledge
modelling. A crucial one is the selection of an interpretation model. This activity is
supported through the decision tree discussed in Section 5. The model validation
and model differentiation activities often make use of protocol analysis techniques.
Model validation can also be supported by transformation of the model into a
functional prototype. This prototype can be seen as a simulator of the problem
solving aspects of the artefact. The KADS-II project is currently working on a tool
to support this type of prototyping. Other activities deal with the definition of the
domain conceptualization. In KADs we usually assume that in the resulting model

Products Activities Techniques
Expertise data «———— Data collection———— ——— ——— » Structured interview,
Task analysis —~=-----——-- » Rational task analysis
Task model decomposition " 7=~ Work-flow analysis
task 170 = .
Task feature analysis ~=~ =~ _/_/ ¥ Protocol segmentation
Lexicon €———————— Lexicon construction ~ _ —<_ % Frame editing

FIGURE 15. Knowledge identification activities and related products and techniques.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING

Products Activities

Expertise data «—————— Data collection —— - - —~

Interpretation model

43

Techniques

- - Think-aloud protocols, ...

_.-» Decision tree

selection

¢ _ _-» Frame editing
Domain schema -

definition cE - = -+ Data modelling techniques
~
strategy O . “~_ _ _— Tree diagrammin
Building domain _ _ _ —><_ . & &
task structures N \‘* Laddering
. Model assembly - _ A Segment grouping
inference ——— . o
connecting the IM with ‘: Generic sub-task substitution
domain the domain theory L, » Sub-task expansion
;o . .
‘\ Model validation ~=—— 7% Functional prototyping
\ S .
\ //// _ ~ 3 Protocol analysis

Mode! differrentiation4 — ~ protocol segmentation,
protocol coding, matching,
segment naming.

ST » Goal regression

\
Model of expertise

Bottom-up model
construction
~. "™ Forward scenario simulation

A Participant observation

FIGURE 16. Knowledge modelling activities and related products and techniques.

the domain theory can be a partial one, but with a fully defined domain schema.
Refinement and debugging of the domain theory is performed in a later phase,
possibly with the use of automized techniques.

8.2. TOOLS

Within the KADS project the Shelley workbench was developed to support
activities in the KBS life cycle. Shelley contains an integrated set of computerized
support tools. The user of the workbench is the knowledge engineer. Example
support tools in Shelley for the knowledge modelling phase are:

(i) A domain text editor: a tool that allows management and analysis of
protocols or other texts: for example, through the creation of text fragments
of a particular type. These fragments can subsequently be linked to ther
objects, such as elements of the model of expertise.

(ii) A concept editor to create concepts and corresponding attributes.

(iii) An interpretation model library from which models can be selected.
(iv) An inference stucture editor that supports the construction of the inference
layer of the model of expertise.

Figure 17 shows an example of the use of Shelley in the audio domain. The
knowledge engineer has selected the interpretation model of systematic diagnosis
from the library and inserted it into the inference structure editor. A think-aloud
protocol is being analysed. The link of a particular fragment of the protocol to a
meta-class in the inference structure editor is shown.

The Shelley workbench is described in more detail in Anjewierden, Wielema-
ker and Toussaint (1992, this issue).

44 B. . WIELINGA ET AL.

ml 8 cigerette]
0K, let’s see then.
Vo suitch sverything on.
i buttona on sapltfier, tuner
switches the Tnput selactor on tuner;
switchss the output selsctor to spesiersi]

© nanagenent
Lit’s try the tuner. D externa) ansiyets
At o

:‘ n] -"':‘ @ Interna? anaryets
the ssplifter and speskars

e not the prodles. Ooasign

Jturne the P tuning knob;
wsic sppsars]

X, that’s better.

tuner

1nput selector
output selscter
speskor

pover :
fa tuning knobd o cosplaint |

| W
K

FIGURE 17. Example session with the Shelley workbench.

9. Relation to other approaches

We make no claim that all ideas underlying KADS are new. On the contrary, work
of other researchers has heavily influenced the work on KADS. In this section we
discuss a number of these approaches and relate them to the KADS approach.

Brachman (1979) proposed five levels for describing knowledge: the linguistic,
the conceptual, the epistemological, the logical and the implementational level.
Brachman and also Clancey (1983) showed that the epistemological level of
Brachman is the “missing” level in the description of knowledge-based systems. We
interpret Newell’'s knowledge level as a combined description of Brachman’s
conceptual and epistemological level. In the KADS model of expertise the domain
knowledge roughly corresponds to the conceptual level and the three other
categories to the epistemological level. The KADS design description (Newell’s
symbol level) corresponds to the logical level.

The work of Clancey has had a large impact on KADS. Clancey (1983, 1985b6)
introduced the notion of an inference structure in the description of the model of
heuristic classification (HC). In the work on NEOMYCIN (Clancey, 1985a) a
similar type of task decomposition is found as is used in the task layer in KADS.
The main difference is that there is no explicit relation between the tasks in
NEOMYCIN and the inferences in the HC model. These tasks refer directly to the
domain knowledge, whereas the tasks in KADS reference the domain knowledge
only indirectly via primitive inferences.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 45

In the approach taken at Ohio State University (Bylander & Chandrasekaran,
1988; Chandrasekaran, 1988) the implementation environment consists of so called
“generic tasks”. A generic task (GT) is a combination of a problem (e.g.
classification) and a problem-solving method (e.g. hierarchical classification) with
particular knowledge and inference requirements. GTs can perform quite general
information-processing tasks. The assumption is that by combining a relatively small
set of GTs one can solve a large number of problems. The problem-solving
methods in the GT approach have a somewhat smaller grain size than the
interpretation models in KADS.

In the approach taken at DEC (McDermott, 1989; Marcus & McDermott, 1989;
Eshelman et al., 1988) a number of systems were built that provide an operational-
ization of a particular problem solving method, such as “propose & revise” and
“cover & differentiate”. The terminology used to describe these methods is such
that during knowledge acquisiton the expert can be prompted for domain knowledge
in a high-level, method-specific language, e.g. *‘‘'What are symptoms that
the system should be able to explain?''. The problem solving methods
have a similar grain size as the KADs interpretation models. More recently (Klinker
et al., 1991), the emphasis in this approach has shifted to the construction of an
integrated environment in which the knowledge engineer can configure such
single-task knowledge acquisition systems from a set of predefined mechanisms. As
remarked in Section 5.1, the research on a typology of mechanisms is very close to
aims in KADS.

In the PROTEGE (Musen, 1989) approach the problem is addressed that experts
find it difficult to enter knowledge in a method-specific format. In this approach two
steps are distinguished in building ONCOCIN-like systems: the knowledge engineer
uses PROTEGE to specify the required domain knowledge in method-specific
terms; PROTEGE then generates a knowledge acquisition tool called p-OPAL that
enables the expert to enter knowledge in domain-specific terms. This dual way of
naming domain knowledge is similar to the approach advocated in KADS. The
PROTEGE system presupposes a single-task model, based on the skeletal planning
method of ONCOCIN (Shortliffe, et al., 1981).

All models used in these last three approaches are hard-wired to particular
computational constructs. As stated earlier, compared to the KADS approach this is
both an advantage and a disadvantage.

The “Components of Expertise” (CoE) approach (Steels, 1990) is in many aspects
similar to KADS. The main differences with KADS are the dynamic view on task
decomposition based on task features and the absence of an explicit description of
inference knowledge such as meta-classes. A dedicated computational framework
has been developed for CoE models (Vanwelkenhuysen & Rademakers, 1990).
Research aiming at a synthesis of KADS and CoE is in progress within the KADS-II
project.

The “Ontological Analysis” approach (Alexander et al., 1988) describes know-
ledge in three categories: (i) the static ontology describing the primitive objects,
properties and relations, (ii) the dynamic ontology describing the state space of the
problem solver and the actions that can make transitions in this space, and (iii) the
epistemic ontology describing methods that control the use of knowledge of the first
two categories. These three categories resemble closely the domain, inference and

46 B. J. WIELINGA ET AL.

task knowledge in KADS. The formalizations used in Ontological Analysis are
based on algebraic specification languages.

Although terminology is different, a common view appears to emerge based on
the idea that different types of knowledge constitute the knowledge level and that
these different types of knowledge play different roles in the reasoning process and
have inherently different structuring principles. One salient characteristic is that all
approaches distinguish between structural domain knowledge and control knowl-
edge. In addition, various kinds of control knowledge are distinguished, like global
control of how to go about the task as a whole, and local control knowledge
specifying how and/or when to carry out certain individual actions.

There are also relations between KADS and conventional software engineering
approaches. The introduction of multiple models was inspired by work of DeMarco
(1982). As pointed out in Section 4.1, issues concerning modelling of domain
knowledge are quite closely related to research in semantic database modelling.
Software engineering techniques are used in KADS, e.g. a form of data-flow
diagrams (for inference structures) and structured English (for task structures).
Life-cycle models using a water-fall approach (Barthélemy et al., 1987) and a spiral
model approach (Taylor et al., 1989) have been defined in KADS.

10. Experiences

The KADS approach has been (and is being) used in some 40-50 KBS projects. Not
all these projects used “pure” KADs. The core activities of Bolesian Systems, a
Dutch company, are teaching and applying an earlier version of KADS under the
name SKE (Structured Knowledge Engineering). Other companies, such as Arthur
Andersen Consulting and commercial partners in the KADS-I project, have
incorporated KADS into their own methodology.

Within the KADS-1 project the approach has been tested in a number of
experiments in domains such as commercial wine making (Wielinga & Breuker,
1984) statistical consultancy (de Greef & Breuker, 1985; de Greef, ef al. 1988b), the
integration qualitative reasoning approaches (Bredeweg & Wielinga, 1988), network
management (Krickhahn e al., 1988: Readdie & Innes, 1987b), mould configuration
(Barthélemy et al., 1988), mixer configuration (Wielemaker & Billault, 1988),
technical diagnosis (Wright et al. 1988), insurance (Brunet & Toussaint, 1990) and
credit card fraud detection (Land et al., 1990). Other applications include
re-engineering of ONCOCIN (Linster & Musen, this issue), process control
(Schrijnen & Wagenaar, 1988), chemical equipment (Schachter & Wermser, 1988),
room planning (Karbach et al., 1989), social security (de Hoog, 1989), software
project management (de Jong er al., 1988), diagnosis of movement disorders
(Winkels & Achthoven, 1989), and paint selection (van der Spek, van der Wouden
& Ysbrandy, 1990). The last two systems and the credit card system have been in
operational use for some time.

A recent publication for the commercial AI community (Harmon, 1991)
commented that “before KADS, most of the methodologies were vague prescrip-
tions rather than systematic step-by-step models for large-scale systems development
efforts”. On the basis of the success of KADS-I, the CEC has decided to fund a
second ESPRIT project (KADS-II) with the aim to arrive at a de facto European
standard for KBS development.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 47

This is not to say that we think that the approach described in this paper has no
deficiencies: on the contrary. It is clear that a group of- KADS users find certain
aspects of KADS attractive, but it is also recognized that there are many weaknesses
in current KADS. The first KADS user meeting (Uberreiter & VoB, 1991) in which
some 40, mainly German, KADS users participated, provided a good overview of
the strong and weak points of KADS. Among the strong points are:

(i) The distinction between various models, especially the distinction between
the model of expertise and the design.

(ii) The framework for modelling expertise. Especially the inference structures
are mentioned by many people as an intuitively appealing way of describing
the reasoning process and as a communication vehicle with domain experts.

(iii) The library of interpretation models. Although this library is far from
complete, it has still provided useful starting points for many applications.

The list of weaknesses is considerably longer. A selection:

(i) The vocabulary in the four-layer framework for describing domain knowl-
edge and task knowledge is not expressive enough.

(ii) The typology of knowledge sources is too general. The precise meaning of
the knowledge sources is ambiguous.

(iii) The library of interpretation models is incomplete and needs serious revision.
For example, coverage of synthetic tasks is marginal.

(iv) KADS does not provide enough support for operationalizing conceptual
models.

(v) KADS gives you a vocabulary, but it provides little support for the
modelling process.

In short, the experiences show that the KADS approach has some interesting and
attractive features, but that it still needs a lot of work before it can really be
considered a “comprehensive methodology”. In addition, controlled validation
studies are necessary to show that KADS actually provides advantages compared to
other approaches. The work of Linster & Musen (1992, this issue) can be seen as a
step in this direction.

11. Future developments and conclusions

In this paper we have taken the position that knowledge acquisition is to a large
extent a constructive activity: models of several aspects of the task and domain have
to be built before implementing a knowledge-based system.

Looking at the future of knowledge acquisition from this point of view raises the
obvious question of how Al and knowledge-based systems themselves can support
the various modelling processes. Recent developments in the area of knowledge-
acquisition tools provide some directions in how this could be done.

Given the modelling approach to knowledge acquisition it is of vital importance
that a knowledge engineer has some language in which the various models can be
formulated. Such a language is not only important for the knowledge-acquisition
process itself, but also for communicating models and comparing models for
different tasks. A comparative analysis of the problem-solving methods embodied in
KBSs will advance the knowledge-acquisition activity from an art to a proper

48 B. J. WIELINGA ET AL.

engineering discipline. Although there is currently little consensus on what the
ingredients and vocabulary of such a modelling language should be, the various
ideas appear to converge. The result of the synthesis of the KADS and the CoE
approach, which is currently being pursued and in which ideas from other
approaches are also taken into account, may be a starting point for such a language.
In our view, it is also worthwhile investigating the different types of knowledge and
their relationships from a more formal point of view. Attempts are being made in
this direction (see van Harmelen & Balder, 1992, this issue). Such a formal account
of knowledge models clarifies at least some of the notions that have been used in a
rather informal way so far.

If a common language for defining conceptual models of problem-solving
processes became accepted, it would be of great interest to study the large collection
of problem-solving models that currently exist. A consolidation and integration of
the models in the KADS interpretation model library (Breuker er al., 1987), the
generic probelm-solving models of Chandrasekaran and co-workers (Chandraseka-
ran, 1988), the models underlying the various model-driven knowledge acquisition
tools (McDermott, 1989) and various other models in the literature, could provide
the knowledge-engineering community with an invaluable tool for knowledge
acquisition. Also, such a collection of generic models could be the basis of powerful
knowledge-acquisition tools that communicate both with experts and with knowl-
edge engineers.

Looking beyond the traditional knowledge-engineering paradigm where the
knowledge engineer does most of the work, we envisage an important role for
knowledge about models in knowledge-acquisition tools that integrate traditional
knowledge-acquisition techniques and automated learning techniques. One of the
major problems in this area is that of integrating knowledge of various sources. A
system that has knowledge about the kinds of knowledge that it needs to acquire can
exercise much more focused control on the acquisition process and hence solve at
least part of the integration problems.

Acknowledgements

We gratefully acknowledge the contributions to the work reported here from Anjo
Anjewierden, Jean-Paul Billault, Bert Bredeweg, Massoud Davoodi, Paul de Greef, Simon
Hayward, Robert de Hoog, Ton de Jong, Maarten van Someren, Peter Terpstra and Jan
Wielemaker. Many other co-workers of ESPRIT Project 1098 participated in discussion,
applications and validations of the ideas presented here.

Anjo Anjewierden, Frank van Harmelen, Marc Lister, Jacobijn Sandberg and three
anonymous referees provided valuable comments on earlier versions of this paper.

This research was largely carried out in the course of the KADS-I project. This project was
partially funded by the ESPRIT-I Programme of the Commission of the European
Communities as project number 1098. The partners in this project were STC Technology
Ltd., SD-Scicon plc., KBSC of TRMC (all UK), NTE NeuTech (Germany), Cap Sesa
Innovation (France), and the University of Amsterdam (The Netherlands).

The production of this article was supported by the KADS-II project. This project is
partially funded by the ESPRIT Progrmame of the Commission of the Euroepan Com-
munities as project number 5248. The partners in the project are Cap Gemini Innovation
(France), Cap Gemini Logic (Sweden), Netherlands Energy Research Foundation ECN (The
Netherlands), ENTEL SA (Spain), IBM France (France), Lloyd’s Register (UK), Swedish

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 49

Institute of Computer Science (Sweden), Siemens AG (Germany), Touche Ross MC (UK),
University of Amsterdam (The Netherlands) and the Free University of Brussels (Belgium).
This paper reflects the opinions of the authors and not necessarily those of the consortia.

References

ALEXANDER, J., FREILING, M., SHurLmaN, S., Renruss, S. & Messick, S. (1988).
Ontological analysis: an ongoing expriment. In J. Boose & B. Gainges, Eds. Knowledge-
Based Systems, Volume 2: Knowledge Acquisition Tools for Expert Systems, pp. 25-37.
London: Academic Press.

ANJEWIERDEN, A., WIELEMAKER, J. & Toussaint, C. (1992). Shelley———computer-aided
knowledge engineering. Knowledge Acquisition, 4, 109-125.

BARTHELEMY, S., EDIN, G., TouTtaIN, E. & BECKER, S. (1987). Requirements analysis in
KBS development. ESPRIT Project P1098 Deliverable D3 (task A2), Cap Sogeti
Innovation.

BArRTHELEMY, S., FroT, P. & SimoNIN, N. (1988). Analysis document experiment FA.
ESPRIT Project P1098, Deliverable E4.1, Cap Sogeti Innovation.

Benner, J. (1985). ROGET: A knowledge-based system for acquiring the conceptual
structure of a diagnostic expert system. Journal of Automated Reasoning, 1, 49-74.
Benus, B. & vaN DER Spek, R. (1988). The Paint Expert: report on the development of a
knowledge-based system for naive users. Master’s thesis, University of Amsterdam,

Faculty of Psychology.

Boeum, B. (1988). A spiral model of software development and enhancement. IEEE
Computer, 61-72.

BracHMAN, R. (1979). On the epistemological status of semantic networks. In N. FINDLER,
Ed. Associative Networks, New York: Academic Press.

BracHMAN, R. & Scumorze, J. (1985). An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9, 171--216.

BreDEWEG, B. & WIELINGA, B. (1988). Integrating qualitative reasoning approaches. In
Proceedings of ECAI-88, Munich, pp. 195-201.

BREUKER, J. & WIELINGA, B. (1987). Use of models in the interpretation of verbal data. In
A. Kipp, Ed. Knowledge Acquisition for Expert Systems, a Practical Handbook, New
York: Plenum Press.

BREUKER, J., WIELINGA, B., vaAN SOMEREN, M., bE HooG, R., SCHREIBER, G., DE GREEF,
P., BREDEWEG, B., WIELEMAKER, J., BiLLauLT, J.-P., DAvoobi, M. & HaywaRrpD, S.
(1987). Model Driven Knowledge Acquisition: interpretation models. ESPRIT Project
P1098 Deliverable D1 (task A1), University of Amsterdam and STL Ltd.

BREUKER, J. A. & WIELINGA, B. J. (1989). Model Driven Knowledge Acquisition. In P.
Guma & G. Tasso, Eds. Topics in the Design of Expert Systems, pp. 265-296.
Amsterdam: North-Holland.

Bruner, E. & Toussaint, C. (1990). A KADS application in insurance. ESPRIT project
P1098, Deliverable E9.1, Cap Sesa Innovation.

ByLanDer, T. & CHANDRASEKARAN, B. (1988). Generic tasks in knowledge-based
reasoning: The ‘right’ level of abstraction for knowledge acquisition. In B. GAINEs & J.
Boose, Eds. Knowledge Acquisition for Knowledge Based Systems, Volume 1, pp.
65-77. London: Academic Press.

CHANDRASEKARAN, B. (1988). Generic tasks as building blocks for knowledge-based
systems: the diagnosis and routine design examples. The Knowledge Engineering
Review, 3(3), 183-210.

CLancey, W. (1983). The epistemology of a rule based system—a framework for explana-
tion. Artificial Intelligence, 20, 215--251. Also, Stanford Heuristic Programming Project,
Memo HPP-81-17, November 1981, also numbered STAN-CS-81-896.

CLaNceYy, W. (1985a4). Acquiring, representing and evaluating a competence model of
diagnostic strategy. In CHi, Graser, & Far, Eds. Contributions to the Nature of
Expertise.

CLANCEY, W. (1985b). Heuristic classification. Artificial Intelligence, 27, 289-350.

50 B. J. WIELINGA ET AL.

CLANCEY, W. & LETSINGER, R. (1984). NEOMYCIN: Reconfiguring a rulebased expert
system for application to teaching. In W. CLaNCEY & E. SHORTLIFFE, Eds. Readings in
Medical Artificial Intelligence: the First Decade, pp. 361-381. Reading: Addison-Wesley.

Davis, J. & BonnEL, R. (1990). Producing visually-based knowledge specifications for
acquiring organizational knowledge. In B. WieLinGa, J. Boose, B. Gaines, A.
ScHREIBER & M. vaN SoMEREN, Eds. Current Trends in Knowledge Acquisition, pp.
105-122, Amsterdam: 1IOS Press.

Davis, R. (1980). Metarules: Reasoning about control. Artficial Intelligence, 15, 179-222.

Davis, R. (1984). Diagnostic reasoning based on structure and behavior. Artificial
Intelligence, 24, 347-410.

DE GREEF, P. & BREUKER, J. (1985). A case study in structured knowledge acquisition. In
Proceedings of the %th IJCAI, p. 390-392, Los Angeles.

DE GREEF, P. & BREUKER, J. (1989). A methodology for analysing modalities of system/user
cooperation for KBS. In J. Boosg, B. Gaines & J GaNascia, Eds. Proceedngs of the
European Knowledge Acquisition Workshop, EKAW’89, pp. 462-473, Paris, France.

pE GREEr, P. & BReUker, J. (1992). Analysing system-user cooperation. Knowledge
Acquisition, 4, 89—108.

DE GREEF, P., BREUKER, J. & DE JonG, T. (1988a). Modality: An analysis of functions, user
control and communication in knowledge-based systems. ESPRIT Project P1098,
Deliverable D6 (task A4), University of Amsterdam.

DE GREEF, P., BREUKER, J., ScHREIBER, G. & WIELEMAKER, J. (1988b). StatCons:
Knowledge acquisition in a complex domain. In Proceedings ECAI’88, Munich.

DE GREEF, P., SCHREIBER, G. & WIELEMAKER, J. (1987). The StatCons case study. ESPRIT
Project P1098, Deliverable E2.3 (experiment F2), University of Amsterdam.

pE Hoog, R. (1989). Een expertsysteem, bijstand voor bijstand. Informatie &
Informatiebeleid, 7(1), 47-53. (In Dutch.)

DE Hoog, R., SoMMER, K. & VoGLER, M. (1990). Designing knowledge-based systems; a
study of organisational aspects. Technical Report Report W17, ISBN 90 346 2400 5,
Dutch Organisation for Technological Aspects Research NOTA. (In Dutch.)

pE Jong, T., bpE Hoog, R., & ScHreBER, G. (1988). Knowledge acquisition for an
integrated project management system. Information Processing and Management, 24(6),
681-691.

DE KLEER, J. (1986). An assumption-based TMS. Artificial Intelligence, 28, 127-162.

DeMarco, T. (1978). Structured Analysis and System Specification. New York, Yourdon
Press.

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press.

Diaper, D., Ed. (1989). Knowledge Elicitation: principles, techniques and applications. Series
in Expert Systems. Chichester: Ellis Horwood Ltd.

EsHeELMAN, L., EHreT, D., McDErMoOTT, J. & TaN, M. (1988). MOLE: a tenaceious
knowledge acquisition tool. In J. Boose & B. Gainges, Eds. Knowledge Based Systems,
Volume 2: Knowledge Acquisition Tools for Expert Systems, pp. 95-108. London:
Academic Press.

GENESERETH, M. & NiLssoN, N. (1987). Logical Foundations of Artificial Intelligence. Los
Altos, California: Morgan Kaufmann.

GoEL, A., SoUNDARAIAN, N. & CHANDRASEKARAN, B. (1987). Complexity in classificatory
reasoning. In AAAI-87, pp. 421-425.

GruBer, T. (1989). The acquisition of strategic knowledge. In Perspectives in Artificial
Intelligence, Volume 4. San Diego: Academic Press.

Harmon, P. (1991). A brief overview of software methodologies. Intelligent Software
Strategies, VIK(1), 1-19. Newsletter. Circulation office: 37 Broadway, Arlington. MA
02174 USA.

Haves-RoTh, B. (1985). A blackboard architecture for control. Artificial Intelligence, 26(3),
251-321.

Haves-RotH, F., WATERMAN, D. & LeNaT, D. (1983). Building Expert Systems. New York:
Addison-Wesley.

Haywarp, S. (1987). How to build knowledge systems; techniques, tools, and case studies.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 51

In Proceedings of 4th annual ESPRIT conference, pp. 665-680. Amsterdam:
North-Holland.

HaywarD, S., WIELINGA, B. & BREUKER, J. (1987). Structured analysis of knowledge.
International Journal of Man-Machine Studies, 26, 487-498.

Hure, R. & King, R. (1987). Semantic database modelling: Survey, applications, and
research issues. ACM Computing Surveys, 19, 201-260.

JaNswelIER, W, (1988). PDP. PhD thesis, University of Amsterdam.

JAnsweuer, W., ELsHouT, J. & WIELINGA, B. (1986). The expertise of novice problem
solvers. In Proceedings ECAI’86, Brigthon.

Janswener, W., Eussour, J. & WIELINGA, B. (1989). On the multiplicity of learning to
solve problems. In H. ManpbL, E. pE CortE, N. BennerT, & H. FriepricH, Eds.
Learning and Instruction: European research in an international context, pp. 127-145.
Oxford, UK: Pergamon Press.

KarBacH, W., LINSTER, M. & Vos, A. (1989). OFFICE-PLAN: Tackling the synthesis
frontier. In D. Merzing, Ed. GWAI-89: 13th German Workshop on Artificial
Intelligence, Informatik Fachberichte 216, pp. 379-387. Berlin: Springer Verlag.

KaRrRBACH, W., LINSTER, M. & Vos, A. (1990). Model-based approaches: One label-—one
idea? In B. WIELINGA, J. Boosg, B. GAINEs, G. SCHREIBER, & M. vaAN SOMEREN, M.
Eds. Current Trends in Knowledge Acquisition, pp. 173-189. Amsterdam: 10S Press.

KarBacH, W., Tong, X. & Vos, A. (1988). Filling in the knowledge acquisition gap: via
KADS models of expertise to ZDEST-2 expert systems. In Proceedings of EKAW 88,
Bonn.

KarBAcH, W., Vos, A., SCHUKEY, R. & Drouwen, U. (1991). Model-K: Prototyping at the
knowledge level. In Proceedings Expert Systems *91, Avignon, France, pp. 501-512.
KLINKER, G., BHOLA, C., DALLEMAGNE, G., MAROUEs, D. & McDgermorr, J. (1991).

Usable and reusable programming constructs. Knowledge Acquisition, 3, 117-136.

KrickHAHN, R., Nopis, R., MAHLMANN, A. & SCHACHTER, M. (1988). Applying the KADS
methodology to develop a knowledge-based system. In Proceedings ECAI’S88, Munich,
pp. 11-17, London: Pitman.

Lanp, L., TavLOR, R., MuLHALL, T., KiLLIN, J. & BiNGgHAaM, T. (1990). Credit card fraud
identification knowledge-based system. ESPRIT Project P1098, deliverable F12.1, KADS-
F12-d1-001, KBSC of Touche Ross Management Consultants, London.

LemMERs, M. (1991). A shell for systematic diagnosis: structure-preserving design of a KBS.
Master’s thesis, University of Amsterdam, Social Science Informatics.

LinsTER, M. & Musen, M. (1992). Use of KADS to create a conceptual model of the
ONCOCIN task. Knowledge Acquisition. 4, 55-87.

Marcus, S. & McDermortT, J. (1989). SALT: A knowledge acquisition language for
propose-and-revise systems. Artificial Intelligence, 39(1), 1-38.

McDEerMoOTT, J. (1989). Preliminary steps towards a taxonomy of problem-solving methods.
In S. Marcus, Ed. Automating Knowledge Acquisition for Expert Systems, pp. 225-255.
The Netherlands: Kluwer Academic Publishers.

MEYER, M. & BoOKER, J. (1991). Eliciting and Analyzing Expert Judgement: A Practical
Guide, Volume 5 of Knowledge-Based Systems. London: Academic Press.

Morik, K. (1989). Sloppy modelling. In K. Morik, Ed. Knowledge Representation and
Organisation in Machine Learning. Berlin: Springer Verlag.

Musen, M. (1989). Automated Generation of Model-Based Knowledge-Acquisition Tools.
Research Notes in Artificial Intelligence. London: Pitman.

MuseN, M., Facan, L., Comss, D. & SuorTLiFrE, E. (1988). Use of a domain model to
drive an interactive knowledge editing tool. In J. Boose & B. Gaines, Eds.
Knowledge-Based Systems, Volume 2: Knowledge Acquisition Tools for Expert Systems,
pp. 257-273. London. Academic Press.

NearLg, 1. (1988). First generation expert systems: a review of knowledge acquisition
methodologies. The Knowledge Engineering Review, 2, 105-145.

NecHes, R., SwartouT, W. & Moore, J. (1985). Enhanced maintenance and explanation
of expert systems through explicit models of their development. IEEE Transactions
Software Engineering, 11, 337-1351.

52 B. J. WIELINGA ET AL.

NEwWELL, A. (1982). The knowledge level. Artificial Intelligence, 1982, 87-127.

NiLsson, N. (1991). Logic and artificial intelligence. Artificial Intelligence, 47, 31-56.

PatiL, R. (1988). Artificial intelligence techniques for diagnostic reasoning in medicine. In H.
Shobe, & AAAI, Eds., Exploring Artificial Intelligence Survey Talks from the National
Conferences on Artificial Intelligence, pp. 347-379. San Mateo, California: Morgan
Kaufmann.

PorLe, H. (1982). Heuristic methods for imposing structure on ill-structured problems: The
structuring in medical diagnosis. In P. SzovLovrrs, Ed., Artificial Intelligence in Medicine,
pp. 119-190 Boulder CO: Westview Press.

ReApDIE, M. & Innes, N. (1987a). Network management: KBS design document. ESPRIT
Project P1098, Deliverable E3.2a, SciCon Ltd. (UK).

Reappie, M. & INNes, N. (1987b). Network management: Requirements analysis and
feasibility analysis. ESPRIT Project P1098, Deliverable E3.1a, SciCon Ltd. (UK).

ReicHGELT, H. & vaNn HARMELEN, F. (1986). Criteria for choosing representation languages
and control regimes for expert systems. Knowledge Engineering Review, 1, 2-17.

REINDERS, M., VINKHUYZEN, E., Vos, A., AKKERMANS, H., BALDER, J., BARTSCH-SPORL,
B., BREDEWEG, B., DrouVEN, U., vaAN HARMELEN, F., KARBACH, W., KARSSEN, Z.,
ScHrREIBER, G. & WIELINGA, B. (1991). A conceptual modelling framework for
knowledge-level reflection. AI Communications, 4.

RotH, E. M. & Woopbs, D. (1989). Cognitive task analysis: An approach to knowledge
acquisition for intelligent system design. In P. Guipa & G. Tasso, Eds. Topics in Expert
System Design, pp. 233-264, Amsterdam: North-Holland.

ScHACHTER, M. & WERMSER, D. (1988). A sales assistant for chemical measurement
equipment. In Proceedings ECAI’88, Munich, pp. 191-193, London: Pitman.

SCHREIBER, G., AKKERMANS, H. & WIELINGA, B. (1991). On problems with the knowledge
level perspective. In L. SteeLs & B. Smrru, Eds. AISB91: Artificial Intelligence and
Simulation of Behaviour, pp. 208-221, London: Springer Verlag. Also in J. Boose & B.
Gaines, Eds. Proceedings Ban, 90 Knowledge Acquisition Workshop, pp. 30-1-30-14.
University of Calgary: SRDG Publications.

ScHREIBER, G., BREDEWEG, B., Davoobi, M. & WIELINGA, B. (1987). Towards a design
methodology for KBS. ESPRIT Project P1098, Deliverable D8 (task B2), University of
Amsterdam and STL Ltd.

ScHREIBER, G., BREDEWEG, B., DE GrEEF, P., TERPSTRA, P., WIELINGA, B., BRUMET, E.,
SiMONIN, N. & WaLLyN, A. (1989a). A KADS approach to KBS design. ESPRIT
Project 1098, Deliverable B6 UvA-B6-PR-010, University of Amsterdam & Cap Sogeti
Innovation.

SCHREIBER, G., BREUKER, J., BREDEWEG, B. & WIELINGA, B. (1988). Modeling in KBS
development. In Proceedings of the 2nd European Knowledge Acquisition Workshop,
Bonn, GMD-Studien 143, pp. 7.1-7.15, St. Augustin. GMD. Also in: Proceedings of the
&h Expert Systems Workshop, Avignon, 1988.

SCHREIBER, G., WIELINGA, B., HeskeTH, P. & Lewis, A. (1989b). A KADS design
description language. ESPRIT Project 1098, Deliverable B7 UvA-B7-PR-007, University
of Amsterdam & STC Technology Ltd.

SCHRUNEN, L. & WAGENAAR, G. (1988). Autopes: the development of an expert system for
process control. In M. vaN SOMEREN, & A. SCHREIBER, Eds. Proceedings First Dutch
Al Conference NAIC’88, pp. 58-71, University of Amsterdam. Department of Social
Science Informatics. (In Dutch.)

SHapBoOLT, N. & WIELINGA, B. (1990). Knowledge based knowledge acquisition: the next
generation of support tools. In B. WIELINGA, J. Boosg, B. Gaines, G. SCHREIBER &
M. van SoMereN, Eds. Current Trends in Knowledge Acquisition, pp. 313-338,
Amsterdam: I0S Press.

SHoORTLIFFE, E., ScotT, A., BiscHorr, M., CAMBELL, A., vAN MELLE, W. & Jacoss, C.
(1981). ONCOCIN: An expert system for oncology protocol management. In IJCAI-81,
pp- 876-881.

StEELs, L. (1990). Components of expertise. AI Magazine, Summer issue. Also as: Al Memo
88-16, AI Lab, Free University of Brussels.

MODELLING APPROACH TO KNOWLEDGE ENGINEERING 53

TayLOR, R., PorTER, D., HickmaN, F., STRENG, K.-H., TansLEY, S. & Dorsss, G.
(1989). System evolution—principles and methods (the life-cycle model). ESPRIT
Project P1098, Deliverable Task G9, Touche Ross.

Tong, X., HE, Z. & Yu, R. (1988). A survey of the expert system tool ZDEST-2. In

. Proceedings ECAI’88, Munich, pp. 113-118, London: Pitman.

UBERREITER, B. & Vos, A., Eds. (1991). Materials KADS User Meeting, Munich, February
14/15 1991. Siemens AG ZFE IS INF 32, Munich Perlach. (In German).

vaN DER MoLEN, R. & Kruizinga, E. (1990). OKS GAK: a feasibility study. Master’s
thesis, University of Amsterdam, Department of Social Science Informatics. (In Dutch.)

VAN DER SPEK, R., van DER WouDEN, H., & YsBranpy, C. (1990). The paint advisor.
Expert Systems, 7(4), 190-198.

vaN HARMELEN, F. & BALDER, J. (1992). (ML)*: A formal language for KADS models of
expertise. Knowledge Acquisition, 4, 127-161. Also as, Technical Report ESPRIT
Project P5248 KADS-II/T1.2/TR/ECN/006/1.0, Netherlands Energy Research Centre
ECN.

VANWELKENHUYSEN, J. & RADEMAKERs, P. (1990). Mapping knowledge-level analysis on to
a computational framework. In L. AieLLo, Ed. Proceedings ECAI’90, Stockholm, pp.
681-686, London: Pitman.

Vos, A., KarBacH, W., DrRouveN, U. & Lroek, D. (1990). Competence assessment in
configuration tasks. In L. Aiello, Ed. Proceedings of the %h European Conference on
Al, ECAI’90, pp. 676—681, London: Pitman.

WEeTTER, T. (1990). First-order logic foundation of the KADS conceptual model. In B.
WIELINGA, J. Boosg, B. GAINES, G. SCHREIBER & M. vaN SoMmEReN, Eds. Current
Trends in Knowledge Acquisition, pp. 356-375. Amsterdam: IOS Press.

WIELEMAKER, J. & BiLraurt, J. (1988). A KADS analysis for configuration. ESPRIT
Project P1098, Deliverable ES.1, University of Amsterdam.

WIELINGA, B. & BrReDEWEG, B. (1988). Knowledge and expertise in expert systems. In G.
vaN DER VEER & G. MuLpeR, Eds. Human-Computer Interaction: Psychonomics
Aspects, pp. 290-297. Berlin: Springer-Verlag.

WIELINGA, B. & BREUKER, J. (1984). Interpretation of verbal data for knowledge
acquisition. In T. O’Suea, Ed. Advances in Artificial Intelligence, pp. 41-50, Amste-
rdam: ECALI, Elsevier Science publishers.

WIELINGA, B. & BREUKER, J. (1986). Models of expertise. In Proceedings ECAI'81, pp.
306-318.

WINKELS, R. & AcHTHOVEN, W. (1989). Methodology and modularity in ITS design. In
Artificial Intelligence and Education, pp. 314-322, Amsterdam: IOS Press.

WRIGHT, 1., HAvBALL, C., LAND., L. & MuLHALL, T. (1988). Analysis report experiment F6.
ESPRIT Project P1098, Deliverable E6.1, STC Technology Ltd. & Knowledge Based
Systems Centre.

	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54

