

System Development
Framework

Handbook for Version II

W.R. van Joolingen
A. Th. Schreiber

L. Hermans

© 1999 Kenniscentrum CIBIT

i © 2017 Kenniscentrum CIBIT

Contents

PREFACE III

INTRODUCTION 1

AIM OF THIS HANDBOOK 1
TARGET AUDIENCE AND READER BACKGROUND 1
KNOWLEDGE TECHNOLOGY AND COMMONKADS 2
THE OBJECT-ORIENTED PARADIGM AND UML 3
DOCUMENT OVERVIEW 4

PRINCIPLES UNDERLYING THE SDF-II FRAMEWORK 5

RATIONALE 5
APPROACH 5
SDF-II FRAMEWORK OVERVIEW 7

SDF-II FRAMEWORK DEFINITION 9

BUSINESS MODELLING 10
MODELLING CONCEPTS 10
GENERAL BUSINESS MODEL 10
SYSTEM CONTEXT MODEL 11
EXAMPLE: THE ELEVATOR-DESIGN DOMAIN 11
KNOWLEDGE MODELLING 14
MAPPING COMMONKADS CONCEPTS TO UML 14
CREATING A KNOWLEDGE MODEL USING REFINEMENTS 18
REPRESENTING KNOWLEDGE TYPES 26
LINKING TYPE MODELS TO DOMAINS 29
THE COMMONKADS TEMPLATE KNOWLEDGE MODELS 31
SUMMARY AND GUIDELINES FOR KNOWLEDGE MODELLING 33
COMMUNICATION MODELLING 36
APPROACH 36
COMMUNICATION SCENARIOS 36
STATE DIAGRAM FOR AN AGENT 38
DESIGN MODELLING 39

ii © 2017 Kenniscentrum CIBIT

PROJECT MANAGEMENT 40

INTRODUCTION TO PROJECT MANAGEMENT METHODS 40
PROJECT MANAGEMENT IN SDF-II 40
WORK BREAKDOWN STRUCTURE 41

THE SDF-II LIBRARY 44

DIAGNOSIS 44
TOP LEVEL DESCRIPTION 44
TASK REFINEMENT 44
DOMAIN KNOWLEDGE CHARACTERISATION 46
ASSIGNMENT 47
TOP-LEVEL DESCRIPTION 47
TASK REFINEMENT 47
DOMAIN KNOWLEDGE CHARACTERISATION 50
HOW TO USE THE TEMPLATES 50
CONVERTING COMMONKADS TEMPLATES TO SDF-II 50

CONCLUSIONS 52

REFERENCES 53

SDF-II Manual

© 2017 Kenniscentrum CIBIT iii

Preface
In 1993 the system development framework was developed by CIBIT as an
educational device, in order to bring the principles of knowledge modelling,
knowledge engineering and knowledge technology to students of the Master of
Science programme in information and knowledge technology. The target audience of
the framework consisted of software and information engineers who wanted to study
modern developments in knowledge technology. In order to teach people how
proceed with knowledge technology, one should teach them a methodology, a
coherent set of methods and techniques that prescribe what to do in order to build
knowledge based systems. The prevailing methodology for knowledge engineering in
those days was KADS, developed at the SWI, the department of Social Science
Informatics at the University of Amsterdam, created as the result of a series of EC-
funded research projects. The problem with this methodology was that the
documentation available was very research oriented, and not directed towards
practical application. Another drawback was KADS’ tendency towards isolated
knowledge based systems, rather than knowledge intensive parts of mainstream
information systems.

Given the value of KADS, CIBIT decided to create a new methodology based on the
strong points of KADS and the solid value of a mainstream method for systems
analysis: Yourdon Systems Method (YSM). The result, SDF version I, was a
methodology largely based on YSM, but with the possibility to mark processes as
knowledge intensive and to analyse these in a way specified by KADS. Later, SDF was
bought in licence by two companies, Bolesian and Everest, to use as the basic
methodology for the development of knowledge intensive systems.

Times have changed. YSM is no longer as mainstream as it used to be. Object oriented
methodologies have taken the lead. Moreover, KADS itself is reincarnated as
CommonKADS, with its own manual (Schreiber et al., 1999) written for a larger
audience. These movements create the need for a new look on SDF. Still there is need
for integration, only at a different level. CommonKADS itself has become much more
useable by mainstream developers (who have developed themselves as well), but is
not intrinsically object oriented. OO-methodologies do not explicitly address the
issue of knowledge intensive systems. Not everyone wants to use OO anyway. These
needs issued the need for a new version of SDF: SDF-II, for which the handbook lies
before you.

The level of integration is higher, the contributing methods are left in its value. No
attempt has been made to really integrate CommonKADS with other methods.
Instead, we offer a framework for combining CommonKADS with any UML-based
methodology.

SDF-II targets any system developer involved with systems that require explicit
attention to the role of knowledge. SDF-II allows users to use their own UML-based
method. It adds instruments to this method to analyse the business and the
knowledge involved in the task to be carried out by the system. The knowledge
analysis gets a flavour of Catalysis, one of the emerging OO/CBD methodologies

SDF-II Manual

iv © 2017 Kenniscentrum CIBIT

(D’Souze & Wills, 1999). In this way SDF-II can help anyone with the analysis and
design of knowledge intensive systems.

This handbook was written as a result of a co-operation of several people, and of
different companies. The authors would like to thank the fruitful discussions with
partners in the CUPIDO platform, and in particular Gertjan Beijer, Mark Willems, and
Ron Korevaar. Arie den Ouden made a significant contribution to the section on
project management by reworking our original version from a process-based to a
product-based approach.

Special thanks go to Patrick Vorgers, who, as an assignment for finishing his MSc.
joined our group and did a great job in summarising the discussions and asking the
right questions at the right moment.

Utrecht, January – June 1999

SDF-II Manual

© 2017 Kenniscentrum CIBIT 1

Introduction

Aim of This Handbook
SDF-II is a system-development framework that enables software analysts and
developers to use knowledge modelling techniques within an object-oriented setting.
SDF-II is an integration framework and not yet another methodology. This manual
provides guidelines and recipes for using proven knowledge-technology methods
within an O-O approach.
SDF-II is based on two pillars. Firstly, it takes the UML notations as a de facto
standard for describing system-analysis models in object-oriented fashion. It is
reasonable to expect that future generations of software analysts will have knowledge
of UML in their standard repertoire. Secondly we adopt the basics of the knowledge-
modelling approach followed in CommonKADS. This methodology is a proven
approach for knowledge-system development. A short introduction into UML and
CommonKADS is given further on in this section.

Target Audience and Reader Background
This manual is aimed at system analysts who want to analyse and model knowledge-
intensive problems from an object-oriented perspective. We assume that the reader
has a background in information modelling.

As said before, SDF-II is a methodology integration framework. To be able to use this
handbook some basic knowledge about UML and about CommonKADS are required.
From the UML side we assume you know the basic analysis notations:

• class diagram,
• use-case diagram,
• activity diagram,
• state diagram,
• sequence diagram, and
• collaboration diagram.

For CommonKADS we assume that you are acquainted with the following aspects:
• basic modelling principles,
• business-modelling techniques,
• knowledge-modelling framework, and
• knowledge-modelling templates (“patterns”).

For UML you can use the “UML User Guide” as baseline text (Booch et al., 1998). For
CommonKADS you can find the information in Chapters 2, 3, 5 and 6 of the
CommonKADS textbook (Schreiber et al., 1999).

In designing the framework, much inspiration and some notational utilities were used
from the Catalysis method (D’Souza, 1999). This method provides a new view on
modelling object oriented and component based systems. By adding a few notations,
realising that in many cases it is best to postpone decisions on where to allocate
functionality and making a strong distinction between classes and types, this method
contributed significantly to shaping the framework. However, no prior knowledge on

SDF-II Manual

2 © 2017 Kenniscentrum CIBIT
i © 2017 Kenniscentrum CIBIT

this method is required to understand this manual. Wherever notations are used that
are specific to Catalysis, they will be explained.

Knowledge Technology and CommonKADS
Knowledge technology has come a long way since the early days of “expert systems”.
The new generation of knowledge-engineering approaches that appeared around the
mid-eighties has matured. Also, the methods used in knowledge engineering have
come much closer to mainstream software engineering. This makes the use of
knowledge technology much more feasible than before, both from a technical and
from a business perspective.
CommonKADS (Schreiber et al., 1999)is the best-known representative of the new
generation knowledge technology. CommonKADS is the result of some 15 years of
R&D effort from a group of companies and academic institutions, working together in
a sequence of ESPRIT projects funded by the European Commission. Recently, a
textbook has been published that describes the basic approach (Schreiber et al.,
1999). In this handbook we use part of the CommonKADS textbook as baseline (see
previous section). The CommonKADS book uses UML as a baseline notation for many
of the concepts it uses, which makes it well suitable for the purposes of SDF-II. In this
handbook we take this in approach one step further, and show to you how you can
use CommonKADS with only UML notations, and modelling the complete system
within an object oriented paradigm. This handbook introduces knowledge modelling
into the world of object oriented and component-based development.

Organization
Model

Task
Model

Agent
Model

Knowledge
Model

Communication
Model

Design
Model

Context

Concept

Artefact

Ch. 3

Ch. 5 & 9

Ch. 11 & 12
Figure 1 The CommonKADS model set. The chapter numbers refer to the chapters in
Schreiber et al. (1999).

SDF-II Manual

© 2017 Kenniscentrum CIBIT 3

CommonKADS places, like all modern system-development frameworks a major
emphasis on system analysis and on reuse. The basic mechanism for this is dividing
the complete model of the world into a set of models. Figure 1 shows the
CommonKADS model set as defined in Schreiber et al. (1999). Six models define the
essence of a knowledge intensive information system, its context and its design. The
models serve as complementary views on the world, for instance the organisation
model provides a view on the organisation seen in its context and the role that the
system should play within this context. This provides a purely outside view on the
system. On the other hand and inside view is provided by the knowledge model which
describes the essence of the knowledge intensive processes in the system.
Reuse in CommonKADS is provided by the presence of template models. For
reoccurring knowledge intensive processes, CommonKADS provides standard models
that can, possibly after fine-tuning for a specific situation, be used in many cases. For
instance, knowledge intensive tasks like assessment, assignment or diagnosis, can be
described relatively independent of their context. By generalising their descriptions
and making them suitable for re-use, CommonKADS relieves the burden of having to
reinvent the wheel when you encounter a new situation. The idea is that, for instance,
the common features of diagnosing a patient and diagnosing a car are abstracted into
a model template that can be used in both situations.

The Object-Oriented Paradigm and UML
One of the major recent innovations in software analysis and design is the
introduction of the object oriented (OO) paradigm. In order to deal with the
complexity of large information systems, the OO paradigm describes these systems as
a collection of more or less independent objects that communicate with each other by
passing messages to each other. Objects often represent real world entities, making an
OO-program to essentially be a simulation of a part of reality. The OO paradigm has
been around since the end of the 70s of this century (A major milestone was the
Smalltalk-80 programming environment), and has gained impetus near the end of the
80s, with the introduction of a number of object oriented languages like Eiffel, C++,
and, later, Java.

The power of the paradigm is that the design of information systems becomes
scalable. It is possible to divide the world into a set of objects, each with its own
interface (set of messages it can respond to) to the outside world. Designing and
creating objects can then take place independently. This approach to systems design
finds its culmination in Component-Based Development that sees information systems
as created of components with a general purpose that can be developed completely
independent of other components and be reused unchanged in many different
contexts. One of the strong points of the OO paradigm is that the same paradigm can
be used at different levels of abstraction. From global systems analysis to the
implementation of small components, the expression language and concepts (classes,
use cases methods, messages) are the same.

The lingua franca for O-O analysis and design currently is the Unified Modelling
Language (UML, Booch et al, 1999). UML builds on earlier generation languages to
model OO-systems, and combines a number of notation techniques to model the
structure of systems, their dynamic behaviour as well as many other aspects of the
system. UML can best be seen as a toolbox with instruments to describe virtually any
aspect of an information system and its context.

SDF-II Manual

4 © 2017 Kenniscentrum CIBIT
i © 2017 Kenniscentrum CIBIT

In this handbook we take UML notations as the language for expressing the models of
information systems and models of the knowledge for the knowledge intensive parts
of these systems. A few notations, notably worksheets, stemming from
CommonKADS, augment UML in order to raise the expression power of our
framework. These worksheets are used to collect information about the organisation
in a structured textual format.

CommonKADS itself does not strictly adhere to the object-oriented paradigm,
although some of its concepts certainly resemble OO concepts. However, the
CommonKADS knowledge model sees knowledge as a process and does not model
these in a complete object oriented way. Many of the CommonKADS notations are
already expressed in UML, but others use a specific notation. Especially the
knowledge model uses notations that are not part of the UML. This situation makes it
difficult to use CommonKADS techniques for knowledge engineering within a project
using object oriented design of systems.

The goal of the current work is to provide a framework in which CommonKADS
techniques can be expressed in an OO language, and that the modelling techniques
stemming from CommonKADS and OO methods can be combined in a seamless way.
SDF-II provides a general structure in which methodologies can be combined and a
detailed elaboration of this structure for the case that CommonKADS is integrated in
the OO-world. Note that the result is not a methodology for object oriented
knowledge modelling (although it can be used in this way) but a general framework
for combining knowledge intensive modelling with mainstream methodologies.

Document Overview
This manual provides a detailed overview of the SDF-II methodology framework. The
next chapter describes the main principles of SDF-II, including a general description
of system development methods and the way they can be combined in a mixed
environment. This chapter is followed by a chapter which in describes in detail the
various models that the SDF-II framework uses in its instantiation where
CommonKADS and UML-based methods are defined. Each model and the notations
used for those model is described in detail using extensive examples.

Ways of looking at the process of developing a model of a knowledge intensive
information system are described in the chapter on Project Management. This chapter
shows how the modelling approach laid out in the chapter before can be put into
action in an actual project. SDF-II does not prescribe a project management method,
but in this chapter some examples of linking modelling activities to project
management methods are given, including a number of templates for using SDF-II
models under a risk driven project management method.

The book concludes with a description of a few items of the SDF-II library, a bridge
between CommonKADS template knowledge models and the way these models are
described in SDF.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 5

Principles Underlying the SDF-II Framework

Rationale
There are now an overwhelming number of methods, tools, techniques and
methodologies used in practical software engineering. Although there are some
efforts towards unification, in practice we have to live with the fact that people use
different methods. This poses the question how one deals with multiple methods.
Let’s take the CommonKADS example. In principle, CommonKADS is a complete
methodology, spanning the spectrum problem statement to coding and testing, and
also defining its own project-management approach (Schreiber, et al., 1999) .
However, when an organization wants to apply CommonKADS in a project, it will
seldom use it in its full glory. For example, many companies have their own software-
project management standards, which they want to apply. The CommonKADS
developers state that their methodology is “configurable”, meaning that those parts
needed for a certain project. This is a nice feature, but does not provide a complete
solution to the problem. One also needs to define how the ingredients of the methods
can be linked. For example, suppose a project management approach defines a
“definition study” deliverable. In that case we need to identify which CommonKADS
model elements together provide this product.

Approach
The discussion above implies that we need to define “bridges” between
methodologies (in our case: between CommonKADS and UML/OO) to be able to
support joint usage. For constructing bridges it is convenient to view elements of
methodologies at three levels:

Project management level
A methodology may provide a project-management approach, prescribing a life-
cycle model (LCM) with certain activities (“risk analysis”, “review”, “plan”, etc.)
and products/deliverables (“definition study”, “requirements document”, “test
report”, …).

A PM approach is often standardized organization-wide. Example
methodologies include PRINCE 2 and PERFORM.

Model development
This constitutes the “hart” of many methodologies. Here, the methodology
indicates what steps and products need to be developed to build the software.
The products are usually called “models”. Examples are the OMT models (object
model, dynamic model, functional model, design model), Yourdon’s YSM
models and the CommonKADS model set.

If one methodology defines both a project-management and a model-
development approach, there is usually a direct match between the project-
management products and the model-development products. However, it is
often the case that we need to link the standard project-management approach
with different model-development approaches. For example, we want to use the

SDF-II Manual

6 © 2017 Kenniscentrum CIBIT
i © 2017 Kenniscentrum CIBIT

CommonKADS model set (i.e. the model-development approach) with our
company-specific project-management approach.

Notations
Finally, methodologies often prescribe a certain set of notation to be used. For
example, YSM deploys entity-relationship diagrams, state diagrams, and data-
flow diagrams. Traditionally, there has been a wide variety of notations used in
software engineering; both tutors and students of software engineering will
have experienced that to their own distress. The book by Connor (1992) gives a
good indication of the spectrum of techniques, and the subtle ways in which
these overlap.

The abundance of notations and the resulting jargon jungle has made it difficult
to use multiple methodologies within a single project. In this light the UML
effort is a useful development. UML (Booch, Rumbaugh & Jacobson, 1998) is a
proposal for a set of standard nations that can be used for system analysis and
design. Although one can criticize certain decision made with respect to the
chosen set, the UML is certain a step in the right direction (and will be accepted
gratefully by tutors).

Note that UML does not provide notations for all MD products. Is emphasis lies
on system analysis, with also two notations for system design. Other
information, such as contained in the CommonKADS worksheets for context
modeling, falls for the largest part outside the scope of the UML. Therefore,
some notations remain methodology-specific for the time being.

Table 1: Description of sample methodologies
Aspect/
Methodology

PM approach MD approach Notations used

OMT - analysis model:
* object model
* dynamic model
* functional model
design model

class diagram
data-flow diagram
state diagram

YSM - enterprise essential model
system essential model
implementation models

ER diagram
abstract data types
data-flow diagram
state diagram

CommonKADS risk-driven
spiral

organization model
task model
agent model
knowledge model
communication model
design model

UML diagram (extended)
UML state diagram
UML activity diagram
UML use case diagram
inference structure
worksheets

Catalysis evolutionary business model
system boundary
component specification
internal specification

UML class diagram
(extended)
UML use case diagram
(extended’
UML sequence diagram
UML collaboration
diagram

SDF-II Manual

© 2017 Kenniscentrum CIBIT 7

 Figure 2: SDF framework overview

Methodologies differ in the way they cover these three aspects: project management,
software development and notations. Table 1 shows a few sample methodologies
using the distinctions made.

SDF-II Framework Overview
 Figure 2 shows these three levels as they appear in SDF-II. At the top we see the
project-management level. There is a large diversity of approaches we could consider
here; the names in the figure are just some examples. Also, these project-management
approaches are often confidential. Therefore we have adopted in SDF-II a pragmatic
approach. We describe in this handbook some typical project-management scenarios
that should serve as insightful examples. The scenarios represent frequently occurring
situations in developing knowledge-intensive applications. In the scenarios we
indicate the bridges from the project management activities and products to the
model-development level (i.e. instances of the lines connecting the two levels). We
expect that companies will want to specify their own company-specific project-
management strategy. The scenarios provided serve as guidelines for this process.
The middle level represents the models that are part of the description of the system.
Models are the main products of the systems analysis and design activity. There are
models that describe the context of an information system, models for the functions it
needs to perform as well as models that show how the system is divided into
components. Models relate to the project management levels, because they are (part
of) the deliverables that are required by the project management. For instance if a
project management method requires a functional specification, this document would
contain a model providing these specifications.
At the bottom we see the notations used. Notations are used to represent models. In
SDF we mainly use UML notation. For the inclusion of structured text used in the

SDF-II Manual

8 © 2017 Kenniscentrum CIBIT
i © 2017 Kenniscentrum CIBIT

description of business models, especially those describing the organisation structure
we use some of the worksheets defined by CommonKADS. The choice for this
notation language is justified by the fact that UML is rapidly evolving as the world’s
standard notation language for object-oriented modelling and design.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 9

SDF-II Framework Definition
The SDF-II framework assumes that the goal of the analysis of a knowledge intensive
system is a model or better a set of models of the system that should be created and
the context in which it will function. By creating a set of models, one chooses to
divide the world into manageable parts, and modelling each part separately. SDF-II
chooses to grossly follow the way CommonKADS has divided the world into models,
like depicted in Figure 1. In SDF we distinguish the business model, consisting of the
three models at the context level in Figure 1, as well as the knowledge model,
communication model and design model.

The business model describes the context in which the knowledge intensive system
must operate. What is the organisation like, what are its goals, which are the actors
and what are the processes going on in the organisation? The goal of the business
model is to position the system within the organisation and to describe the
responsibilities the system has towards other actors in the organisation and vice-
versa.
Quite often, we see that for the business model actually two models are created, an
as-is and a to-be model. This recognises the fact that often information systems
development is part of a business process redesign activity.

The knowledge model is very specific to SDF-II, as the presence of knowledge in a
system forms the criterion for a system to be knowledge intensive. SDF-II allows to
model the processes or actions that are knowledge intensive and to identify the
knowledge needed to perform these processes. Also the domains in which the
knowledge intensive actions are operating are modelled here.

The communication model models how the various actors in an organisation or within
a system exchange information. The actors can be people inside the organisation,
people outside the organisation (e.g. clients), other organisations (the organisation of
a supplier) or software systems.

The design model specifies how eventually the models can be realised in a system. The
design model serves as the bridge between the analysis of the system in terms of
abstract concepts and concrete concepts related to programming and other technical
issues.

Business model, knowledge model, and communication model together provide the
system-analysis documentation. It should be stressed that in modern system analysis
the focus is on conceptual, “application-world”, distinctions: the analysis models
describe real-world objects, and not implementation objects. In knowledge
engineering this is called the knowledge-level principle: knowledge should be
analysed in implementation-independent terminology1. UML and Catalysis advocate
the same principle.

1 The rationale of this principle, formulated by Newell (1982) dates back to the earlier days of
expert systems, when one tried to capture knowledge directly in the format of an
implementation formalism, such as production rules.

SDF-II Manual

10 © 2017 Kenniscentrum CIBIT

The principle has some practical implications for the use of notational techniques. For
example, if we talk about using a class diagram at some stage during system analysis,
we mean that the analyst should use the class-diagram notation to model real-world
objects. For this reason Catalysis introduces the term “type model” to denote a class
diagram in which real world objects are being described; the term “class” is reserved
for implementation objects. We do not adopt this terminology, as we consider class
diagram to be primary an analysis notation (cf. the UML guide). By definition a class
diagram that is used during analysis contains definitions of real-world objects. It
should be added that the some of the class-diagram notation of UML looks
suspiciously implementation-specific, e.g., the public, protected, or private nature of
an attribute. We discourage the use of such detailed specifications at the analysis
stage.

Business modelling

Modelling concepts
Business modeling is concerned with modeling business processes in which we are
interested from an IT point of view. We can distinguish two types of business models,
which are used for purposes:

General business models
General business models describe (a larger part of) an organization. The focus
is not (yet) on one particular software system. The description of a general
business model typically includes:

• organization structure: departments, branches

• organizational roles, people

• other “agents”, i.e. software systems

• process work-flows

• resources

• culture & power

General business models are often used for many different purposes in the
organization. They tend to play in key role in knowledge management.

System context models
System context models describe the direct organizational environment of a
software system. System context models are typically used in application
development projects in order to indicate how the system should interact with
its environment.

System context models typically have a smaller scope than general business
models. Their content is more system-analysis oriented. System context models
describe information and control flow between the system and its environment.
An example of a system context model can be found in Figure 9 below.

General business model
Each application project should specify a general business model, relating to the
relevant part of the organization for the project. Ideally, this model is already present
for a large part. And is maintained by the organization’s knowledge manager.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 11

There can be two instances of the general business model: one for the current
organization, and a second one for the new organization.
A general business model should at least contain the following elements:

• One copy of the CommonKADS Worksheet OM-1 which describes the
problem/solution portfolio as well as some organizational invariants.

• A UML activity diagram, describing the major process work flows. Use swim
lanes to indicate the place in the organization where the process takes place.
Use objects only for the major relevant objects. Avoid diving into too much
detail (you cannot be complete at this coarse level of description).
In case of complex workflow, one can include a second hierarchical level of
more complicated workflow in separate activity diagrams. Two levels should be
the maximum, however.

Optional components of the general business model are:
• Worksheet OM-2 (“Organization focus area description”): extends the process

model and enables a more complete organization description.
• Worksheet OM-3 (“Process breakdown”): characterize each process in terms of

its significance and the fact whether it is considered knowledge-intensive.
• Worksheet OM-4 for describing knowledge assets needed in knowledge-

intensive tasks at a general level.

System context model
A system context model is required for every application. Note that this model is
sometimes called the “business model”. Its scope is, however, limited to the direct
environment of the system.
The technique of choice for specifying a system context model is the UML use case
diagram. You can use the extended notation proposed in Catalysis, in which actions
and objects play a more prominent role.
Optionally, you can also include the following information:

• A UML state diagram (in case of asynchronous control) or a UML activity
diagram (in case of synchronous control) of the interaction control between
the external actors and the system.

• Include major object flows in the UML activity diagram.
• A UML class diagram, with all classes representing types, to describe the static

structure of the information exchanged between the external actors and the
system.

• Worksheet TM-2 for knowledge assets that the system should own.
• Worksheet AM-1 for the external actors in the use case diagram.

Example: the elevator-design domain

Problem statement. A company specialises in the construction of elevators for
buildings. The company is organised in a number of departments. The three main
departments involved in this study are the sales department, the design department
and the production department. The design department is suffering from a chronic

SDF-II Manual

12 © 2017 Kenniscentrum CIBIT

lack of adequately trained personnel. The sales department suffers from this, because
they are dealing with customers that complain about the long periods required to
make a tender. For such a tender the availability of a design is mandatory, because it
provides the basis for the cost calculation. Interviews with the design department
have revealed that about 90% of the elevator design is actually "standard stuff",
meaning that the design is based on relatively simple variations on a standard
elevator design. Therefore, the head of the design department has proposed to
construct a software system, that should be able to propose an elevator design in such
a standard situation. The human designers could then concentrate their efforts on the
difficult 10% of non-standard designs.

Figure 3 Activity diagram of the current business process. This diagram is part of the
General Business Model

Figure 3 and Figure 4 show, respectively, the current and the future business process.
The diagrams are UML activity diagrams. Together with the worksheet OM-1 these
form a minimal General Business Model. Note that the solution in the worksheet is
reflected in the new organisations structure and process in Figure 4.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 13

standard
design

write
tender

get customer
information

SALES
DEPARTMENT

decide about
design type

custom
design

cost
calculation

elevator
design

DESIGN
DEPARTMENT

non-standard standard

CUSTOMER

tender

customer
information

Figure 4 Activity diagram of the new situation. This is also part of the general
business model.

Organisation Model Problems and Opportunities Worksheet OM-1
Problems and
opportunities

1. making a tender after a customer request takes too
long

2. there is some social friction between the design and
sales department

Organisational context 1. Mission: commercial company, image of good
employer

2. External factors: Safety regulations w.r.t. elevators in
buildings

3. Strategy: operate fast in competitive market
Solutions Solution 1:

a. Construct software system for standard design tasks
b. Select and train liaison person (recruited from design

department).
c. Reorganize design department for handling the non-

standard designs.

SDF-II Manual

14 © 2017 Kenniscentrum CIBIT

Knowledge modelling

Mapping CommonKADS concepts to UML
The knowledge model takes a central place in CommonKADS. This model describes
the structure of knowledge intensive tasks as well as the knowledge needed for
performing these tasks. The CommonKADS methodology takes a task-centred stance
towards the modelling of knowledge. Tasks are decomposed into subtasks up to a
level of elementary inferences that are not decomposed further. An inference specifies
a step in a reasoning process in terms of the inputs of the step, the outputs and the
knowledge needed for the step, as depicted in Figure 5. The basic assumption behind
this way of modelling knowledge is that knowledge is a process, i.e. as something that
can help to convert one type of information or knowledge into another type. A task is
composed of a number of combined inferences yielding an inference diagram. The
inputs and outputs of an inference are specified as roles. A role is a ‘placeholder’ for a
domain element, or object that can play the role specified. For instance, in specifying
a knowledge intensive system that assesses whether people are eligible for a certain
loan, one can specify an inference diagram using a role of applicant. In a concrete
system this role can eventually be mapped to a person registered in the database of
the company giving the loan. This yields a three-layered view on knowledge in
CommonKADS: a task layer, providing the task decomposition and the control over
the task, an inference layer, providing the roles and inference diagram and a domain
layer specifying concrete (domain) objects and knowledge bases. Mappings between
these layers are the glue keeping together the complete knowledge model.
Figure 6 displays the structure of the CommonKADS knowledge model using the
three-layered architecture.

inferenceInput role Output role

Static knowledge

role

Figure 5 A CommonKADS inference

SDF-II Manual

© 2017 Kenniscentrum CIBIT 15

Figure 6 The three layers of the CommonKADS knowledge model. From Schreiber et
al. (1999, p. 79).

The ingredients of a knowledge model allow describing a task in great detail and to
indicate the knowledge intensive parts of the task. The essential ingredients of a
model are:

• Tasks. Tasks form the top level unit of analysis. A task can be, for instance,
assessing an insurance application, diagnosing a patient, or making a roster for a
school semester. Tasks can be decomposed into subtasks or into basic inferences.
Upon decomposition, the control over the subtasks should be specified: which
tasks to perform first, tasks to iterate etc.

• Inferences. An inference is a reasoning step that is seen as being elementary, i.e.
that is not decomposed any further. Examples of inferences are abstracting an
object, decomposing an object, generalising an object.

• Dynamic roles. Dynamic roles are placeholders for the objects in the domain that
play a role in the reasoning process. For instance, insurance applications,
candidate solutions for a problem and illnesses can be dynamic roles in a
knowledge model. Dynamic roles are the things the model can reason about.

• Static roles. Static roles represent the units of knowledge that are used in the
reasoning process. Examples are the set of rules that are used to assess a person’s
file, heuristics to find possible solutions of a problem, taxonomies to classify cases.
Static roles are the things the model can reason with.

• Rule types. Rule types specify the structure of the domain knowledge contained in
a static role. They constrain the types of expressions that can be part of the
domain knowledge. For instance, for abstracting a case a rule can be

patient.temperature>37.5 abstracts-to patient.fever=true.

This rule follows a pattern:

SDF-II Manual

16 © 2017 Kenniscentrum CIBIT

<expression about patient>
abstracts-to

<expression about patient>.

A rule type defines such a pattern and hence defines the knowledge that is
present in a domain representation.

case

abstracted
case norms

norm
valuedecision

abstract

select

match

specify

evaluate norm

Figure 7 An example inference structure for an assessment task. From Schreiber et al.
(1999, p. 121).

Using these elements one can describe a complete model of a domain.

Figure 7 displays a complete inference structure for an assessment task. This
inference structure is based on a task decomposition of the assessment task into an
abstraction and a matching step, the latter to be further decomposed into
specification of norms, selecting norms to evaluate and then match the evaluation to
a decision. Inference models like this form the core of the CommonKADS knowledge-
modelling framework. Therefore in order to build a bridge from CommonKADS to
UML, the building blocks of the task level models and inference models need to be
mapped onto UML concepts.

UML has some concepts that can be considered that are suitably matched to the
CommonKADS concepts of Tasks, Inferences and Roles. The following table shows
how such a mapping can be made. The two main concepts that are uses are use cases
and types. A Use case is a description of a process that takes place within the context
that is being described. For instance, a use case could represent the process of

SDF-II Manual

© 2017 Kenniscentrum CIBIT 17

ordering a product, accepting and insurance or whatever. A use case diagram consists
of a representation of the use case and the actors in the use case. The use case is
completed with a step by step description of what takes place within the use case.

Catalysis (D’Souza & Wills, 1999) offers an extension of the use case concept. In
Catalysis use cases are described precisely using pre- and postconditions, describing
respectively what the conditions are for a use case to take place and the result of the
use case in terms of changes to the state of the actors. For instance, a use case for
buying a product for a post order company may have as precondition that the person
is registered as a client and as a postcondition that the person owns the product and
that the price is paid to the company. Also in Catalysis, use cases may be decomposed.
For instance buying a product can be decomposed into ordering, shipping and paying
the product. Each part of the use case is considered to be a use case in its own right.
Catalysis often terms use cases as being actions.

Types are extensions of the class concept in UML. A type represents a set of related
responsibilities, represented as operations on the type. Where classes also include
attributes, types have related types that are part of their definition. A specific class, on
the design level can realise the behaviour represented in a type. For instance in the
case of a person buying a product, a specific class can realise the type of client.
Classes can implement multiple types just like concepts in CommonKADS can play
multiple roles.

The mapping between CommonKADS concepts and UML/Catalysis entities takes
place according to Table 2.

Table 2 Rules for mapping CommonKADS concepts to UML elements.

CommonKADS concept UML concept
Mapping

Task Use case/Action Actions indicate that something is
happening with the involved
actors, represented as types.

Inference Use case/Action An inference is seen as a singular
action.

Dynamic role Type Types represent all the objects
that play a role in the model. The
specification of the type defines
the kind of role the object plays.

Static role Type
Rule type Type

This table provides a way to adapt a knowledge model in CommonKADS into UML.
The mapping is relatively straightforward. As an example Figure 8 depicts the UNM
version of the inference structure in Figure 7. Some differences draw attention here.
First, some of the roles in Figure 7 have been combined. For instance case and
abstracted case have been combined into one type, the same is true for norms, norm
and norm value. In fact in the CommonKADS diagrams the combined roles actually
represent the same things, abstracted case and case both refer to the same case, only
the abstracted case contains a number of extra abstracted data. Norms is actually a
collection of Norm, and Norm value is an attribute of Norm, so these three roles refer
to the same concept as well. The inferences are the same, however, the interpretation

SDF-II Manual

18 © 2017 Kenniscentrum CIBIT

of the diagram is somewhat different in Figure 7 than in Figure 8. In Figure 7 an
inference means that a process takes a role as input and generates another role as
output. In Figure 8, an action means that the objects participating in the action
together make sure that a certain end state of all objects is reached. That can be
realised by a separate process, or by the objects themselves, as in object oriented
environments objects themselves can include behaviour. Both specifications are in
itself independent of the actual implementation.

Select.
Knowledge

Application

Decision

Abstr.
knowledge

abstract

match

select

specify

evaluate

Spec.
Knowledge

Evaluation
Knowledge

Matching
Knowledge

Norm
*

*

truth_value

Figure 8 UML version of the inference structure represented in Figure 7

The actions depicted in Figure 8 do not show inputs and outputs, as process
representations would. Actions actually do not have the notion of in- and output.
However, they can have a notion of initiative. For instance, the application may take
the initiative for the abstraction. Initiative can be indicated in collaboration diagrams
by drawing an arrow from the initiator to the action, instead of a line. This is not
necessary and should only be done when this increases understanding of the diagram.
Of course, with just replacing one notational convention by the other, the integration
is hardly done. Figure 8 only is an end result of a knowledge modelling process. The
process leading to diagrams like Figure 8 will be discussed in the next section.
Another point is the specification of the content of the action. What exactly does
“specify” mean in Figure 8. Catalysis specifies the content of actions by pre- and
postconditions, expressions that must be true before and after the action has taken
place. In the next section we will also address the way the content of the action is
specified in SDF-II and the role of knowledge herein.

Creating a knowledge model using refinements
A knowledge model in SDF-II will be represented by a set of types (representing
objects in the real world, including objects representing knowledge) and actions,
representing joint responsibilities of objects to perform a certain task, reach a certain
state or to actuate a process. This section deals with the question how business
processes can be decomposed into smaller processes and actions, into the level of
detail needed for system specification. Especially the difference in approach between
knowledge intensive and not-knowledge intensive parts will be discussed.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 19

As an example we will take an insurance company. A person who wants to insure a
certain object or take a life insurance will apply for this at the company, the company
will assess the application and accept or reject the application. In both cases the
person will receive a notification and in case of acceptance, the application will be
processed into an insurance policy.

The system context diagram for such a process is displayed in Figure 9. This diagram
is not a part of the knowledge model - it belongs to the business model – but it is the
starting point of knowledge intensive analysis. The “apply” action is a business process
that is taking place, being a joint responsibility of both the client (filling in the
application form, answering questions) and the company (processing, assessing and
finalizing the application). The post condition indicates that the end result of the
action is that the client is notified of the result, and that the result is a consequent of
the business rules that the company uses in assessing this kind of applications. The
“application” type is part of the glossary that defines the central terms in the
description and the conditions for the action. For reasons of space, not all terms are
depicted here. Especially the term “business rules” may be a candidate for including
in the glossary.

apply

Post: the application is assessed
according to the business rules
by the company and the customer
is notified whether it is eligible

Application

eligible(): Boolean

Insurance
application

customer company

*

Figure 9 System context diagram for an insurance application, including a
postcondition.

The system context model provides a top-level description of the conditions in which
the new system must operate: who are the actors (human, organisational and
technical) in the system’s environment an in which way does the system co-operate
with these actors. The system context model can be elaborated a bit more like shown
in Figure 10. This figure makes use of a convention used in Catalysis (D’Souza &
Wills, 1999) on using the attributes box pf a class or type to denote the glossary of
related types. For types it is seen as not useful to indicate attributes, because they are
seen as specific for a certain implementation. A glossary instead defines the language
for defining the types used to express ideas, rules or constraints on the types. Here we
see that inside the insurance company, the same application as in the glossary in

SDF-II Manual

20 © 2017 Kenniscentrum CIBIT

Figure 9. Also two actors have been added: an assessment system and a knowledge
manager. The task of the latter is to keep the knowledge used by the assessment
system up to date, for instance with changing legislation or changing company policy.
This role was introduced here in order to indicate a requirement on the nature of the
knowledge representation of the assessment system. The knowledge should be
represented in such a way that this kind of user can access and change the knowledge
inside the system. This usually is a main reason for representing knowledge explicitly,
rather than putting the knowledge directly into the code of the system.

In our system we would label the assess action to be knowledge intensive, meaning
that this operation requires explicit representation of the knowledge which would be
acquired and represented using techniques of CommonKADS. This would mean that
the actions used to decompose such a knowledge intensive action would have the
interpretation of being a CommonKADS inference. This means that they all will
incorporate an explicit knowledge role in their specification.

Company

Apply(application: Application)

Knowledge
manager

Assessment
system

Application

accepted(): Boolean

assess

updateKnowledge

Figure 10 Class (or type) diagram for the company, itself viewed as a type.

The assessment system can be further decomposed as in Figure 11. Here actually two
steps are done in one. First, following Figure 10, the assess action is converted to an
assess operation on the assessment system. This step means that the responsibility for
taking the action is fully assigned to the assessment system. The second step is that
the assess operation is implemented by a collaboration between the application, the
decision to be made and the knowledge inside the company. The result of these two
steps is that the assess operation is now an action inside the assessment system, that
it is clear that it is knowledge intensive (due to the explicit presence of a knowledge
role). The typical post condition for a knowledge intensive action is that the
knowledge is applied to yield a result in one of the other actors.
It would be possible to leave out the explicit role of a knowledge type and express the
knowledge itself in terms of the post conditions, for instance using a language like
OCL. The advantage would be that the knowledge would be directly visible on a
diagram like the one drawn in Figure 11. Major drawbacks, however, are the fact that
each time the knowledge changes, the model using this knowledge should also
change and that knowledge would be spread over the model and not be expressed in

SDF-II Manual

© 2017 Kenniscentrum CIBIT 21

a structured, decomposable form. Therefore, in SDF-II we choose for the presence of
explicit types for knowledge, each representing parts of the knowledge needed for
performing a specific action. Post conditions express that the knowledge attached to
the action is applied in a proper way.

Assessment
System

Assess()

<<implements>>

assessApplication Decision

Post: the decision is taken using the specified knowledge

Company
Knowledge

Figure 11 The assessment action implementing the assessment responsibility of the
assessment system, explicitly making use of knowledge.

After identifying knowledge intensive actions, the following step is their
decomposition in sub-actions (subtasks) and basic inferences. Along with the actions,
also the knowledge needed to perform them should be decomposed. The object of
type ‘Company Knowledge’ depicted in Figure 11 represents the whole of knowledge
that is needed in the system to complete the assessment operation. When this
operation is decomposed, the knowledge should also be decomposed in order to
indicate which parts of the knowledge are needed for which parts of the action.

In SDF-II we establish decomposition of actions and knowledge using refinements. A
refinement is a relation between two models in UML which states that both models
have the same goal and model the same system but that the model that refines offers
information at a more detailed (or less abstract) level. A basic requirement on a
refinement relation between two models is the existing of a refinement model, which
specifies the relation between the concepts in the two models.

The bottom part (the collaboration) in Figure 11 can be further refined as in Figure
12. For the decomposition of the assess action we made use of the assessment
template model from CommonKADS, as depicted in Figure 7. The refinement model
displays the exact decomposition of the assess operation and hence explains the
presence of actions like “abstract”, “select” etc. in the refined model.

A similar decomposition should take place for the knowledge that takes part in the
interaction. In detail company knowledge would decompose into the 5 knowledge
types as visible in Figure 12. Following Figure 12, all inference actions are considered

SDF-II Manual

22 © 2017 Kenniscentrum CIBIT

being knowledge intensive. The original CommonKADS inference model did not see
select as being a knowledge intensive task. The presence of a selection knowledge type
indicates that here this inference is knowledge intensive. Of course, the decision to
make a certain action knowledge intensive is domain dependent. If in this system
selection would take place randomly, “select” would not be knowledge intensive and
the selection knowledge would not have been present in Figure 12.

-- refinement model

assess

abstract

Specify select evaluate match

matchcase

<<refines>>

assessApplication Decision

Post: the decision is taken using the specified knowledge

Company
Knowledge

Select.
Knowledge

Application

Decision

Abstr.
knowledge

abstract

match

select

specify

evaluate

Spec.
Knowledge

Evaluation
Knowledge

Matching
Knowledge

Norm
*

*

truth_value

Figure 12 Refinement of the assess operation. The small model top-left is the original
model from Figure 11, the model bottom left is the refinement model, and the model
on the right is the refined model.

Figure 12 shows which actions will take place. It does not specify the control over
these actions, which will be discussed below, and not what the actions are. The what
aspect of the actions is defined in terms of conditions and invariants, defining in
declarative terms the effect of an action taking place. These conditions are elaborated
in Table 3. In the case of modelling knowledge intensive actions, the post conditions
always explicitly refer to the role of the knowledge involved in the action.

Figure 12 plays the role of the CommonKADS inference diagram. It shows, in terms of
actions, how the various parts of the knowledge and the domain elements co-operate
in order to yield a certain result. The interpretation of the collaboration depicted here
is more of an object-oriented kind. In the end, all actions will be decomposed in terms
of responsibilities for the domain objects present. There are three ways of doing this:

1. Assigning a responsibility directly to one of the participants of the action. This
means that there will be an operation defined on this participant which will
perform the action. Probably, the other participants will be passed as an argument
into this operation.

2. Create a new agent object, which will provide the service of performing the
action. This agent will not represent a concrete domain object, but will represent
the task or inference that the action stands for. This option may be useful
whenever it is difficult to assign the responsibility to one participant

SDF-II Manual

© 2017 Kenniscentrum CIBIT 23

Leave the assignment of the responsibility unspecified at a level and divide it further
in new levels of refinement, down to the concrete design level of the system. For
instance, abstracting an application is a co-operation of the application itself
(providing information, storing the newly generated abstracted information) and the
knowledge (generating new information by applying rules). The exact division of
responsibility may be to detailed to specify at the level of system’s analysis and
knowledge modelling. In the end, at the design level, the decision has to be made.

Table 3 Conditions specifying the actions in Figure 12

Abstract

 Post: Application is in its abstracted state.
Abstracted facts have been added generated by the
abstraction knowledge.

Specify

 Pre: Application is in its abstracted state.

Post: A set of relevant norms has been generated
using Application information and the relevant
specification knowledge

Select

 Pre: Norms are available.

Post: One norm is selected as the current norm to
evaluate, using the available selection knowledge.

Evaluate

 Pre: One norm is current

Post: The value of the current norm is specified
according to the evaluation knowledge.

Match

 Pre: At least one norm has a truth value.

Post: If the known values of the norms lead to a
decision, according to the matching knowledge, the
decision is generated.

The exact choice for method is dependent of the characteristics of the domain. As a
general guideline one can say that it is wise to specify things only when you have to
and when you are sure that the choice can be made correctly. The third option,
leaving things unspecified therefore should be the default consideration.

An important issue in interpreting diagrams like Figure 12 is that of control. It should
be stressed that, just like an inference diagram in CommonKADS, there is no implicit
or explicit specification of control, i.e. the diagram does not specify the order in which
the actions take place. UML offers several techniques for doing this. Sequence
diagrams show timelines of the action sequence to display scenarios of actions.
Activity diagrams can define a full control structure.

SDF-II Manual

24 © 2017 Kenniscentrum CIBIT

Case Norm Decision Abstraction
Knowledge

Evaluation
Knowledge

Specification
Knowledge

Selection
Knowledge

Match
Knowledge

abstract

specify

select

evaluate

match

Figure 13 Sequence diagram representing a data driven scenario for the actions
represented in Figure 12

abstract

match

select

specify

evaluate

[decision known] [decision unknown]

[no norm selected] [norm selected]

Figure 14 Activity diagram defining a control structure for data driven inferences
using the actions in Figure 12

Figure 13 and Figure 14 both define a specific control structure on the actions defined
in Figure 12. The two kinds of diagram differ in terms of what they specify and what
they show. The sequence diagram in Figure 13 shows a typical data driven scenario
that can be applied to the actions. The vertical lines represent instances of the types
present in Figure 12. Time runs from the top to the bottom and the actions,
represented here as horizontal lines with blobs on the lines of the instances
participating in the action. This particular notation for sequence diagrams was

SDF-II Manual

© 2017 Kenniscentrum CIBIT 25

adopted from Catalysis (D’Souza & Wills, 1999). The sequence is data driven because
it follows a typical input-output pattern: the availability of case data triggers the first
action, followed by other actions in a more or less logical sequence indicated by the
flow of objects as visible in Figure 7. The activity diagram, Figure 14, (adapted from
Vorgers, 1999) shows a structure for data driven inference. The main difference is
that this figure does not represent a single scenario, but a control structure over all
actions present in the diagram, including iteration.

The advantage of a sequence diagram is that it explicitly and naturally shows the
sequence of actions in time as well as the participants in those actions. It can be very
convenient to elaborate on several sequences in order to get a feeling and explain
how the system will operate in practice. The activity diagram is more suited when the
control is more complex and when a more formal definition of the control structure is
needed.

Data driven inference is one way of using Figure 12. In this case, abstraction is the
first action, meaning that this operation must generate all abstractions that may be
needed in the rest of the process. For reasons of efficiency or elegance, however, it
may be better to generate only those abstractions that are actually needed. In that
case, the abstraction should take place after norms have been specified, as the specific
norms drive the kind of abstraction that is needed. In this case an activity diagram
would look as depicted in Figure 15 (adapted from Vorgers, 1999). This strategy is
called a goal driven strategy because the abstraction only takes place to serve a
specific goal, specified by the results of earlier actions.

The presence of two different inference strategies on the same collaboration diagrams
shows that the control really is independent of the actions themselves. This lead to
the fact that diagrams like Figure 12 can be quite generic and applicable with
multiple problem-solving strategies.

SDF-II Manual

26 © 2017 Kenniscentrum CIBIT

abstract

match

select

specify

evaluate

[decision known]

[decision unknown]

[norm selected] [no norm selected]

Figure 15 Goal driven problem-solving strategy for the assessment example.

Representing knowledge types
A central new element in the method for modelling knowledge intensive tasks and
processes is the knowledge type. In the diagrams they appear as “normal” types, with
a special role. For clarity, users may create a special stereotype for knowledge type to
indicate their common role in knowledge intensive systems. The knowledge type
represents the knowledge that is involved in performing an action. This means that a
knowledge type gets the responsibility for applying the knowledge within the
performance of the action. Concretely, this means that the knowledge type can have
responsibilities of publishing the knowledge it contains and to apply the knowledge to
a given instance of the information it refers to. Knowledge therefore can be modelled
as a relation, or association class between the domain types that the knowledge acts
upon. Such a model places the knowledge type itself in the domain model in a similar
way as done by the CommonKADS typical domain schema. The knowledge type
specifies the kind of relation that exists between the two domain types and represents
in the implementation the actual container of the knowledge. Figure 16 and Figure 17
show a general definition of a knowledge type and an application for a part of the
assessment domain model.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 27

Knowledge type

Apply(in: Domain type 1; out: Domain type 2)
Find(out: Domain type 1; in: Domain type 2)
GetRules()

Domain type 2Domain type 1

Knowledge
item

*

Figure 16 Scheme for knowledge types, expressing the relation between two domain
types in terms of knowledge.

The knowledge types are represented as collections of knowledge items. In the
evaluation example in Figure 17 this is instantiated as rules. Rules can serve two goals
in creating knowledge intensive systems. At the modelling level rules may be used to
specify the knowledge needed for a certain process. As such these rules are considered
to be part of the knowledge model. At the implementation level, rules may actually be
the implementation of the knowledge. For instance Aion, a tool produced by Platinum
Technology provides a direct implementation of a rule engine that evaluates rules as
part of the reasoning process. In this part of the manual we are talking about rules a
modelling constructs, decoupled from the actual way these rules are realised. The
rules specified at the modelling level can still be implemented as C code, Aion Rules,
Prolog clauses, or any other technique that seems suitable in a specific project.

EvaluationKnowledge

Apply(in: Norm; out: Decision)
Find(out: Norm; in: Decision)
GetRules()

DecisionNorm

Evaluation
Rule

*

Figure 17 Instantiation of a knowledge type for the relation between Norm and
Decision in the assessment example.

SDF-II Manual

28 © 2017 Kenniscentrum CIBIT

Table 4 Age categories for the insurance example

Age AgeCategory

<18 Minor

³18, <23 Young

³23, <60 Middle

³60 Old

CommonKADS defines exactly what a rule is about. A rule is a certain relation that
holds between expressions. For instance, when an insurance company uses specific age
categories, abstraction rules can be used to put people into the various age categories.
Assume that Table 4 contains the definitions of the age categories used by the
company then the rules would take a form like:

Age < 18 abstracts-to AgeCategory = Minor

This means that this rule is a relation between the expressions “Age < 18” and
“AgeCategory = Minor”. The rule type EvaluationRule, typically is expressed as an
association between two types, viz. Application and Application (in this case the
abstracted knowledge is stored inside the same type. Using an UML template for rules
can bridge this difference.
Figure 18 shows how this is done. The left part of this figure shows the definition of
an expression as consisting of an operator, an object and a value (for instance >, Age,
and 18). Object is a parameter that can be filled in by any object. This is done in the
right part, where the expressions are used in the conditions and actions of a rule. The
rule itself is a template for specific usage in knowledge types. For instance Figure 19
uses the rule template in defining the nature of the evaluation knowledge as shown in
Figure 17.

Expression

ObjectValue

Operator

Object
Rule

Expression
<ConditionObject>

Expression
<ConclusionObject>

condition

conclusion

ConditionObject
ConclusionObject

Figure 18 Using UML templates for expressing rules

SDF-II Manual

© 2017 Kenniscentrum CIBIT 29

EvaluationKnowledge

Apply(in: Norm; out: Decision)
Find(out: Norm; in: Decision)
GetRules()

DecisionNorm

Rule
<Norm, Decision>

*

Figure 19 The rule template used to define the nature of evaluation knowledge.

It should be noted that this exercise of defining rules should take place only once. In
principle, Figure 18 can now be reused in any project to state that a certain type of
rules exist that describe the relation between two domain types. By instantiating the
template as done in Figure 19, one defines the nature of this relation. What has not
been specified in Figure 18 is the connection symbol, the abstracts-to symbol in the
example rule on page 28. This is usually irrelevant for the definition of the rule itself,
mostly this term is implicit in the kind of rule and it is up to the modeller to choose a
term when actually describing the rules.
Modelling knowledge in this way means that separate from a diagram like Figure 19,
the model should also contain the actual rules instantiating the relation. For instance,
for abstracting Age to AgeCategory, one would need to add Table 4, or a set of rules
expressing the same, to the documentation of the model. This immediately shows one
of the strong points of the approach to knowledge modelling outlined here. There is a
clear separation between the form of the knowledge, expressed in the knowledge type
and its content expressed in actual rules or tables. This also shows how the tasks of
the knowledge manager from Figure 10 would fit in. He would have a task in
updating the content of the knowledge types, not of the structure.
It should be noted that Figure 18 only defines rule types for rules containing singular
expressions, like age >18 or income = 20000. More complex, like age>18 AND
income = 2000 expressions require a more complex structure, which is easy to create
but would go to much into technical detail for the scope of this manual.

This closes the discussion on the basic principles of linking CommonKADS concepts to
UML. Basically what is offered is a mapping between notations and an interpretation,
as well as a standard approach to knowledge modelling using knowledge types. The
next section will explain how another important asset from the CommonKADS
methodology can be incorporated into SDF: the use of template knowledge models.

Linking type models to domains
The models described above are all type models meaning that they are expressed in
abstract types that represent a role that a certain concrete domain object can play.

SDF-II Manual

30 © 2017 Kenniscentrum CIBIT

The idea behind this is that it is probably easier to find reusable parts of software
designs when the design is abstracted from the concrete application. Of course, in the
end the type models have to be linked to domain concepts. In this section it will be
describe how this is done.

The domain concepts can be represented in a UML class diagram. For instance Figure
20 depicts a part of the class diagram for a company’s administrative system. This
concrete class diagram, representing the domain concept the company works with,
should be linked to the abstract descriptions in the type models. This is done by
assigning the roles to domain concepts. Now it should be noted that types represent
interfaces. By saying that a certain domain concepts plays the role of a certain type,
this means that the domain object takes the responsibility of implementing the type’s
interface. The notation used for this is that of inheritance, as inheritance means that
the child object takes on the responsibilities of its parent.

Address
street
city
postal_code

print_envelope()

Apply Form
date
insurance type

assess()

Person
name
birth_date
gender

register()
...

has

insurance
application

Figure 20 Class diagram for a concrete insurance application

Apply Form
date
insurance type

assess()

Person
name
birth_date
gender

register()
...

Application

assess()

Customer

Figure 21 Mapping domain concepts to types.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 31

Figure 21 shows how this is done for two concepts present in Figure 9. Of course, in
concrete systems, for every type a corresponding class in the system should
implement its interface. One class may implement more than one type, for instance,
the class Apply Form may implement both the Application and the Decision types,
meaning that the decision is eventually recorded by on the Apply form.

The CommonKADS template knowledge models
Research that has lead to the CommonKADS methodology has shown that the number
of essentially different knowledge intensive tasks is not very large. There exist
approximately fifteen different tasks that are used in practice and that really
represent a different kind of knowledge. The basic idea is that assessment, that was
used as an example in the previous sections, is the essentially the same, in all cases,
independent of the actual context of assessment. So be it a physician assessing a
patient, an insurance agent assessing an application or a carpenter assessing the
quality of a wooden construction, the structure of the task will be essentially the
same. Of course, the content of the knowledge needed for these tasks will be
dramatically different: the rules for assessing a patient will have nothing to do with
the rules for assessing woodwork.

CommonKADS expresses this likeliness between different tasks in the presence of a
library of template knowledge models, also known under the names of reference
models or interpretation models. Each entry in this library stands for a prototypical
knowledge intensive task that can be instantiated for a specific application. Figure 22
displays the various template models that the CommonKADS book (Schreiber et al.,
1999) offers.

knowledge-
intensive

task

analytic
task

classification

synthetic
task

assessment

diagnosis

configuration
design

planning

scheduling

assignment

modelling

prediction

monitoring

design

Figure 22 The collection of template knowledge models offered by CommonKADS
(From Schreiber et al., (1999, p. 111).

SDF-II Manual

32 © 2017 Kenniscentrum CIBIT

The collection of template models can be “translated” to SDF-II at almost no effort,
following the procedure outlined above. However, in reusing the models in a more
efficient way, it would be useful to be able to refer to the library of models, instead of
having to copy the template model into a specific project. UML offers a facility for
doing this, the framework construct. A framework is nothing more than a template for
a (partial) model, that can be bound to a specific instance in a model. To explain the
concept, we will remodel the assessment case, by now first creating a framework and
then applying it to the insurance case.

In a framework, the names for the types are usually chosen generally. So we do not
speak of an insurance application but of a case. Remember that case can also be
instantiated by a wooden construction. In building the framework, we start at the
level of Figure 11. The inside of the collaboration on the bottom part of this figure
can be used as the definition of the framework, as depicted in Figure 23.
The meaning of Figure 23 is that the collaboration inside is isolated in a framework
that can be applied in any relevant context. The assess action inside the framework is
refined in exactly the same way as depicted by Figure 12 and further.

Having defined this framework, it can be applied to the insurance case. In applying
there are two things that must be done. First it has to be stated which framework is
used, and second, the relation between types in the framework and the corresponding
types in the actual model has to be made. This is displayed in Figure 24. The dashed
oval in this figure represents the framework, the arrows to the types of the insurance
case indicate the bindings of the framework concepts, written next to the arrow, and
the types in the model.

assessCase Decision

Post: the decision is taken using the specified knowledge

Knowledge

Assessment <<framework>>

Figure 23 The definition of the assessment framework

SDF-II Manual

© 2017 Kenniscentrum CIBIT 33

Assessment

Company
knowledgeApplication

Decision

Assessment
System

Assess()

<<implements>>

Case

Decision

Knowledge

Figure 24 Application of the assessment framework to the insurance case.

Figure 24 is the exact equivalent of Figure 11. The application of the framework
means that the elaboration of the model in terms of refinements is no longer
necessary. This is done only once, as part of the description of the framework, and
can be reused in every applicable model.

Summary and guidelines for knowledge modelling
This section on knowledge modelling has outlined the principles of modelling
knowledge intensive tasks in UML, using CommonKADS principles. This final part
summarises the work and offers some general guidelines for modelling knowledge
intensive problems, in the form of a step-by-step plan to take to create a model of a
knowledge intensive task. Please note that the following steps are not part of a
prescriptive cookbook. The steps should be applied with care and it is possible to use
a different approach, to skip, repeat, or change the order of steps. The suggested
order serves only as a starting point for planning analysis and design of a knowledge
intensive system.

1. Divide the system into components
The business model should be subdivided into components, each responsible for a
coherent set of functions in the system. This first step is very general and not specific
for knowledge intensive systems. The word system is to be taken very general here, it
can mean the business as a whole, a department or a specific software system. This
means that the division into components will take place at various levels.

2. Represent the relevant tasks as actions and types.
This step is important to identify the top-level actors in the task and to have a starting
point for analysing the various tasks. For each component, the responsibilities should

SDF-II Manual

34 © 2017 Kenniscentrum CIBIT

be expressed in terms of tasks, represented as actions. Types should identify the main
actors within the component.

3. Divide the task into subtasks by decomposing the action and types
The decomposition should be taken further in order to divide the task into
manageable pieces. Each action should be decomposed and refined until a level has
been reached that can be considered to be elementary. The criterion for this is that
the pre- and postconditions for the resulting actions can be formulated in such a way
that the target audience of the document containing the model will know how to take
the process of design and implementation further. This is of course a weak criterion,
dependent on context and the target audience, but nothing stronger can be given as a
general guideline.

4. Identify knowledge intensive actions
Actions can be identified as knowledge intensive. The criterion here is that the
postcondition for such an action craves expression in terms of knowledge. Again a
weak criterion, certainly given that postconditions can be expressed in terms of
knowledge rules. Important here is to assess whether there is an independent role of
the knowledge needed to realise the action. Try to answer questions like: “should it
be possible to maintain the knowledge independent of the system?” or: “is there a
need for separate knowledge acquisition for this action?” If the answer is affirmative,
the action probably is knowledge intensive.
Knowledge intensive actions can be decomposed just like any other action. The
knowledge associated with the action must be decomposed as well. The composing
actions may or may not be knowledge intensive, at least one will be. In decomposing
knowledge intensive actions, use the CommonKADS template models and the
corresponding SDF frameworks wherever possible. These models can either be used
as a clear-cut solution or as a starting point for further analysis. When used “off the
shelf”, the template can be used by incorporating the corresponding framework, when
using the template for further analysis, the template itself should be copied into the
model and adapted where needed.

5. Represent knowledge types for the knowledge intensive actions
For each elementary knowledge intensive action there should be exactly one
knowledge type. The goal of this step is to identify the structure of the knowledge
sought for, in terms of relations between domain types. It should be stressed again
that the structure of the knowledge is independent of its actual representation and
implementation. This means that the relations found here do not necessarily lead to
rules in a rule-based system. On the contrary, the relations can be implemented in
any sensible way. Examples below will make this more clear.

6. Gather the knowledge to fill the knowledge types
The knowledge needed for actually realising the knowledge types and thus their
corresponding actions should be gathered and represented. This can be in the form of
a set of rules, but there are many more possible forms of representing knowledge.
Other possibilities are tables like exemplified in Table 4, decision tables, hierarchies,
etc. For the eventual implementation of these knowledge types one can use plain
programming languages or dedicated tools for knowledge intensive systems, like
Prolog, Lisp, or Aion.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 35

It is essential that the knowledge is described independently of the structure of the
system. This means that the knowledge can be maintained independently of the rest
of the system. It even would be possible to provide the knowledge engineer from
Figure 9 with a dedicated editor for the knowledge in the system that then can be
maintained. The maintenance and updating of knowledge then becomes a separate
business process within the organisation in which the knowledge is created,
distributed and used.

The examples mentioned have in common that knowledge is seen as static during the
life cycle of the system. The analyst gathers and specifies the knowledge and the
knowledge is implemented in the system, hopefully in a maintainable form. Currently
modern techniques allow for different ways of gathering knowledge and making the
knowledge itself more dynamic. Suppose the knowledge intensive task is to select a
group of addresses for a direct mail action for a company. The knowledge needed for
this selection does not come from human experts but can be generated from the
company’s databases containing data on income, address, age, etc. of a large number
of potential customers. The knowledge needed for this task can be generated from the
databases using techniques like data mining and data warehousing.

In such a case, the analysis of the system that should generate the addresses for the
mailing can take place following steps 1-5 outlined above. This would yield
requirements for the structure needed for the knowledge to be generated. The data
mining system would then generate the content of the knowledge. Of course, the data
mining system itself should be represented in the model, as an actor for the action of
generating the new knowledge. Figure 25 displays a fragment of such a model. Note
the two different roles of the selection knowledge type. In the Create knowledge
action, it serves as a normal domain type, in order to change its content. In the Select
action, it serves as a knowledge type that uses its content to realise the action yielding
the mailing list.

Select

Addres
database
system Mailing list

Selection
knowledge

Data mining
component

Create
knowledge

Figure 25 Collaboration diagram for the case that a data mining system generates the
knowledge for a knowledge intensive action.

In a similar way other techniques for creating or applying knowledge can be fitted
into a model. In its standard interpretation a knowledge type is the vehicle to apply
some knowledge in order to realise an action. In order to make sense, it defines a
structure on the knowledge that is needed. In the end, there is no constraint

SDF-II Manual

36 © 2017 Kenniscentrum CIBIT

whatsoever on the way the knowledge is actually represented. Data mining
techniques, case based reasoning systems, agent based systems all can play the role of
a knowledge type, provided that they can fulfil the responsibilities on the knowledge
type in terms of applying the content to instances of the domain types present in the
system.

An important feature of the SDF-II that it explicitly leaves undecided where the
knowledge should be allocated, i.e. which objects should actually carry and
implement the knowledge needed for a knowledge intensive process. Knowledge
types represent knowledge and the decision how these types are going to be realised
by classes is deferred to the design level. For instance in the assessment example, the
knowledge to abstract a case may at the design level be part of the same class that
realises the behaviour of the case itself. Other knowledge types may be realised by
separate classes or by dividing their responsibility over more than one class.

Communication Modelling

Approach
A knowledge model specifies the internal structure of an agent carrying out a
knowledge-intensive task, such as assessing a loan application or performing
diagnosis of a malfunctioning device. This leads to a component specification for this
agent. In addition, we also have to model communication between the agent and
other agents involved in the task. These other agents are either humans or other
software systems. The latter have their own component specifications.
We distinguish two steps in constructing a communication model:
1. Describe a few typical communication scenarios with the help of a UML sequence

diagram. These scenarios are also useful for testing the system later on.
2. Generalize these scenarios by constructing for each agent a UML state diagram that

describes the events and actions that are exchanged with agents. In this diagram
only the external aspects of the agent behavior have to be included, as all other
control flow is already specified in the knowledge model.

You have to make sure that the state diagram are consistent with each other by
ensuring that each message sent has a corresponding receiving event in another
agent.
The approach advocated here is in fact rather standard, both in O-O analysis and in
CommonKADS (see Schreiber et al. 1999, Chapter 9). To illustrate the approach we
have included a sample communication model for the assessment application

Communication scenarios
Figure 26 shows a sequence diagram for a scenario in which the loan application of a
customer is successfully handled. Each agent has its own “life line”. A box on the line
indicates that the agent is carrying out some work. Arrows indicate messages being
sent from one agent to another. The vertical lines denote a sequence in time: from top
to bottom time passes. In the ca first scenario a customer sends in a loan application.
This application is assessed by the assessment system. The application is assessed to
be eligible for a loan offer, and a message is sent to the sales department. The sales
department sends a formal loan offer to the customer. She thinks a while and then
decides to accept the offer by sending a message back to the sales department of the
company.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 37

:customer
:assessment
system :sales

submit
loan application

OK to process

send loan offer

accept offer
Figure 26. Scenario for successful handling of the loan application

In Figure 27 we show a second scenario. Here the application is not considered
eligible by the system. As a result a rejection letter is sent to the customer by the
system. The sales department is notified at the same time of this turn of events.

:customer
:assessment
system :sales

submit
loan application

notify failuresend rejection
letter

Figure 27. Scenario for application rejection by the system

When describing scenarios it is common practice to describe a number of “normal”
scenarios, such as the ones described. In addition, one includes scenarios of abnormal
situations (e.g., erroneous inputs, and system failures). Scenarios are not only useful
for communication modelling, but can also be helpful in defining system tests.

SDF-II Manual

38 © 2017 Kenniscentrum CIBIT

State diagram for an agent
In a sequence diagram we describe one possible sequence of events, also called a
“snapshot”. For communication modelling it is necessary to generalize over these
scenarios. We can achieve this with the help of a UML state diagram. State diagrams
describe the states an object can be in during its “lifetime”. In object-oriented analysis
state diagrams are used to model the state behavior of a single object. In the context
of communication modelling we are interested in constructing state diagrams for all
actor objects.
Figure 28 shows a state diagram for the customer agent. When she has filled in the
application form, a message is sent (“application submission”) to another object. The
customer then enters a “waiting” state. In case of the vent “offer made” (i.e., the
company has made a formal offer) she enters a new state, in which she has to decide
what to do with the offer. The customer can either accept or reject the offer.
Figure 29 shows the state diagram for the assessment system. The system becomes
active when the event “application submitted” occurs (see the corresponding message
sent by the customer). The system then enters the “assessing” state. Depending on the
outcome of the assessment (see the guard conditions in Figure 29) message are sent
to other agents (the ^ symbol denotes a message in UML state diagrams).

Figure 28. State diagram for the customer agent

SDF-II Manual

© 2017 Kenniscentrum CIBIT 39

Figure 29. State diagram for the assessment agent

To check the consistency of the state diagrams, it is useful to construct a
message/event table, in which we list message/event pairs together with their sender
and receiver objects. Table 5 shows the table for examples in this section. We usually
also included in this table the information items exchanged in the message (if any).

Table 5 : sender/receiver table for messages

Message / event Sender Receiver Information
exchanged

application submitted customer assessment system application
process application assessment system sales application
offer made sales customer offer
accept offer customer sales --
application rejected assessment system customer --
notify failure assessment system sales application

Design modelling
A description of design modelling will be included in Version 2 of this manual (target
publication date: October 1, 1999). This section will discuss the main decisions for
realizing a knowledge-intensive component. Topics discussed include platform choice,
need for reasoning support, and issues related to using a framework approach.
For the moment the reader is referred to the respective chapters in the UML and
CommonKADS books.

SDF-II Manual

40 © 2017 Kenniscentrum CIBIT

Project Management

Introduction to Project Management Methods
The approaches taken in project-management methods differ. Some of the methods
focus on the deliverables (the products for both the business as for the management
of the project) whereas others focus on activities.

The methods focussing on products starts by defining the products that must be
delivered at the project end. The product description contains a general description,
the relation with other products, the composition of the product, the quality criteria
e.g. the criteria mentioned in items 3 and 4 of the step-by-step plan of the guidelines
for knowledge modelling (see p. 33). As mentioned in that section the criteria must
be made measurable and appropriate quality-check methods should be identified.

Practise has proven that the product-based approach is more successful than the
activity based approach. The product-based approach is particularly useful in two
respects:

1. Communication with the stakeholders
• with the customer organisation: what do we get at the end of the project,

where do we stand, what is the composition;
• With the performing organisation: which products must we deliver, what are

the quality expectations.

2. Management of the project
The project is divided in manageable parts, namely the products. These parts
can easily be delegated to project entities, because the products are clearly
defined.

Project Management in SDF-II
The focus of the project management within SDF-II lies on risks. Chapter 15 of the
CommonKADS book provides an instantiation of the risk-driven approach for use
within knowledge-intensive system development.

In this section we define a work breakdown structure2 (WBS) which facilitates two
standard project approaches which in practise are frequently found:
1. A project with a low technological risk due to the fact that, at an early stage in the

project the application task can be modelled. The application task is modelled
with the help of an existing and well-understood knowledge-model template.

2 “The work breakdown structure (WBS) is a tool for defining the hierarchical
breakdown and work in a project. It is developed by identifying the highest level of
work in the project. These major categories are broken down into smaller
components.” [http://www.welcom.com/library/glossary/] The WBS consists of
technical and management products.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 41

2. A project with technological risk related to knowledge modelling. Early in the
development process a prototype is built of the reasoning component. This
prototype is used to check the feasibility of the system in terms of technical
aspects and usability.

Because the two work breakdown structures overlap the total WBS is shown. The
brackets [1,2] indicate in which type of project the product or activity is part of the
WBS. If absent the product or activity belongs to the subset of both WBSs. SDF users
are encouraged to validate and complete the WBS based on your own WBS or project
management method.

The work breakdown structure is based upon the following (technical) stages. Below
every stage the objective is denoted:
1. Feasibility Study

• Initial problem understanding
• Make sure the application problem is suitable for automation
• Make sure that the system fulfils a real need in the customer organization
• Verify that no (knowledge-related) risks for the project success exist

2. Systems Analysis
• Complete / adapt on text analysis [2]
• Analyze the system in its prospective environment, with special attention for

the micro-level interaction between the system and other agents
3. Component Specification

• Develop a specification of the knowledge component conformant with the
requirements set-out in the system context model

4. System Design
• Make sure that the system architecture can be realized in the customer

organization
• Make sure that as much as possible existing code is used
• Finalizes knowledge model based on prototype results.

Work breakdown structure
1 FEASIBILITY STUDY

1.1 Business Products

B1.1.1 General Business Model
 for current situation [1]

minimal version [2]
B1.1.2 Knowledge Identification [1]

 for all knowledge-intensive tasks involved in a target solution
B1.1.3 General Business Model [1]

 for the new situation
B1.1.4 Full Knowledge model [2]

 with partial knowledge bases
B1.1.5 Prototype reasoner system [2]

 carry out some predefined scenarios

SDF-II Manual

42 © 2017 Kenniscentrum CIBIT

1.2 Management Products
B1.2.1 Risk Identification and Analysis

 especially:
• sufficient organisational support?
• unexpected knowledge-related problems
• Can suitable task template be constructed [2]?
• can types of domain knowledge required be elicited/modelled [2]

B1.2.2 Feasibility checklists
 B1.2.2.1 Economic

B1.2.2.2 Technical
B1.2.2.3 Project
see CommonKADS Worksheet OM-5

B.1.2.3 Project actions and required organisational changes
B.1.2.4 Feedback of stakeholders

2. SYSTEMS ANALYSIS

2.1 Business Products

B2.1.1 System Context Model
B2.1.2 Agent <-> Agent Communication specifications

 for all external agents that interact with the system
B2.1.3 General Business Model [2]

2.2 Management Products

B2.2.1 Risk Identification and Analysis
 especially:

• unexpected technological risks in building the user interface,
• unexpected technological risks with respect to the required connections to

other software
• is there still a clear added-value of system?
• development from the perspective of the organisation3

B2.2.2 Development Assessment Report
 validation by the primary users of the development results

B2.2.3 Stage Assessment report
 indication if the feasibility assessment and/or the estimated project effort needs

to be adapted

3 Originally this risk was only identified for the technological risk project, but this risk should
be analyzed during every stage of a project, because it justifies the continuation of the project.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 43

3 COMPONENT SPECIFICATION

3.1 Business Products

B3.1.1 Knowledge-model Specification
B3.1.2 Filled Knowledge Bases
B3.1.3 Validated Knowledge-Model

3.2 Management Products

B3.2.1 Risk Identification and Analysis
 especially:

• possible snags in the application of the chosen template
• availability of domain specialists for domain-knowledge elicitation and

component validation
B3.2.2 Time Schedule

 (right type of) domain specialist

4. SYSTEMS DESIGN

4.1 Business Products

B4.1.1 Design Model: architecture specifications
B4.1.2 Design Model: software/hardware choices
B4.1.3 Design model: application design

4.2 Management Products

B4.2.1 Risk Identification and Analysis
 especially:

• unexpected time-overrun because the proper support tools (for reasoner or
for user interfaces) are not available in the chosen implementation
platform,

• implementation is not consistent with customer standards
B4.2.2 Usability and Availability Report

 of the chosen support tools
B3.2.3 Project Organisation

 check competence project team with relation to the chosen implementation
platform

B3.2.4 Detailed Implementation and Test Plan
B3.2.5 Design Validation Report

 validated by technical staff of the customer

SDF-II Manual

44 © 2017 Kenniscentrum CIBIT

The SDF-II library
In SDF-II the use of template models is advocated strongly. Template models allow
designers, developers and analysts to have a running start with their projects.
Template models exist at various levels of analysis and design. A famous collection of
template models for object oriented design is the collection of design patterns
(Gamma, Helm, Johnson, & Vlissides, 1995). This collection provides often used
designs for problems that reoccur often in software design, such as recursive
structures, model-view-controller models etc. Also the CommonKADS book (Schreiber
et al., 1999) contains a set of template models, now models of knowledge. One of
these models, assessment, was discussed extensively in the chapter on knowledge
modelling in this manual. Also, the basic way of applying these models was discussed
in this chapter. Here we briefly describe two other examples from the CommonKADS
library of template knowledge models. We show how they are converted into the
SDF-II OO language, and give some hints on applying them into a real context. For
detailed descriptions of the tasks described here, see Schreiber et al. (1999).

Diagnosis

Top level description
The goal of a diagnosis task is to find the cause of a malfunctioning system. For
instance a car mechanic has to find the cause for a brake that does not work, or a
physician has to find the cause of a patient’s headaches. The diagnosis task starts with
a complaint, which is a description of the problem (“the brake does not work”). The
result of the task is, in the ideal task, a single hypothesis that describes the cause of
the complaint (“there is a leak in the influx pipe of the brake’s hydraulic system”). Of
course the diagnosis task as a whole is knowledge intensive, so we need an explicit
representation of the knowledge needed for the task. Figure 30 displays the basic
structure of the diagnosis task.

specifycover select verify

diagnosis task

Figure 30 The basic ingredients for the diagnosis template.

Task refinement
This figure serves, like Figure 11 for assessment task, as a definition of the terms that
play a role in diagnosis. In order to describe the contents of the task we can now
refine this model to yield more basic actions in the task performance. Following the

SDF-II Manual

© 2017 Kenniscentrum CIBIT 45

decomposition by Schreiber et al., the task can be divided into four knowledge
intensive subtasks, as displayed in Figure 31. The cover action generates a new
hypothesis, based on the input from the complaints and the knowledge of the system’s
structure. In order to do this, the action requires knowledge about the structure of the
system (e.g. knowledge of the brake system in a car). The select action selects a
hypothesis to consider as “current” meaning that this hypothesis will now have the
focus of investigation (“first consider the a leak in influx pipe”). This can be done
based on heuristic knowledge. Specify means finding indicators on the truth value of
the hypothesis. For instance, when there is a leak in the influx pipe the oil pressure in
the brake should be zero. This yields an observable (the pressure in the braking
system) which can be measured. After measuring, the verify action matches the result
to the prediction following from the hypothesis, yielding a truth-value for the
hypothesis. By repeating these actions hypotheses can be successively ruled out, until
there is only one hypothesis left, no more observables can be specified, or all
hypotheses are ruled out. Figure 32 displays the complete collaboration diagram for
diagnosis, including the relevant knowledge types. Figure 33 displays the control
structure for a data driven strategy: first all possible hypotheses are generated and
then they are systematically ruled out until the process succeeds or fails. A possible
other strategy would be to generate only one hypothesis and keep it until it is ruled
out, triggering the generation of a new hypothesis. This would be based on the same
collaboration diagram, but with a different activity diagram specifying the control
over the actions.

selectcover specify verify

diagnosis task

Figure 31 Decomposition of the diagnosis task, as the refinement model for the
transition between Figure 30 and Figure 32.

SDF-II Manual

46 © 2017 Kenniscentrum CIBIT

Complaint cover

select

specify

verify

Observable

value

obtain()

*

*

System
knowledge

Spec.
Knowledge

Verification
Knowledge

Selection
Knowledge Hypothesis

truth_value

Figure 32 Collaboration diagram for diagnosis.

Domain knowledge characterisation
In the diagnosis task four knowledge types are essential:

1. System knowledge
System knowledge is knowledge about the structure of the system: the system’s
component structure, connections between components, structures of causality.
This knowledge is used to generate hypotheses about possible causes for the
complaint. Hypotheses take the form of a component of the system that is possibly
faulty.

2. Selection knowledge
This knowledge is used to select a current hypothesis. The observables associated
with this hypothesis are the ones that will first be measured. This means that
attempts will be made to rule out the current hypothesis. Selection knowledge
consists of heuristic rules that indicate which hypothesis can best be considered
next. It is possible to make this a random selection, yielding empty selection
knowledge.

3. Specification knowledge
Specification knowledge links hypotheses to observables. It is related to the
system knowledge as it can infer from hypothesis back to observations on
measurement points in the system

4. Verification knowledge
Verification knowledge is able to yield conclusions based on observations. The
values of observables are interpreted to draw a conclusion on the hypothesis. This
can be simple rules, but also more complex knowledge is possible, especially
when values of multiple observables contribute to drawing the conclusion.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 47

cover

select

specify

verify[more than one hypothesis left and
observables left]

[number of hypotheses <=1
or no more observables left]

[new hypothesis found]

[no new hypothesis found]

Figure 33 Activity diagram specifying the control over the diagnosis task.

Assignment

Top-level description
Assignment is a task concerned with assigning resources to subjects. A well-known
example is office assignment: rooms (the resources) are assigned to employees (the
subjects). The top-level diagram is shown in Figure 34. Assignment takes as input a
set of subjects and a set of resources. The task output is a set of allocations, which are
in fact relations between subjects and resources. This is modelled in Figure 34
through an association class.

Task refinement
The template for assignment consists of three steps:

1. Select subset of subjects
From the full set of subjects a subset is selected (this can be just one, of course).
This selection process is typically guided by domain heuristics that are used to
order the assignment process. Typically, subjects with tight allocation
constraints are selected early on in the assignment process. For example, in
office assignment the people with coordinating functions (managers,
secretaries) are selected first.

SDF-II Manual

48 © 2017 Kenniscentrum CIBIT

assignment
task

constraints &
preferences

subject

resource

allocation* *

*
*

*

Figure 34: assignment template: top level diagram

2. Group subjects
In some domains, subjects can get the same resource; e.g., employees can be
assigned to the same office. Forming groups requires a special type of domain
knowledge concerned with subject’s preferences and constraints (e.g.,
smoking). In other cases the grouping step just produces groups with a single
subject (in office assignment case this is the case when an employee is eligible
for a single room),

3. Assign a subject group to a resource
In the final step one or more subjects get a resource assigned to them. For
example, two secretaries get a central office. This step requires a different type
of constraints and preferences than the grouping step.

Figure 35 shows the refinement of the assignment task as provided by the
CommonKADS task template. Figure 36 shows the corresponding specification of
control. We see that the control flow takes the form of two nested loops. In the outer
loop subsets of subjects are selected. In the inner loop groups are formed from these
subsets and subsequently a resource is assigned to each group.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 49

subject

assignment
knowledge

select
subset group

assignresource allocation

selection
knowledge

grouping
knowledge*

*

* *

*

Figure 35: refinement of the assignment task

Figure 36: activity diagram describing control flow in the assignment task template

SDF-II Manual

50 © 2017 Kenniscentrum CIBIT

Domain knowledge characterisation
The assignment template typically requires the following types of domain knowledge
to be specified:
1. Ordering heuristics for the selection function: e.g, first managers & secretaries,

then other staff.
2. Constraints and preferences for grouping subjects, e.g., subject conflicts (smoker

and nonsmoker), subject synergy (same type of work).
3. Constraints and preferences for assigning a resource to a subject (group), e.g.,

managers and secretaries need central offices.

How to use the templates
The templates described in this chapter, as well as those from the much larger set in
Schreiber et al. (1999) form a starting point only for further analysis. There are two
ways of using them in an actual problem. First the templates can be used as such,
meaning that they can be mapped one to one on domain constructs. In this case, the
templates can be interpreted as being frameworks. See the text on page 31 on how to
apply frameworks within SDF-II. Mappings are made from types in the model to types
in the framework and the details of the actions are filled in.

Another way of using the templates is taking them as starting point for further
analysis. By copying the template, filling in the domain concepts on the place of the
abstract types in the template description and then critically reviewing the actions in
the template, the template can be moulded for a specific application domain.

Converting CommonKADS templates to SDF-II
The examples in this book were all based on existing templates from CommonKADS.
These were converted into the UML notations employed by SDF-II. In converting
these templates some steps are taken that are not trivial. Especially roles in
CommonKADS inference diagrams do not always map directly to types in UML. In this
section a systematic approach is sketched to go through this conversion.

1. Draw a top level action diagram for the complete task
This is useful to see which roles actually are relevant for the task when viewed
from the outside. Roles that play only an ‘internal’ role in the task will not be
visible on this diagram. This diagram can then be refined to the inference level.

2. Identify types based on the CommonKADS roles.
CommonKADS inference diagrams contain roles that take the place of domain
concepts, just like UML types represent domain concepts. However, there is a
main difference. CommonKADS uses a new role for every changed state and for
plural and single objects. For instance, in the diagnosis template, there are roles
for differential (a collection of hypotheses), hypothesis and result (the truth-value
of the hypothesis). In the SDF-II template these are combined into a single role,
where the collection aspect is indicated by the multiplicity in the diagrams. The
result role is reduced to an attribute of the hypothesis type.
In general the steps to take are first to look for roles that are collections of other
roles in the same diagram, and to look for roles which actually are attributes of
other roles when looking at it from an object oriented perspective.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 51

3. Identify basic action
Actions correspond to inferences. In most cases, they can simply be mapped on
each other. Sometimes it is clear that inferences can be directly mapped onto
operations on a type. Transform functions in CommonKADS can usually be
mapped on operations on types.

4. Attach knowledge types
All knowledge intensive actions should have a knowledge type attached. In SDF-II
it is good practice to explicitly show these knowledge types in collaboration
diagrams.

SDF-II Manual

52 © 2017 Kenniscentrum CIBIT

Conclusions
SDF-II is a powerful framework for integrating modelling of knowledge-based systems
into UML and the analysis and design of object oriented systems. The major strength
of the framework is its framework character. No attempts have been made to reinvent
the wheel. The framework combines the strong points of the CommonKADS
methodology, UML, inspired in many ways by Catalysis. The framework is open. It
should not be very problematic to integrate other approaches, such as agent based
technology into the framework. The strategy to use is to be aware of the major
features of the approach, use UML notation wherever possible and, where co-
operation with other systems is necessary, use a component based approach and
specify the interfaces between components.

Using SDF-II will allow to integrate new technology into existing business systems,
and make organisations aware of the knowledge they possess and how this
knowledge must be created, distributed maintained and discarded. SDF-II provides
the vehicle for describing the processes concerned with this management and use of
knowledge.

SDF-II Manual

© 2017 Kenniscentrum CIBIT 53

References
Booch, G., Rumbaugh, J. & Jacobson, I. (1998). The Unified Modeling Language User Guide.

Reading, MA: Addison-Wesley.

D’Souza, D. & Wills, A. C. (1999). Objects, Components, and Frameworks with UML: The
Catalysis Approach. Reading MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design patterns, elements of reusable
object-oriented software. Reading, MA: Addison Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991). Object-Oriented
Modelling and Design. Englewood Cliffs, NJ: Prentice-Hall.

Schreiber, A. Th., Akkermans, J. M., Anjewierden, A. A., de Hoog, R., Shadbolt, N. R., Van de
Velde, W. & Wielinga, B. J. (in press). Knowledge Engineering and Management: The
CommonKADS Methodology. Boston, MA: The MIT Press.

Vorgers, P. (1999) From CommonKADS to Catalysis. Masters thesis. Utrecht: Kenniscentrum
CIBIT

Warmer, J., Kleppe, A. (1999). The Object Constraint Language, Precise Modeling with UML.
Reading, MA: Addison-Wesley

Yourdon, E. (19993). Yourdon Systems Method: Model-Driven System Development.
Englewood Cliffs, NJ: Prentice-Hall.

