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Abstract. This article describes a case study in which Protéǵe-2000 was used to
build a tool for constructing CommonKADS knowledge models. The case study
tries to capitalize on the strong points of both approaches in the tool-support and
modelling areas. We specify the CommonKADS knowledge model as an ontol-
ogy in the Prot́eǵe specification formalism, and define a number of visualizations
for the resulting types. The study shows that this type of usage of Protéǵe-2000
as a “metaCASE” tool is to a large extent feasible. In particular, the flexible
class/instance distinction in Protéǵe is a feature that is needed for undertaking
such a metamodelling exercise. The case study revealed a number of problems,
such as the representation of rule types. The study also led to a set of f new tool
requirements, such as extended expressivity of the Protéǵe forms.

1 Introduction and Approach

Knowledge engineering has matured and KE techniques are used increasingly not just
for knowledge-system development but also for knowledge analysis and structuring in
knowledge management in general. However, the availability of adequate tool support
is crucial for a wider adoption of these techniques.

In this paper we describe a case study in which we used the Protéǵe-2000 tool to
build a “knowledge-model editor” for CommonKADS. This editor should support ana-
lysts and (to a limited extent) domain specialists in modelling a knowledge-intensive
task using the CommonKADS knowledge-modeling framework [11]. The aim was
to create an editor that adheres as much as possible to the distinctions made in the
CommonKADS knowledge model.

This case study tries to capitalize on the strong points of both approaches. Tradi-
tionally, Prot́eǵe has put an emphasis on providing configurable and usable knowledge-
engineering tools [10, 15]. In CommonKADS the main focus of attention has always
been on the modeling side, more or less assuming that support tools would become
available in due time. This case study was triggered by the observation that the Protéǵe-
2000 tool is capable of supporting metamodelling. Another interesting feature of Protéǵe-
2000 is the possibility to save the results as RDF [8] (see further). This makes it easier
to exchange model data and prevents the common problems experienced by CASE tool



users of getting things out of a tool (the “only input” problem), due to the proprietary
formats provided by tool vendors. Finally, the authors thought it would be a sign of ma-
turity of the knowledge-engineering field if two leading methodologies could be linked
in this fashion.

1.1 Tool requirements

In this case study we look at the usability of Protéǵe-2000 from the perspective of three
different types of users:

1. Thetool builder: the person constructing the knowledge-model editor.
2. The knowledge engineer: the person that uses the editor to create and maintain a

knowledge model. Also, the knowledge engineer should be able to define a domain-
knowledge editor to be used by the domain specialist.

3. Thedomain specialist: the person editing and updating the actual domain knowl-
edge of the application.

These three types of users have different requirements. For the tool builder the main
requirement is expressivity: can she define the required modelling constructs and visu-
alizations without losing information or clarity? The question whether the interface is
easy to use is less important for this type of user, as a high level of expertise in this area
is required anyway.

The knowledge engineer needs a tool that enables a convenient and consistent en-
vironment for defining a knowledge model. For her it is important that there be no
specification redundancy and that consistency and completeness checks for model ver-
ification be available. Also, she should be able to include and adapt predefined model
parts, such as the catalog of CommonKADS task templates.

The domain specialist will especially be interested in a simple and intuitive interface
for updating knowledge bases. Early Protéǵe research has shown that this requires the
use of a domain-specific vocabulary in the user interface [9].

Of course, these requirements are related as the tool created by the tool builder has a
strong influence on the functionality offered to the knowledge engineer. The same holds
for the domain specialist, who has to use the knowledge-elicitation interface defined
by the knowledge engineer. Still, we view these three users as useful perspectives for
evaluating the usability of Protéǵe-2000.

1.2 Related work

Over the years, a number of tools have been developed for knowledge modelling with
CommonKADS. An early example is the Shelley workbench [1]. PC-PACK1 is a con-
temporary tool with similar aims. PC-PACK focuses on the early phases of knowledge
acquisition. It provides functionality for annotating and structuring expertise data such
as domain texts, interviews, and self reports. Examples of the use of PC-PACK can
be found in various publications [11, 14]. Although PC-PACK offers some support for
knowledge-model specification through the GDM grammar [16], the tool can best be

1 http://www.epistemics.co.uk/products/pcpack/
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seen as complementary to a knowledge model editor. The main area in which function-
ality overlaps concerns the interface for the domain specialist.

WebCokace2 is an interactive web editor for CommonKADS knowledge models
[4]. It uses the CommonKADS CML language [12] to represent knowledge models.
The tool is targeted at the knowledge engineer and provides facilities for reusing model
elements from catalogs, such as existing task templates and ontologies.

KADS-223 is also targeted at the knowledge engineer and supports the knowledge-
model editing using the CML version used in the CommonKADS textbook [11]. The
tool includes graphical editors and can produce “pretty-prints” of the knowledge model,
for example in HTML format.

CASE tools also need to be compared with “low-level” tools, in particular dedicated
drawing tools. A CASE tool needs to have a marked advantage in functionality for users
to prefer it above such baseline tools. A good example of a baseline tool is ModelDraw4,
developed by Wielemaker. In an evaluation study one would typically want to compare
a “heavy” CASE tool with such a light-weight drawing tool.

1.3 Paper overview

In Sec.2 we briefly summarize the main features of Protéǵe-2000 and of Common-
KADS. Sec.3 reports on the tool construction process and shows examples of usage
of the tool. In Sec.4 we discuss the experiences gathered during this case study, taking
also the different user perspectives into account. Throughout this paper we use exam-
ples from an assessment application. This application is concerned with the problem of
assessing whether people who applied for a certain (rental) residence conform to the
criteria set out for this residence. A full knowledge model of this application can be
found in the CommonKADS textbook [11, Ch. 10]. The code of the tool including the
example can be downloaded from the Protéǵe-2000 website.5

2 Baseline

2.1 Protéǵe-2000

Prot́eǵe-2000 is the latest incarnation of the series of tools developed for many years by
researchers at SMI to provide efficient support in knowledge modeling and knowledge
acquisition [7]. Prot́eǵe-2000 is platform-independent and offers a component-based
architecture, which is extensible through its API. In the rest of this article we use the
shorthand “Prot́eǵe” to refer to Prot́eǵe-2000.

Frame-based knowledge modelProt́eǵe is a frame-based environment for knowledge-
based system development. Its knowledge model has been re-factored to meet the re-
quirements of the recent OKBC standard [3]. An ontology in Prot́eǵe consists of classes,
slots, facets and axioms [5]:

2 http://www-sop.inria.fr/acacia/Cokace/index-eng.html
3 http://www.swi.psy.uva.nl/projects/kads22/index.html
4 http://www.commonkads.uva.nl/ , see the tools section
5 http://smi.stanford.edu/projects/protege/
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– Class frames specify domain concepts and are organized in a subsumption hierar-
chy, that allows for multiple inheritance. Classes are templates for individual in-
stance frames.

– Slots are special frames that can be attached to classes to define their attributes,
with specific value type restrictions. Own slots define intrinsic properties of class
or individual instance frames that do not get propagated either by inheritance or
instantiation. Template slots are attached to class frames to define attributes of their
instances, which in turn define specific values for slots. Slots in Protéǵe are first-
class objects. They can be specified both globally for the ontology and locally as
attached to classes, where their properties are overridden. Each slot is an instance
of a metaslot class that defines its properties.

– Facets are properties of slots, which specify constraints on their allowed values.
Examples are the cardinality of a slot value, its type (primitive, such as string or
integer, or complex, such as instance of a class), range and default values, etc.

– Axioms are additional constraints that can be defined on frames, for example to
link the values of a group of template slots attached to a class. As a very recent ad-
dition to Prot́eǵe, a constraint language enables developers to represent constraints
throughout an ontology as sentences expressed in KIF-based [6] predicate logic.
Prot́eǵe defines a set of built-in predicates and functions that can be used to ex-
press constraints. Protéǵe also provides functionality to evaluate the constraints
and check that the individual instances in a knowledge base conform to those con-
straints. Examples of constraints and constraint evaluation are given in Sec.3.3.

Configurable forms for knowledge acquisition Prot́eǵe perpetuates the support for
structured and customizable knowledge entry that has always been fundamental to the
Prot́eǵe tools. It achieves that goal by providing a configurable user interface for all
steps in the process of modeling and acquiring domain- and task-specific knowledge.
The graphical user interface of Protéǵe allows users to define and visualize classes and
their slots, to customize a corresponding set of forms for acquiring instances of the
classes, and to acquire instances themselves.

The central metaphor for knowledge acquisition in Protéǵe is the notion of aform
composed of a set of graphical entry fields (“widgets”). A form is attached to a class to
display and acquire its instances. Specific widgets facilitate and locally verify the entry
of slot values on instances. Based on the specification of the classes in an ontology, such
as the value-type restrictions on their template slots, Protéǵe automatically generates a
form for each class, with default layout and content. Protéǵe comes along with a set of
built-in widgets for the acquisition of slot values, such as a text field for string slots, a
pull-down menu for enumerated symbolic slots, a list of instances for multiple instance
slots. Users can customize the generated forms to meet domain-specific requirements
on knowledge entry and checking. They can rearrange the layout and configure the
widget components on the forms, or provide their own plugable widget.

Another kind of knowledge acquisition metaphor that Protéǵe offers is the notion
of a diagram, which provides a means for the synthetic display and acquisition of com-
plex structures defined by a set of related classes in the ontology. Protéǵe’s support for
diagrams comes with a special-purpose ontology of metaclasses and classes represent-
ing diagrammatic components, that the user extends to create domain-specific diagram
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templates. The user defines the nodes of the diagram, that refer to domain classes in the
ontology and the types of connectors that can link nodes together. Forms are generated
for each diagram construct, that not only take care of graphical layout and navigation
but also handle consistency and partial automatic filling of the instances and slot values
being acquired through this metaphor. The user is also able to fill-in additional details
of instances by zooming into the nodes and connectors.

Flexible class/instance distinction Beyond its OKBC-compliant knowledge model,
Prot́eǵe now also provides a flexible class/instance distinction based on the notion of
metaclasses. A metaclass is a class whose instances are classes themselves. Thus, meta-
classes are templates to create new classes and slots in an ontology. They define tem-
plate slots that are propagated to their instance classes as own slots. Examples are the
role anddocumentation own slots on standard classes.

The metaclass mechanism is described in detail elsewhere [5]. The mechanism im-
plements the internal structure of the Protéǵe knowledge model itself with a set of
built-in metaclasses for classes, slots and facets. The metaclass mechanism also en-
ables developers to customize the underlying knowledge model of their ontology, by
defining their own domain- or task-specific metaclasses. Forms for the metaclasses can
be customized and instances (new classes and slots in the ontology) can be acquired,
similarly to traditional classes and instances. Therefore, this approach extends the scope
of modeling possibilities to metamodelling: Developers can use Protéǵe as an editor for
knowledge representation systems with different knowledge models. This case study
presents an example of this.

Support for Resource Description Framework Prot́eǵe also enables developers to
create persistence layer components to import knowledge bases from (and then export
to) external storage formats such as a DBMS. This possibility can be combined to the
use of the metaclass architecture to redefine a specific knowledge model for a given
representation format. This way, Protéǵe was recently adapted to support the creation
and editing of RDF Schema ontologies and the acquisition of RDF instance data [5].
RDF and RDF Schema are the current recommendations from the World-Wide Web
Consortium for defining semantic metadata describing Web resources.6

The case study that we describe in this paper can be seen as using Protéǵe to build
a specific editor for CommonKADS knowledge bases. As we show in the next section,
we made heavily use of the metamodelling constructs offered by Protéǵe to define the
CommonKADS knowledge model.

2.2 CommonKADS

Details about the CommonKADS approach can be found in the recent CommonKADS
textbook [11]. CommonKADS is centered around a so-called “model suite”, which
takes various different perspectives on a knowledge-intensive task. The central model

6 http://www.w3c.org/RDF/
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is the knowledge model. The use of CommonKADS in this case study is limited to
this model. A synopsis of the main constructs in a knowledge model can be found in
Table.1.

Category Construct Description

Task
knowledge

task a problem statement of what needs to be achieved; specifies
also input and output

task method specifies a way to achieve a task by decomposing it into
subtasks, inferences and transfer functions; also defines a
control regimen over the decomposition

Inference
knowledge

inference a primitive reasoning function that uses a part of the domain
knowledge to achieve a basic problem-solving step

dynamic role input or output of an inference; signifies a place holder and an
abstract name for domain objects “playing” the role

static role the static knowledge used by an inference, also defined as a
placeholder for domain objects (e.g., a rule set)

transfer
function

used to denote a primitive function needed to that interact with
the outside world

Domain
knowledge

domain schemaa set of domain-type definitions; a domain schema can be
imported into other schemata

concept a group of “things”with share features; cf. “object class” or
“entity”

relation describes a set of tuples that relate “things”to each other; cf.
“association”, ER-type relationship

rule type models expressions about concepts/relations in an
antecedent/consequent form

knowledge
base

contains a set of domain-type instances (usually rule instances)
that can be used as static knowledge by one or more inferences

Table 1.Constructs in the CommonKADS knowledge model

Most constructs are well known from previous CommonKADS publications, e.g.
[13]. A relatively recent addition is the notion ofrule type in the domain knowledge.
A rule type is used to model a set of rules that share a similar structure. For example,
in the assessment application we distinguish three rule types: (1)abstraction rulesthat
are used to abstract case values (e.g., the age category of an applicant can be derived
from the age), (2)requirementsdescribing the way in which case values determine truth
or falsehood of an assessment criterion such asRentFitsIncome, and (3)decision rules
that link a boolean combination of criterion values to a particular decision (eligible or
not).

Although intuitively the notion of rule type can be easily understood, from a formal
point of view it is in fact quite complex. We will see later on that the rule type was the
“hardest nut to crack” when constructing the tool.
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3 Constructing the Protéǵe-CK Tool

3.1 Architectural considerations

In order to build a tool for specifying a CommonKADS knowledge model we need to
define the knowledge-model constructs as classes and slots in Protéǵe. For example, a
task can be represented as a class with slots pointing to the input and output roles, the
method that realizes it, etc. Actual tasks will then be instances oftask. The same can
be done for all task and inference constructs listed in Table.1, i.e., inferences, roles,
methods and transfer functions.

However, this approach presents a problem when we come to the domain types. We
have three abstraction levels here which we like to represent:

1. Domain-modelling constructs:concept, relation, rule type.
2. Domain-specific types: conceptapplicant, rule typeabstraction-rule.
3. Domain-specific instances: a particular applicant or a particular abstraction rule.

This problem is typical of metamodelling in general. What seems to be an instance
from one level, behaves as a class at a lower level. To handle this we can make use of
the flexible class/instance distinction made by Protéǵe. We can define a class as being
an instance of a custom metaclass. The resulting class can both be used as an instance
(filling in slot values for the slots defined on the metaclass) and as a class (defining
template slots for its own instances as well as constraints that should hold). Note that
this use of metaclasses is different from approaches in which a metaclass is nothing
more than an abstract superclass.

By way of the metaclass architecture we were able to model the three-level ap-
proach of the CommonKADS knowledge model. For example, we defined a domain-
type metaclass as a template for all domain type classes with an additional template slot
rolesPlayed to denote the knowledge role of its instances in the domain. We represented
domain-modeling constructs as instance classes ofDomainTypeMetaClass, with a root
classDomainType. We then modeled domain-specific types as subclasses of the domain
modeling classes (thus also instances ofDomainTypeMetaClass) with specific values
for their rolesPlayed slot. Finally, domain-specific individuals can be acquired as in-
stances of the domain-specific classes. In Sec.3.3 this approach is illustrated in Fig.4,
where we see its usage in defining the CommonKADS domain-schema constructs.

3.2 Task and inference knowledge

As outlined above, the task- and inference-knowledge constructs were modeled as Protéǵe
classes. An example class definition is shown in Fig.1 for a task method. The slots cor-
respond to the information that needs to be specified for a task method in the Common-
KADS knowledge-modeling language [11, Appendix].

In CommonKADS task and inference knowledge is partially specified through two
special-purpose diagrams:

1. The inference structureis a diagrammatic representation of inference knowledge,
mainly showing how knowledge roles are used as input and output of inferences
and transfer functions.
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Fig. 1.Specification of the classTaskMethod. At the left, part of the hierarchy of classes
is shown.TaskMethod is a root class (i.e., a subclass of:THING, see lower-left). At
the right, the class definition is shown. The own slotrole indicates whether the class is
concrete (can have direct instances) or abstract (no direct instances). Abstract classes are
marked with an “A” in the class hierarchy. In the lower-right area the template slots of
TaskMethod instances are defined. Each slot has a value range, a cardinality constraint
(single or multiple), and a possible value restriction (e.g. the slotrealizes can only be
filled by instances of the class Task, as shown in the pop-up slot definition window)

2. The task-decomposition diagramshows in a tree-like fashion the (recursive) de-
composition of tasks through task methods into subtasks, inferences, and transfer
functions.

For both the task and inference diagrams, we configured a specialized diagram-
matic class in our ontology, as well as an associated form, along the lines described in
Sec.2.1.7 We defined theInferenceStructureDiagram class with nodes (inferenceStructureNodes)
to be instances of theTransferFunction, KnowledgeRole andInference classes (and sub-
classes) and connectors to be instances of special-purpose connector classes. For ex-
ample, theHasInputRole connector links aDynamicRole (subclass ofKnowledgeRole)

7 For details, see the Protege tutorial on the use of the “diagram widget” at
http://smi-web.stanford.edu/projects/protege/protege-2000/
doc/tutorial/diagrams/index.html
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Fig. 2. Instance of an inference structure diagram for assessment. We defined the spe-
cific InferenceStructureDiagram as a subclass of theNetworkClass, thus also an in-
stance of theNetworkMetaclass, that has additional slots to hold nodes and connec-
tors. Our specific connectors are subclasses ofConnectorClass and instances of the
ConnectorMetaclass. At the right, the form for acquiring an inference structure shows
the instance created for an assessment task. It includes a palette of graphical elements
from which the diagram can be constructed. The pop-up window shows the details (slot
values) of the inferenceAbstract

node to aInference or TransferFunction node. This way, when we create an instance of
theInferenceStructureDiagram (see Fig.2), we can add or create instances of the nodes,
for example an inferenceabstract and a dynamic rolecase description, and link them
with an instance ofHasInputRole connector. Using the values of the slot pointers slots
defined inHasInputRole, the diagram automatically fills-in the slotinputRoles of the
Abstract instance with the instance valuecase description.

The use of the diagrams give rise to a large set of small problems and requirements
with respect to their usage (symbol availability, user-interface behavior, etc.). We can
see some small graphical differences (e.g., rounded rectangles, no border) when we
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compare the inference structure in Fig.2 with the original figure in the CommonKADS
textbook [11, p. 136] (see Fig.3). However, the basic mechanisms for form specification
suited our purposes well.

case

abstracted
case

norms

norm
value

decision

abstract

select

match

specify

evaluate norm

Fig. 3.Original figure of the assessment inference structure in the CommonKADS text-
book

3.3 Domain schema

In principle, one can specify several different domain schemata in a knowledge model.
For the moment we have limited the tool to a single schema. A schema contains a set
of definitions of concepts, relations and rule types. Aconceptis represented as a class.
The attributes of the concept (which in CommonKADS, as in UML, always point to
atomic values, and not to other concepts) are modelled as slots.

To ensure that the attributes of a concept are atomic, we defined a constraint on the
DomainTypeMetaClass metaclass, which is the template for all domain-modeling con-
structs such as the classConcept (see below). The constraint specifies that all subclasses
of Concept (which define domain-specific types, such asApplicant) should have their
template slots restricted to primitive (atomic) value type. The following formula is the
constraint expressed using the language provided in Protéǵe:

(defrange ?dtype :FRAME DomainTypeMetaClass)
(defrange ?att :FRAME :STANDARD-SLOT)
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(forall ?dtype (forall ?att
(=> (and (subclass-of ?dtype Concept)

(template-slot-of ?att ?dtype))
(allowed-slot-value-type ?dtype ?att :PRIMITIVE-TYPE))))

Fig. 4 shows an example conceptApplicant, i.e a person applying for a house. The
slots describe attributes of the applicant that can be used for assessment purposes.

Fig. 4.Specification of the conceptApplicant. The figure illustrates the three-level spec-
ification of the CommonKADS knowledge model. The domain-specific classAppli-
cant is both a subclass of the domain-modeling constructConcept, and an instance of
the special-purposeDomainTypeMetaClass metaclass (shown in the:CLASS subtree).
Therefore it has an additional own slotrolesPlayed that can be filled-in in the right hand
form. Individual applicants are instances ofApplicant class, that have specific values for
the template slotsage, name, etc.

In Fig. 4 we can also see the class-instance issue discussed in Sec.3.1. The class
Applicant is at the same time a subclass of ofConcept and an instance of the metaclass
DomainTypeMetaClass. This metaclass has a slotrolesPlayed. The fillers of this slot are
the knowledge roles that refer to this domain type (here:case description andabstracted
case).
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A relation in CommonKADS is a “first-class citizen”, meaning that it can have
attributes. As explained in Sec.2.1, slots in Prot́eǵe-2000 are also first-class objects,
that are instances of a metaslot class. However, slot frames cannot form a slot hierar-
chy. Therefore, we do not model relations as slots but as domain classes (instances of
DomainTypeMetaClass). Each “relation” class should have at least two slots that points
to the object types being related (the relation “arguments”). These object types can be
concepts and relations, meaning that higher-order relations are allowed (cf. the notion
of “association class” in UML). The name of the slot pointing to the argument defines
the role the argument plays in the relation. Other slots may be added to define attributes
of the relation. For example, the relation between anApplicant and aResidence s/he
applied for can be modelled as follows (simplified syntax, ’%’-sign is used as comment
character):

CLASS ResidenceApplication SUBCLASS-OF Relation
SLOT applicant -> Applicant % relation argument
SLOT residence -> Residence % idem
SLOT applicationDate -> string % relation attribute
SLOT eligible -> boolean % idem

The representation of arule type is more complex. Rule types model relations be-
tweenexpressions aboutconcept/relation slots. Therefore, we first have to define the
notion of “expression”. We decided to model an expression as a class with four slots:

1. The concept/relation involved in the expression.
2. The possible slots involved. This should be an existing slot of the concepts/relations

involved.
3. An operator such asequal , not-equal , greater . The set of legal operators de-

pends on the slot involved in the expression.
4. The value: this should be a legal value for the slot involved.

With this expression construct we can define a classApplicantExpression. An ex-
ample instance of this expression could have the following slot values:

class = Applicant
slot = age
operand = greater
value = 22

The intended interpretation of the expression instance is that the age of the applicant
should be higher than 22.

Fig. 5 shows the definition of theExpression class. Besides the usual value-type
restrictions on slots we specified constraints to express the above definition of an ex-
pression. We defined a first constraint to restrict the value of the slot involved in an
expression (the value of theslot slot) to existing template slots of the class involved (the
class value of theclass slot). We defined a second constraint to ensure that the value
involved in an expression (thevalue slot) is legal for the slot involved (the slot value of
theslot slot at the class value of theclass class).

12



Fig. 5.Definition of the classExpression as an instance ofDomainTypeMetaClass. The
four slots that are attached to it have additional constraints on their value (bottom right).
First, the slotslot involved in the expression should be an existing slot of theclass
involved. The KIF-based formula for this constraint is displayed in the pop-up window:
it defines the range for the variables and the actual sentence of the constraint. A second
constraint specifies that thevalue involved in the expression should be a valid value for
theslot attached to theclass involved

Constraints can subsequently be used to check the validity of expression instances.
Fig. 6 shows how the constraint engine detected an instance ofExpression that does not
satisfy the first constraint.

We can now model a rule type as a relation between a set of expressions which form
the antecedent of the rule and a set of expressions which constitute the consequent. A
sample definition of the rule typeApplicantAbstraction is shown in Fig.7.

The metamodel for the definition of rule types is summarized in Fig.8. This figure
uses a UML class-diagram notation. In the next subsection we see examples of the
actual rule instances, and how we can define specialized forms for entering rules of a
particular type.

13



Fig. 6.Example of a Violated constraint in the knowledge base. A special tab in Protéǵe
enables the user to trigger the constraint-checking engine on the knowledge base. Here,
the constraint on the value of the slot involved in an expression has been checked for
the knowledge base. An instance ofExpression violates the constraint. Indeed, as the
pop-up window shows, the value forslot is set tobuildType, which is not a slot attached
to Applicant (see Fig.4). Note that the display names forslot, class andvalue have been
customized to more meaningful names on the form forApplicantExpression

3.4 Knowledge bases

In CommonKADS there is not one large knowledge base. Instead, several knowledge
bases are defined. Each knowledge base contains instances of a designated set of domain
types. Most commonly, knowledge bases contain instances of rule types, i.e. the actual
“rules”.

Knowledge bases are modelled as classes with a slot pointing to the rule types or
other instances to be included in the knowledge base. Fig.9 shows an instance of a
knowledge baseAbstractionRuleSet. This particular knowledge base contains two rules,
both concerning a simple abstraction in the sample application.

Using Prot́eǵe’s set of built-in user interface elements in a customized way, we
defined a specialized form for acquiring instances ofKnowledgeBase classes, shown
in Fig. 9. First, we customized the form for acquiringRuleType instances to display
its antecedent andconsequent slots as rows that enable in-place editing of slot values.
Then, we “included” thisRuleType form in the form forKnowledgeBase instances. This
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Fig. 7. Specification of the rule typeApplicantAbstraction. The inherited slotsan-
tecedent and consequent are specialized forApplicantAbstraction so that their value
type is restricted to instances ofApplicantExpression

enables the user to browse and create knowledge bases in a synthetic way, acquiring
their rules and the expressions that form the rules immediately from the same form.

4 Discussion

This case study does not provide us with a formal evaluation. Still, a number of remarks
can be made. It should be noted that the remarks are made from the perspective of using
Prot́eǵe as a “metaCASE” tool. This typically requires stretching the possibilities of a
tool to its limits. A standard case study using Protéǵe only directly as an ontology-
editing tool would have given rise to different remarks.

In the discussion below on the strong and weak points of Protéǵe we refer back to
the three user types mentioned in the introduction: tool builder, knowledge engineer,
and domain specialist.

4.1 Strong points

The main strong point of Protéǵe is that it supports at the same time tool builders,
knowledge engineers and domain specialists. This is the main difference with existing
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rule type

connection symbol: string

expression

class slot valueoperator

1..* 1..*antecedent

consequent

legal operator

value restriction
has-slot

1
1 1 1

Fig. 8.Metamodel of a rule type (UML notation)

tools, which are typically targeted at the knowledge engineer and lack flexibility for
metamodelling. This latter feature makes it easier to adapt Protéǵe to new requirements
and/or changes in the model structure.

For the tool builder Protéǵe combines an expressive framework with a consistent
way of generating editor interfaces (the forms). As mentioned, the metaclass mecha-
nism in which classes can be modelled as “real” instances of metaclasses is an indis-
pensable feature. Also, the fact that classes (as opposed to instances) can serve as the
range of a slot is a useful feature (although this is also common in other languages).
Another positive point is the time required to build a tool. Constructing a first version
is a matter of a few hours. In this case study a number of revisions were made, but this
is more or less intrinsic to the complexity of metamodelling in general.

Although still preliminary in terms of scope and user interface, an important fea-
ture for the tool builder is the possibility to define constraints on the classes and slots
being defined. This provides a means for the knowledge engineer to check model com-
pleteness and correctness. In the context of this case study we specified a subset of the
constraints for CommonKADS knowledge models8, but it should be straightforward
to generate a full set. In particular, we want to express the third constraint on expres-
sions (see Sec.3.3), to ensure that the set of legal operators offered on a certain type
of expression (subclass ofExpression) is suitable for the type of slot involved in the
expression.

It is to note that during construction the models areby definitionincomplete or
even inconsistent. Therefore, a verification mechanism should preferably be explicitly
invoked by a knowledge engineer, and not be done automatically by the tool. The fact

8 Note for the reviewers: this is mainly due to the fact that constraints became available at the
end of the case study. The final paper will reflect on the full set of constraints
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Fig. 9. Example knowledge base with two abstraction rules. The form for acquiring
instances ofKnowledgeBase has been highly customized to present a synthetic view
of the rules contained in a knowledge base by way of container and table graphical
elements. In-place editing enables to enter the values of the slots for a specific instance
of Expression (that forms aRuleType) directly from this form

that the tool offers this approach of decoupling the acquisition phase from the constraint
checking phase is a strong point. It should go further in enabling the check constraints
step by step, for example locally to a class. The constraints we created in our modeling
study range over class seen as instances of metaclasses (e.g.,Expression, Concept) and
restrict or bind the value-type of slots (rather than the value itself). That is again an
important aspect of metamodelling.

A nice feature for the knowledge engineer is that it proved possible to generate
diagrammatic editors close to the representation used in CommonKADS. The additional
requirements here are really on a very detailed, uninteresting level, having to do with
the availability of particular graphical symbols. labels, etc. Also, the RDF support is
potentially a positive feature of Protéǵe, because it makes import into and export from
the tool feasible in a standard format. This is traditionally problematic for CASE tools
supporting only a proprietary format.

Finally, it should also be noted, that the fact that the tool never crashed during this
case study also greatly helped in creating user confidence (especially with the first au-
thor).
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4.2 Weak points and opportunities for improvement

Currently, Prot́eǵe only has a simple inclusion mechanism for importing definitions.
In order to make use of libraries of existing partial models that the user can special-
ize and adapt, a more refined import/export mechanism for sets of class/form/instance
definitions is required.

Another drawback is the fact that a single interface is used for all types of users. In
particular for the domain specialist, it should be possible to create a stand-alone inter-
face with just the forms for entering domain knowledge. This ensures that the domain
specialist does not get confused by internal details. The same could hold, to a lesser
extent, for the knowledge engineer.

At the moment, Protéǵe is not able to handle the automatic filling of inverse slot
relationships, for example thedomainMapping and rolesPlayed slots of respectively
knowledge roles and domain types. This would be a useful extension, as it prevents
redundancy and omissions in the interface for the knowledge engineer.

The expressiveness of the predefined forms could be extended in a number of ways.
For example, the diagram widget could be extended to enable the creation of UML-type
diagrams [2]. For CommonKADS this would open the possibility to create domain-
schema diagrams, which use the UML conventions. It could also be a powerful way
to set and visualize constraint links among classes, such as the way it is represented in
Fig.8.” Another advantage would be that it makes Protéǵe potentially usable as a CASE
tool for object-oriented analysis.

Rule types proved to be difficult to represent. The negative effect is mainly felt
in the knowledge-elicitation interface created for the domain specialist. The somewhat
contrived way of representing rule types diminishes the naturalness of the interface for
entering rule instances in a knowledge base, as we saw in Sec.3.4. It would be worth-
while to study more in detail the user-interface requirements for editing this type of
expertise data, and adapt the tool accordingly. We could define a custom user interface
component that would be more intuitive and synthetic to acquire rule bases, and would
also check constraints on expressions locally.

4.3 Some final remarks

We plan to use the resulting CASE tool in an experiment in which a group of students
in knowledge engineering at the University of Amsterdam uses the tool to construct
knowledge models. The experiment is planned for the end of 2000. We will divide the
students into two groups, one working with a baseline drawing tool, the other group
with the knowledge-engineering interface of the Protéǵe-CommonKADS tool. This ex-
periment will hopefully provide us with more precise data on usability.
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