Chapter 1

Knowledge Engineering

1.1 Introduction

The discipline of knowledge engineering grew out of the early work on expert systems in
the seventies. With the growing popularity of knowledge-based systems (as these were
by then called), there arose also a need for a systematic approach for building such sys-
tems, similar to methodologies in main-stream software engineering. Over the years, the
discipline of knowledge engineering has evolved into the development of theory, meth-
ods and tools for developing knowledge-intensive applications. In other words, it provides
guidance about when and how to apply particular knowledge-presentation techniques for
solving particular problems.

In this chapter we first discuss (Sec. 1.2) a number of principles, that have become the
baseline of modern knowledge engineering. These include the common distinction made
in knowledge engineering between task knowledge and domain knowledge. In Sec. 1.3
we explore the notion of problem-solving tasks in detail and present typical patterns and
methods user for solving such tasks. In Sec. 1.4 we focus on the domain perspective, in
particular the representation and use of ontologies. Finally, Sec. 1.5 summarizes the main
techniques that are being used in knowledge engineering. examples of their use.

1.2 Baseline

The early expert systems were based on an architecture which separated domain knowl-
edge, in the form a knowledge base of rules, from a general reasoning mechanism. This
distinction still is still valid in knowledge engineering practice. In the early eighties a num-
ber of key papers were published that set the scene for a systematic approach to knowledge
engineering.

In 1982 Newell published a paper on “The Knowledge Level”[28] in which he ar-
gued the need for a description of knowledge at a level higher the the level of symbols in
knowledge-representation systems. The knowledge-level was his proposal for realizing a
description of an Al system in terms of its rational behavior: why does the system (the
“agent”) perform this “action”, independent of its symbolic representation in rules, frames
or logic (the “symbol” level). Descriptions at the knowledge level has since become a
principle underlying knowledge engineering.

Two other key publications came from Clancey. His “Epistemology of a rule-based
system” [8] can be viewed as a first knowledge-level description of a knowledge-based

1



2 1. Knowledge Engineering

system, in which he distinguished various knowledge types. Two tears later his article
“Heuristic classification” appeared [9] which described a standard problem-solving pat-
tern in knowledge-level terms. Such patterns subsequently became an important focus of
knowledge-engineering research; these patterns typically serve as reusable pieces of task
knowledge. We treat these in more depth in Sec. 1.3.

In the nineties the attention of the knowledge-engineering shifted gradually to domain
knowledge, in particular reusable representations in the form of ontologies. A key pa-
per, which also quite wide attention outside the knowledge-engineering community was
Gruber’s paper on portable ontologies [16]. During this decade ontologies are getting
widespread attention as vehicles for sharing concepts within a distributed community such
as the web (e.g., see Chapter 21 on the Semantic Web). Similar to task knowledge, patterns
also play an important role on modeling domain knowledge. In Sec. 1.4 we describe in
some detail the main issues in ontology engineering.

1.3 Tasks and Problem-Solving Methods

In the early expert systems task knowledge was embedded in the reasoning engine and
in rules in the knowledge base. The key point of Clancey’s “epistemology” paper was to
explicate the underlying problem-solving method . Since then, the knowledge-engineering
community has developed a range of such problem-solving methods. We can define a

problem-solving method as follows:

Definition 1. A problem-solving method *PSM) is a knowledge-level specification of a
reasoning pattern that can used to carry out a knowledge-intensive task.

To categorize problem-solving-methods we need a typology of knowledge-intensive
tasks. Various (partial) task typologies have been reported in the literature. Stefik [41]
distinguishes between “diagnosis”, “classification”and “configuration”. Chandrasekaran
[7] has described a typology of “design tasks (including configuration). McDermott [24]
describes a taxonomy of problem types. Table 1.1 shows the typology of task types distin-
guished by Schreiber et al. [37].

In this section we describe two problem-solving methods in more detail: one method
for configuration design and one method for assessment. In general, there does not need
to be a one-to-one correspondence between methods and tasks, although in practice there

often is.

1.3.1 Two sample problem-solving methods

Propose-and-revise The propose-and-revise (P&R) method was described by Marcus
and McDermott [23]. The method was used to solve a configuration-design task, namely
elevator design (the so-called VT case study [22]). The data for this case study was subse-
quently used in a comparative study in which different knowledge-engineering approaches
were used to solve this problem. The results of the study were published in special issue
of Human-Computer Studies [38]. This issue provides a wealth of information for readers
interested in details of modern knowledge engineering. We will come back to this study in
the next section, as reuse of the pre-existing ontology was a prime focus of this study.

Fig. 1.1 shows the top-level reasoning strategy of the P&R method. The method de-
composes the configuration-design task into three subtasks:



1. Knowledge Engineering

Table 1.1: Task types in CommonKADS (adapted from [37])

[ Task type [ Input [ Output [ Knowledge | Features
ANALYTIC TASK TYPES
Classification Object Object class Feature-class as- | Set of classes is predefined.
features sociations
Diagnosis Symptoms / | Fault category Model of system | Form output varies (causal chain,
complaints behavior state, label) and depends on use
made of it (troubleshooting).
Assessment Case de- | Decision class Criteria, norms Assessment is performed at one
scription particular point in time (cf. moni-
toring).
Monitoring System data Discrepancy Normal system | System changes over time.
class behavior Task is carried out repeatedly.
Prediction System data System state Model of system | Output state is a system description
behavior at some future point in time.
SYNTHETIC TASK TYPES
Design Requirements | Artifact descrip- | Functions, May include creative design of
tion components, components.
skeletal ~ design,
constraints,
preferences
Configuration design | Requirements | Artifact descrip- | Functions, Subtype of design in which all com-
tion components, ponents are predefined.
constraints,
preferences
Assignment Two ob- | Mapping set | — | Constraints, pref- | Mapping need not be one-to-one.
ject sets, set 2 erences
requirements
Planning Goals, Action plan Actions, con- | Actions are (partially) ordered in
requirements straints,  prefer- | time.
ences
Scheduling Job ac- | Schedule = map- | Constraints, pref- | Time-oriented character distin-
tivities, ping activities — | erences guishes it from assignment.
resources, time slots of re-
time  slots, sources
requirements

1. Propose an extension to the existing design, e.g. add a component.

2. Verify the current design to see whether any of the constraints are violated. For ex-
ample, adding a particular hoist cable might violate constraints involving the strength
of the cable in comparison to other elevator components.

3. If a constraint is violated, use domain-specific revision strategies to remedy the prob-
lem, for example upgrading the model of the hoist cable.

Unlike some other methods, which undo previous design decisions, P&R fixes them.
P&R does not require an explicit description of components and their connections. Ba-
sically, the method operates on one large bag of parameters. Invocation of the propose
task produces one new parameter assignment, the smallest possible extension of an ex-
isting design. Domain-specific, search-control knowledge guides the order of parameter
selection, based on the components they belong to. The verification task in P&R applies
a simple form of constraint evaluation. The method performs domain-specific calculations




4 1. Knowledge Engineering

® o

;7 propose
1 'J.
s.extension .~
Salution

found [fix found]

®é[no more

extensions]

Faiflura

[ fix]

[new extension] LEEL

verify current
design

revise design
through fixes

[problem]

Figure 1.1: Top-level reasoning strategy of the P&R method in the form of a UML activity
diagram

provided by the constraints. In P&R, a verification constraint has a restricted meaning,
namely a formula that delivers a Boolean value. Whenever a constraint violation occurs,
P&R’s revision task uses a specific strategy for modifying the current design. To this end,
the task requires knowledge about fixes, a second form of domain-specific, search-control
knowledge. Fixes represent heuristic strategies for repairing the design and incorporate
design preferences. The revision task tries to make the current design consistent with the
violated constraint. It applies combinations of fix operations that change parameter val-
ues, and then propagates these changes through the network formed by the computational
dependencies between parameters.

Applying a fix might introduce new violations. P&R tries to reduce the complexity of
configuration design by disallowing recursive fixes. Instead, if applying a fix introduces
a new constraint violation, P&R discards the fix and tries a new combination. Motta and
colleagues [27] have pointed out that, in terms of the flow of control, P&R offers two
possibilities. One can perform verification and revision directly after every new design
or after all parameter values have been proposed. The original P&R system used the first
strategy, but Motta argues that the second strategy is more efficient and also comes up
with a different set of solutions. Although this method has worked in practice, it has
inherent limitations. Using fix knowledge implies that heuristic strategies guide the design
revisions. Fix knowledge implicitly incorporates preferences for certain designs. This
makes it difficult to assess the quality of the method’s final solution.

Assessment Assessment is a task not often described in the Al literature, but of great
practical importance. Many assessment application have been developed over the years,
typically for tasks in financial domains, such as assessing a loan for mortgage application,
or in in the civil-service area, such as assessing whether a permit can be given. The task is
often confused with diagnosis, but where diagnosis is always considered with some faulty
state of the system, assessment is aimed at producing a decision: e.g. yes/no to accept a
mortgage application. During the Internet hype at the start of this decade every bank was



1. Knowledge Engineering 5

[rmore abstractions)

abstract
; case data

specify
iy nroms

S >Gect N (no] [yes] @
noU decision

[na rore narms|
®)

failure

L----75 case data

............... \ [nesw nram]

evaluate
narrn

Figure 1.2: Top-level reasoning strategy of the basic assessment method in the form of a
UML activity diagram

developing such applications to be able to offer automated services on the Web.

A basic method for assessment is shown in Fig. 1.2. Assessment starts off with case
data (e.g., customer data about a mortgage application). As a first step the raw case data
is abstracted into more general data categories (e.g., income into income class). Subse-
quently, domain-specific norms/criteria are retrieved (e.g. “minimal income’) and evalu-
ated against the case data. The method then checks whether a decision can be taken or
whether more norms need to be evaluated. This basic method is typically enhanced with
domain-s-specific knowledge, e.g. select inexpensive (e.g., in terms of data acquisition)
first. The resulting decision category are also domain-specific; for example, for a mort-
gage application this could be “accepted”, “declined”, or “flag for manual assessment™.

A detailed example of the use of this method can be found in the CommonKADS book
[37, Ch. 10]. Valente and Lockenhoff [43] have published a library of different assessment
methods.

1.3.2 The notion of “knowledge role”

Above we showed two examples of methods for different tasks. These methods can not be
applied directly to a domain; typically, the knowledge engineer has to link the components
of the method to elements of the application domain. Problem-solving methods can best be
viewed as patterns: they provide template structures for solving a problem of a particular

'Many of these assessment systems are aimed at reducing administrative workload and are not designed to
solve the standard cases and leave atypical ones for manual assessment.



6 1. Knowledge Engineering

type. Designing systems with the help of patterns is in fact a major trend in software
engineering at large, see for example the work of Gamma and colleagues [13] on design
patternsz.
The knowledge-engineering literature provides a number of proposals for specification
frameworks and/or languages of problem-solving methods. These include the “Generic
Taskapproach [6], “Role-Limiting Methods” [24], “Components of Expertise” [40], Protégé
[32], KADS [48, 49] and CommonKADS [39]. Although there differences at a detailed
level between these approaches, the one important commonality: all rely on the notion of

“knowledge role”:

Definition 2. A knowledge role specifies in what way particular domain knowledge is
being used in the problems solving process.

LLINNY3

Typical knowledge role in the assessment method are “case data”, “norm” and “de-
cision”. These are method-specific names for the role that pieces of domain knowledge
play during reasoning. From a computational perspective, they limit the role that these
domain-knowledge elements can play, and therefore make problem solving more feasi-
ble, when compared to old “old”’expert-systems idea of one large knowledge-vase with a
uniform reasoning strategy. In fact, the assumption behind PSM research is that the epis-
temological adequacy of the method gives one a handle on the computational tractability
of the system implementation based on it. This issue is of course a long-standing debate in
knowledge representation at large (see e.g., [4]).

Another issue that frequently comes up in discussions about problem-solving meth-
ods is their correspondence with human reasoning. Early work on KADS used problem-
solving methods as a coding scheme for expertise data [47]. Over the years the growing
consensus has become that, while human reasoning can form an important inspirational
source for problem-solving method and while it is use to use role cognitively-plausible
terms for knowledge role, the problem-solving strategy may well be different. Machines
have different qualities than humans. For example, a method that requires a large memory
space cannot be carried out by a human expert, but presents no problem to a computer pro-
gram. In particular methods for synthetic tasks, where the solution space is usually large,
problem-solving methods often have no counterpart in human problem solving.

1.3.3 Specification languages

In order to put the notions of “problem-solving method” and “knowledge role” on a more
formal footing, the mid *90s saw the development of a number of formal languages that
were spefically designed to capture these notions.

The goal of such languages was often twofold. First of all, to provide a formal and un-
ambigous framework for specifying knowledge models. This can be seen as analogous to
the role of formal specification languages in Software Engineering, which aim to use logic
to describe properties and structure of software in order to enable the formal verification of
properties. Secondly, and again analogous to Software Engineering, some of these formal
languages could be made executable (or contained executable fragments), which could be
used to simulate the behaviour of the knowledge models on specific input data. Most of

2Problem-solving methods would be called “strategy patterns” in the terminology of Gamma et al.



1. Knowledge Engineering 7

the language that were developed followed the maxim of structure preserving specifica-
tion [44]: if the structure of the formal specification closely follows the structure of the
informal knowledge model, any problems found during verification activities performed
on the formal model can be easily translated in terms of possible repairs on the original
knowledge model.

In particular the Common KADS framework was the subject of a number of formalisa-
tion attempts, see [12] for an extensive survey. Such languages would follow the structure
of Common KADS model into (1) a domain layer, where an ontology is specified describ-
ing the categories of the domain knowledge and the relationships between these categories
(i.e. the boxes in Fig. 1.5; (2) knowledge roles link the components of the method to el-
ements of the application domain; (3) inference steps that are the atomic elements of a
problem solving method (i.e. the ovals in Fig. 1.2), and (4) a task definition which em-
poses a control structure over the inference steps to complete the definition of the problem
solving method.

A simplified example is shown in Fig. 1.3, using a simplification of the syntax of (ML)?
[45]:

o the domain layer specificies a number of declarative facts in the domain. These facts
are already organised in three different modules.

o the knowledge roles empose a problem-solving interpretation on these neutral do-
main facts: any statement from the patient-data module is interpreted as data, any
implication from the symptom-definition module is interpreted as an abstraction rule,
and any implication from the sympotomatology module is interpreted as a causal
rule.

o the inference steps then specify how these knowledge roles can be used in a problem
solving method: an abstraction step consists of a deductive (modus ponens) step over
an abstraction rule, whereas a hypothesise step consists of an abductive step over a
causation rule.

o finally, the fask model specifies how these atomic inference steps must be strung
together procedurally to form a problem solving method: in this a sequence of a
deductive abstraction step followed by an abductive hypothesise step.

The impact of the languages such (ML)? [45], KARL [11] and many others (see
[12]) was in one sense very limited: although the knowledge modelling methods are in
widespread use, the corresponding formal languages have not received widespread adop-
tation. Rather than direct adoption, their influence is perhaps mostly seen through the fact
that they forced a much more precise formulation of the principles behind the knowledge
modelling methods.

There is renewed activity in the area of formal languages for problem solving methods
at the time of writing. This is causes by an interest from web services. Web-services are
composed into work-flows, and these workflows often exhibit typical patterns (e.g. browse-
order-pay-ship, or search-retrieve-process-report). Problem solving methods are essen-
tially reusable workflows of reasoning-patterns, and the established lessons from problem
solving methods may well be applicable to this new area.



8 1. Knowledge Engineering

DOMAIN
patient-data: temp(patientl) = 38
symptom-definitions: temp(P) > 37 — fever(P)
sympotomatology: hepatitis(P) — fever(P)
KNOWLEDGE ROLES
from patient-data: A —  data(A)
from symptom-definition: A— B +~ abstraction(A, B)
from sympotomatology: A— B ~— causation(A, B)
INFERENCE
abstract(Ay, As): data(Ay) A abstraction(Ay, A2) — observation(As)

hypothesise(By, Ba):  observation(Bs) A causation(By, Be)hypothesis(Bi)

TASK
begin abstract(A,B) ; hypothesise(B,C) end

Figure 1.3: A simple problem-solving method specification in the style of (ML)?

1.4 Ontologies

During the nineties ontologies become popular in computer science. Gruber [16] defines
an ontology as an “explicit specification of a conceptualization. Several authors have made
small adaptations to this. A common definition nowadays is:

Definition 3. An ontology is an explicit specification of a shared conceptualization that
holds in a particular context.

The addition of the adjective “shared”is important, as the primary goal of ontologies
in computer science was to enable knowledge sharing. Up till the end of the nineties
“ontology”was a niche term, used by a few researchers in the knowledge engineering and
representation field®. The term is now in widespread use, mainly due to enormous need for
shared concepts in the distributed world of the web. People and programs need to share at
least some minimal common vocabulary. Ontologies have become in particular popular in
the context of the Semantic Web effort, see Chapter 21.

In practice, we are confronted with many different conceptualizations, i.e. ways of
viewing the world. Even is in a single domain there can be multiple viewpoints. Take for
example the concept of a heat exchanger as shown in Fig. 1.4. The conceptualization of
a heat exchanger is can be very different, depending on whether we take the viewpoint of
the physical structure, the internals of the process, or the operational management.

“Context” is therefore an important notion when reusing an ontology. We cannot expect
other people or programs to understand our conceptualization, if we do not explicate what
the context of the ontology is. Lenat [21] has made an attempt to define a theory of context
spaces. In practice, we see most often that context is being defined though typing the
ontology. We discuss ontology types in Sec. 1.4.2. and/or reusing an ontology.

The plural form used in the title of this section is revealing. The notion of ontology has
been a subject of debate in philosophy for many ages. The study of ontology, or the theory

3 At a preparation meeting for a DARPA program in this area in 1995, the rumors were that DARPA manage-
ment talked about the O-word.



1. Knowledge Engineering 9

production processs simulation of diagnosis
design process behavior of process faults
prysical structure mathematical model temperature diffrences
connections heat exchange process symptoms
~ i 4
-~ 1 -
EY L
~ 1 -
~. ; L
- . 1 i .
-, ¥ "
heat
exchanger

Figure 1.4: Three different viewpoints on a heat exchanger

of “that what is” (from the Greek “ontos” = being), has been a discipline in its own right
since the days of Aristotle, who can be seen as founder and inspirator. The plural form
signifies the pragmatic use made of the notion in modern computer science. We talk now
about “ontologies” as the state of the art does not provide us with a single theory of what
exists.

1.4.1 Ontology specification languages

Many of the formalisms can be said to be useful for specifying an ontology. An insightful
article into the ontological aspects of KR languages is the paper by Davis and colleagues
[10]. They define five roles for a knowledge representation, which we can briefly summa-
rize as follows:

1. A surrogate for the things in the real world
. A set of ontological commitments
. A theory of representational constructs plus inferences it sanctions/recommends

2
3
4. A medium for efficient computation
5

. A medium for human expression

One can characterize ontology-specification languages as KR languages that focus
mainly on roles 1, 2 and 5. In other words, ontologies are not specified with a particu-
lar reasoning paradigm in mind.

There have been several efforts to define tailor-made ontology-specification languages.
In the context of the DARPA Knowledge Sharing Effort Gruber defined Ontolingua [16].
Ontolingua was developed as an ontology layer on top of KIF [15], which allowed frame
style definition of ontologies (classes, slots, subclasses, ...). Additional software was
provided to be able the use of Ontolingua as a mediator between different knowledge-
representation languages, such as KIF and LOOM. Ontolingua provided a library service
where users share their ontologies*.

“http://ontolingua.stanford.ed



10 1. Knowledge Engineering

Other languages, in particular conceptual graphs (see Chapter 5) have been popular for
specifying ontologies. Recently, OWL has gained wide popularity. OWL is the W3C Web
Ontology Language [46]. Its syntax is XML based. Things defined in OWL get a URI,
which simplifies reuse. OWL sails between Scylla of expressiveness and the Charybdis
of computability by defining a subset of OWL (OWL DL) that is equivalent to a well-
understood fragment of description logic (see Chapter 3). User who limit themselves to
this fragment of OWL get some guarantees w.r.t computability. The OWL user is free
to step outside the bounds of OWL DL, if s/he requires additional expressive power. An
overview of OWL is given in Chapter 21.

One might ask, whether the use of description logic as a basis for an ontology language
does to contradict the statement of the start of this section, namely that ontologies are
not specified with a reasoning mechanism in mind. It is undoubtedly true that the DL
reasoning paradigm biases the way one models the world with OWL. However, subclass
modeling appears to be an intrinsic feature of modeling domain knowledge. The use of
a DL-style modeling in knowledge of domains has been popular since the early days of
KL-ONE [5]. Also, DL reasoning is often mainly used to validate the ontology; typically,
additional reasoning knowledge is needed in applications. The fact that Web community is
defining a separate rule language to complement OWL is also evidence for this. Still, one
could take the view that a more general first-order language would be better for ontology
specification, as it introduces less bias and provides the possibility of specifying reasoning
within the same language. If one takes this position, a language like KIF [15] is a prime
candidate as ontology language.

1.4.2 Types of ontologies

Ontologies exist in many forms. Roughly, ontologies can be divided into three types: (1)
foundational ontologies, (ii) domain-specific ontologies, and (iii) task-specific ontologies.

Foundational ontologies Foundational ontologies stay closest to the original philosoph-
ical idea of “ontology”. These ontologies aim to provide conceptualizations of general
notions, such as time, space, events and processes. Some groups have published integrated
collections of foundational ontologies. Two noteworthy examples are the SUMO (Sug-
gested Upper Merged Ontology)® and DOLCE (Descriptive Ontology for Linguistic and
Cognitive Engineering)®. An ontology of time has been published by Hobbs and Pan [20],
which includes Allen’s set of time relations [1]. Chapter 12 of this book also addresses
time representation.

Ontologies for part-whole relations have been an important area of study. Unlike the
subsumption relation, part-whole relations are usually not part of the basic expressivity of
the representation language. In domains dealing with large structures, such as biomedicine,
part-whole relations are often of prime importance. A simple baseline representation of
part-whole relations is given by Rector and Welty [35]. Winston ef al. published a tax-
onomy of part-whole relations, distinguishing for example assembly-component relations
from portion-mass relations. Such typologies are of practical importance as transitivity of
the part-whole relation does not hold when different part-whole relations are mixed (“I’'m

Shttp://ontology.teknowledge.com/
Ohttp://www.loa-cnr.it/dolce.html



1. Knowledge Engineering 11

part of a club, my hand is part of me, but this doesn’t imply my hand is part of the club”).
Several revised versions of this taxonomy have been published [30, 2].

Lexical resources such as WordNet’ [26], can also be seen as foundational ontologies,
although with a weaker semantic structure. WordNet defines a semantic network with
17 different relation types between concepts used in natural language. Researchers in
this area are proposing richer semantic structuring for WordNet (e.g. [31]). The original
Princeton WordNet targets the English-American language; WordNets now exist or are
being developed for almost all major languages.

Domain-specific ontologies Although foundational ontologies are receiving a lot of at-
tention, the majority of ontologies are domain-specific: they are intended for sharing con-
cepts and relations in a particular area of interest. One domain in which a wide range
of ontologies has been published is biomedicine. A typical example is the Foundational
Model of Anatomy (FMA) [36] which describes some 75,00 anatomical entities. Other
well-known biomedical ontologies are the Unified Medical Language System® (UMLS),
the Simple Bio Upper Ontology®, and the Gene Ontology'°.

Domain ontologies vary considerably in terms of the level of formalization. Commu-
nities of practice in many domains have published shared sets of concepts in the form of
vocabularies and thesauri. Such concept schemes typically have a relatively weak seman-
tic structure, indicating many hierarchical (broader/narrower) relations, which most of the
time loosely correspond to subsumption relations. This has triggered a distinction in the
ontology literature between weak versus strong ontologies. The SKOS model!!, which is
part of the W3C Semantic Web effort, is targeted at allowing thesaurus owners to pub-
lish their concept schemes in an interoperable way, such that sharing of these concepts on
the Web becomes easier. In practice, thesauri are important sources for information sharing
(the main goal of ontologies in computer science). For example, in the cultural-heritage do-
main thesauri such as the Getty vocabularies'? (Art & Architecture Thesaurus, Union List
of Artist Names, Thesaurus of Geographic Names) and IconClass (concepts for describing
image content) are important resources. Current efforts focus therefore on making such
vocabularies available in ontology-representation formats and enriching (“ontologizing”)
them.

Task-specific ontologies A third class of ontologies specifies the conceptualizations needed
for carrying out a particular task. For each of the task types listed in Table 1.1 one can
specify domain conceptualizations needed for accomplishing this task. An example of a
task-specific ontology for the configuration-design task can be found in Fig. 1.5. Data of
configuration-design of an elevator system were used in the first ontology-reuse experiment
in the nineties [38].

In general, conceptualizations of domain information needed for reasoning algorithms
typically takes the form of a task-specific ontology. For example, search algorithms typ-

"http://wordnet.princeton.edu/
Shttp://www.nlm.nih.gov/pubs/factsheets/umls.html
http://www.cs.man.ac.uk/ rector/ontologies/simple-top-bio/
10nttp://www.geneontology.org/
Uhttp://www.w3.0rg/2004/02/skos/
2http://www.getty.edu/research/conducting research/vocabularies/



12 1. Knowledge Engineering

has constraint 0+ constraint constraint expression
formula
name: string
component
I 2 has
Wi attribute
fixed-value: universal
! parameter
component slot
documentation walue: universal
hasaibielaes B 0+ value-type: universal
0+
0+
component
- o
maodel 4 &>

0+

Figure 1.5: Configuration-design ontology in the VT experiment [18] (in the form of a
UML class diagram)

ically operate on an ontology of states and state transitions. Tate’s plan ontology [42] is
another example of a task-specific ontology.

1.4.3 Ontology engineering

Ontology engineering is the discipline concerned with building and maintaining ontolo-
gies. It provides guidelines for building domain conceptualizations, such as the construc-
tion of subsumption hierarchies.

An important notion in ontology engineering is ontological commitment. Each state-
ment in an ontology commits the user of this ontology to a particular view of the domain.
If a definition in an ontology is stronger than needed, than we say that the ontology is over-
committed. For example, if we state that the name of a person must have a first name and
a last name we are introducing a western bias into the ontology and may not be able to use
the ontology in all intended cases. Ontology engineers usually try to define an ontology
with a minimal set of ontological commitments. One can translate this into an (oversim-
plified) slogan: ‘“smaller ontologies are better!”. Gruber [17] gives some principles for
minimal commitments.

Construction of subsumption hierarchies is seen as a central activity in ontology engi-
neering. The OntoClean method of Guarino and Welty [19] defines a number of principles
for this activity, based on three meta-properties of classes, namely rigidity, unity and iden-
tity. Central in the OntoClean method is the identification of so-called “backbone”classes
of the ontology. Rector [33] defines also a method for backbone identification.

In addition, design patterns have been specified for often-occuring ontology-engineering
issues. We mention here the work of Noy on patterns for defining N-ary relations [29] (to



1. Knowledge Engineering 13

be used with an ontology language that supports only binary relations, such as OWL) and
the work of Rector on patterns for defining value sets [34]. Gangemi has published a set of
design patterns for a wide range of modeling situations [14].

1.4.4 Ontologies and data models

The difference between ontologies and data models does not lie in the language being used:
you can define an ontology in a basic ER language (although you will be hampered in what
you can say); similarly, you can write a data model with OWL. Writing something in OWL
does not make it an ontology! The key difference is not the language the intended use. A
data model is a model of the information in some restricted well-delimited application
domain, whereas an ontology is intended to provide a set of shared concepts for multiple
users and applications. To put it simply: data models live in a relatively small closed world;
ontologies are meant for an open, distributed world (hence their importance for the Web).
So, defining a name as consisting of a first name and a last name might be perfectly OK in
a data model, but may be viewed as incorrect in an ontology. It must be added that there
is a tendency to extend the scope of data models, e.g. in large companies, and thus there is
an increasing tendency to “ontologize” data models.

1.5 Knowledge Elicitation Techniques

Although this entire Handbook is devoted to the formal and symbolic representation of
knowledge, very few if any of its chapters are concerned with how such representations are
actually obtained. Many techniques have been developed to help elicit knowledge from
an expert. These are referred to as knowledge elicitation or knowledge acquisition (KA)
techniques. The term “KA techniques” is commonly used.

The following list gives a brief introduction to the types of techniques used for acquir-
ing, analysing and modelling knowledge:

e Protocol-generation techniques include various types of interviews (unstructured,
semi-structured and structured), reporting techniques (such as self-report and shad-
owing) and observational techniques

e Protocol analysis techniques are used with transcripts of interviews or other text-
based information to identify various types of knowledge, such as goals, decisions,
relationships and attributes. This acts as a bridge between the use of protocol-based
techniques and knowledge modelling techniques.

e Hierarchy-generation techniques, such as laddering, are used to build taxonomies or
other hierarchical structures such as goal trees and decision networks.

e Matrix-based techniques involve the construction of grids indicating such things as
problems encountered against possible solutions. Important types include the use of
frames for representing the properties of concepts and the repertory grid technique
used to elicit, rate, analyse and categorise the properties of concepts.

12Material in this section has been taken from the CommonKads book [37], the CommonKADS website at
http://www.commonkads.uva.nl and the website of Epistemics, http://www.epistemics.co.
uk



14

1. Knowledge Engineering

Table 1.2: Summary of elication techniques

Technique | Used for | Tool support |

Unstructured in-

Familiarization with organization

Markup tools; text analysis

tion;
bases

completing the knowledge

terview and application domain
Structured inter- | Knowledge-identification  activi- | Markup tools; rule editor (when
view ties; initial knowledge specifica- | used for completing the knowledge

base)

Protocol analysis

Checking a task template
Generating an inference/task speci-

Marking up a transcript with infer-
ence and/or task markers

fication (in case of unfamiliar appli-
cation domains, for which no mod-
els exist yet)

Laddering Preparatory work for domain-
schema specification with respect
to useful hierarchies and concept

attributes

Graphical support for constructing
multiple hierarchies

Concept sorting Domain-schema specification in

unfamiliar domains

Graphical support tool for creating
piles and new features

Repertory grid Domain-schema specification in

unfamiliar domains

Graphical grid presentation/editing
plus cluster analysis software

Sorting techniques are used for capturing the way people compare and order con-
cepts, and can lead to the revelation of knowledge about classes, properties and
priorities.

Limited-information and constrained-processing tasks are techniques that either limit
the time and/or information available to the expert when performing tasks. For in-
stance, the twenty-questions technique provides an efficient way of accessing the
key information in a domain in a prioritised order.

Diagram-based techniques include the generation and use of concept maps, state
transition networks, event diagrams and process maps. The use of these is partic-
ularly important in capturing the “what, how, when, who and why” of tasks and
events.

Specialised tool support has been developed for each of these techniques. Table 1.2

briefly describes some of these techniques, and correlates them with the appropriate tool

support.

This wide variety of techniques is required to access the many different types of knowl-
edge possessed by experts. This is referred to as the Differential Access Hypothesis, and

has been shown experimentally to have supporting evidence.

Fig. 1.6 below presents the various techniques described above and shows the types of
knowledge they are mainly aimed at eliciting. The vertical axis on the figure represents the
dimension from object knowledge to process knowledge, and the horizontal axis represents
the dimension from explicit knowledge to tacit knowledge. The details of these techniques
are described in a number of survey articles and textbooks, such as [3], [37, Ch. 8], and

[25].



1. Knowledge Engineering 15

A
Process
Knowledge Proce_ss Ohservations
mapping
State Commentating
diagram
mapping Constrainted
& tasks Reportory
teach & Grid
back 20
Laddering questions
Three Card
Trick
Concept
Concept mapping Card Sorting
Knowledge
A 4
< — _ >
Explicit Tacit
Knowledge Knowledge
Figure 1.6: Applicability of Knowledge Acquistion techniques
Bibliography
[1] J. Allen. Maintaining knowledge about temporal intervals. Communications of the

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

ACM, 26:832-843, 1983.

A. Artale, E. Franconi, and L. Pazzi. Part-whole relations in object-centered systems:
An overview. Data and Knowledge Engineering, 20(347-383), 1996.

J. H. Boose. A survey of knowledge acquisition techniques and tools. Knowledge
Acquisition, 1(1):3-37, 1989.

R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-based
description languages. In AAAI 84, 1984.

R.J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science, 9:171-216, 1985.

B. Chandrasekaran. Generic tasks in knowledge based reasoning: High level building
blocks for expert system design. IEEE Expert, 1(3):23-30, 1986.

B. Chandrasekaran. Design problem solving: A task analysis. Al Magazine, 11:59—
71, 1990.

W.J. Clancey. The epistemology of a rule based system -a framework for explanation.
Artificial Intelligence, 20:215-251, 1983.

W.J. Clancey. Heuristic classification. Artificial Intelligence, 27:289-350, 1985.

[10] R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? Al



16 1. Knowledge Engineering

Magazine, Spring:17-33, 1993.

[11] D.Fensel. The Knowledge Acquisition and Representation Language KARL. Kluwer,
1995. ISBN-13: 978-0792396017.

[12] D. Fensel and F. van Harmelen. A comparison of languages which operationalise and
formalise KADS models of expertise. The Knowledge Engineering Review, 9:105—
146, 1994.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[14] A.Gangemi. Ontology design patterns for semantic web content. In International Se-
mantic Web Conference ISWC’05, Galway, Ireland, LNCS, pages 262-276. Springer-
Verlag, 2005.

[15] M. L. Ginsberg. Knowledge interchange format: the KIF of death. Al magazine,
12(33):57-63, 1991.

[16] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5:199-220, 1993.

[17] T. R. Gruber. Towards principles for the design of ontologies used for knowledge
sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual Analysis
and Knowledge Representation. Kluwer, Boston, 1994.

[18] T. R. Gruber, G. R. Olsen, and J. Runkel. The configuration-design ontologies and
the VT elevator domain theory. Int. J. Human-Computer Studies, 44(3/4):569-598,
1996.

[19] N. Guarino and C. Welty. Evaluating ontological decisions with OntoClean. Comm.
ACM, 45(2):61-65, 2002.

[20] J.R. Hobbs and F. Pan. Time ontology in OWL. Technical report, Ontology Engineer-
ing Patterns Task Force of the Semantic Web Best Practices and Deployment Work-
ing Group, World Wide Web Consortium (W3C), 2006. http://www.w3.org/TR/owl-
time/.

[21] D. Lenat. The dimensions of context space. Technical report, CYCORP, 28 October
1998. URLI: http://www.cyc.com/doc/context-space.pdf.

[22] S. Marcus, editor. Automatic knowledge acquisition for expert systems. Kluwer,
Boston, 1988.

[23] S. Marcus and J. McDermott. SALT: A knowledge acquisition language for propose-
and-revise systems. Artificial Intelligence, 39(1):1-38, 1989.

[24] J. McDermott. Preliminary steps towards a taxonomy of problem-solving methods.
In S. Marcus, editor, Automating Knowledge Acquisition for Expert Systems, pages
225-255. Kluwer, Boston, 1988.

[25] M.A. Meyer and J.M. Booker. Eliciting and Analyzing Expert Judgement: A Practical
Guide. Academic Press, 1991.

[26] G. Miller. WordNet: A lexical database for english. Comm. ACM, 38(11), November
1995.

[27] E. Motta, A. Stutt, Z. Zdrahal, K. O’Hara, and N. R. Shadbolt. Solving VT in VI-
TAL: a study in model construction and reuse. Int. J. Human-Computer Studies,
44(3/4):333-372, 1996.

[28] A. Newell. The knowledge level. Artificial Intelligence, 18:87-127, 1982.

[29] N. Noy and A. Rector. Defining N-ary relations on the semantic web. Technical re-
port, W3C Working Group Note, 2006. http://www.w3.org/TR/swbp-n-aryRelations.

[30] J. Odell. Six different kinds of composition. Journal of Object Oriented Program-



1. Knowledge Engineering 17

ming, 5(8):10-15, 1994.

[31] A. Oltramari, A. Gangemi, N. Guarino, and C. Masolo. Restructuring wordnet’s
top-level: The ontoclean approach. In Proc. LREC 2002, 2002.

[32] A.R.Puerta,J. Egar, S. Tu, and M. Musen. A multiple-method shell for the automatic
generation of knowledge acquisition tools. Knowledge Acquisition, 4:171-196, 1992.

[33] A. Rector. Modularisation of domain ontologies implemented in description logics
and related formalisms including OWL. In Proc. K-CAP’03, pages 121-128. AAAI,
2003.

[34] A.Rector. Representing specified values in OWL: “value partitions” and “value sets”.
Technical report, W3C Working Group Note, 2005. http://www.w3.org/TR/swbp-
specified-values.

[35] A. Rector and C. Welty. Simple part-whole relations in owl ontologies. Tech-
nical report, World-Wide Web Consortium (W3C), Working Group Note, 2005.
http://www.w3.0rg/2001/sw/BestPractices/OEP/SimplePartWhole/.

[36] C. Rosse and J. V. L. Mejino. A reference ontology for biomedical informatics: the
foundational model of anatomy. J. Biomedical Informatics, 36:478-500, 2003.

[37] A. Th. Schreiber, J. M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R. Shadbolt,
W. Van de Velde, and B. J. Wielinga. Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press, Cambridge, MA, 1999.

[38] A. Th. Schreiber and W. P. Birmingham. The Sisyphus-VT initiative. Int. J. Human-
Computer Studies, 43(3/4):275-280, 1996. Editorial special issue.

[39] A. Th. Schreiber, B. J. Wielinga, R. de Hoog, J. M. Akkermans, and W. Van de
Velde. CommonKADS: A comprehensive methodology for KBS development. /IEEE
Expert, 9(6):28-37, December 1994.

[40] L. Steels. Components of expertise. AI Magazine, Summer 1990.

[41] M. Stefik. Introduction to Knowledge Systems. Los Altos, CA. Morgan Kaufmann,
1993.

[42] A. Tate. Towards a plan ontology. Journal of the Italian Al Association (AIIA),
January 1996.

[43] A. Valente and C. Lockenhoff. Organization as guidance: A library of assessment
models. In Proceedings of the Seventh European Knowledge Acquisition Workshop
(EKAW’93), pages 243-262, 1993.

[44] F. van Harmelen and M. Aben. Structure preserving specification languages for
knowledge-based systems. [International Journal of Human Computer Studies,
44:187-212, 1996.

[45] F. van Harmelen and J. R. Balder. (ML)?: a formal language for KADS models of
expertise. Knowledge Acquisition, 4(1), 1992. Special issue: ‘“The KADS approach to
knowledge engineering’, reprinted in KADS: A Principled Approach to Knowledge-
Based System Development, 1993, Schreiber, A. Th. et al. (eds.).

[46] Web Ontology Working Group. OWL Web Ontology Language Overview. W3C
Candidate Recommendation, World Wide Web Consortium, 18 August 2003. Latest
version: http://www.w3.org/TR/owl-features/.

[47] B.J. Wielinga and J. A. Breuker. Interpretation of verbal data for knowledge acquisi-
tion. In T. O’Shea, editor, Advances in Artificial Intelligence, pages 41-50, Amster-
dam, The Netherlands, 1984. ECAL, Elsevier Science. Also as: Report 1.4, ESPRIT
Project 12, University of Amsterdam.

[48] B.J. Wielinga and J. A. Breuker. Models of expertise. In Proceedings ECAI-86,



18 1. Knowledge Engineering

pages 306318, 1986.

[49] B.J. Wielinga, A. Th. Schreiber, and J. A. Breuker. KADS: A modelling approach
to knowledge engineering. Knowledge Acquisition, 4(1):5-53, 1992. Reprinted in:
Buchanan, B. and Wilkins, D. editors (1992), Readings in Knowledge Acquisition
and Learning, San Mateo, CA, Morgan Kaufmann, pp. 92-116.



