
Adapting tableaux for classification

M.G. Jansen1, A. Th. Schreiber1, and B. J. Wielinga1

University of Amsterdam, Social Science Informatics
Roetersstraat 15, NL-1018 WB Amsterdam, The Netherlands

E-mail:{jansen,schreiber,wielinga}@swi.psy.uva.nl

Abstract. We present an approach for studying logical properties of problem-
solving methods (PSMs) for knowledge-intensive tasks. It is based on semantic
tableaux (a deduction-style theorem-proving technique). We show how tableaux
can be manipulated in a methodical way to formalize non-deductive style PSMs.

1 Introduction

Knowledge-engineering research has delivered an abundance of problem-solving meth-
ods (PSMs) for classes of tasks. such as classification, diagnosis, and configuration (see
e.g., [2]). These PSMs are used in practical knowledge systems. To get a better under-
standing of the different PSMs work has been done on the formalization of PSMs, e.g.
[4, 10, 11]. In this paper we describe another approach, in which we adapt semantic
tableaux to formalize PSMs. We show that this provides us with a technique for study-
ing the logical properties of PSMs. In particular, we show that this approach allows us to
model non-deductive style reasoning. This was a problem with previous formalizations
based on first-order logic. We use the classification task as an example.

2 Characterizing Classification

We can characterize a knowledge-intensive task by defining three aspects: (1) the goal
of the task, (2) the ontological commitments, and (3) the solution criteria.

Goal The goal is typically an informal description of what the task attempts to achieve.
In the case of classification, the goal is to identify to which class a certain object be-
longs. Example classification tasks are apple classification, rock classification, and art-
object classification.

Ontological commitments Ontological commitments describe our assumptions on the
representation of the task domain. They provide us with a vocabulary. We can use
this vocabulary to define what we mean with classification. Together, the ontological
commitments form an ontology for a task. An example of such task ontology is the
configuration-design ontology [6]. For classification we base the task ontology on the
descriptions of classification given by [9, 8].

We define six basic ontological types, namelyattribute , object, value, class, fea-
ture, andobservation.A is a (finite) set of attributes, each of which is associated with a
list of possible values. A feature is an admissible attribute-value pair. Objects that need
to be classified are described by a finite number of attribute-value (AV) pairs. These
AV-pairs are called observations. The set of observations for a particular object is called
Obs.

By definition, we assume that an attribute can have only one value at the time.
So, if colour is an attribute and{red, yellow, blue} is its list of possible values, then
an object description can never contain the AV-pairscolour = red and colour =
yellow simultaneously. Every attribute with more than two values can be transformed
into several attributes which all have binary values. This transformation is performed as
follows: For every such AV-pair we take a new attribute with possible valuestrue and
false. The new attribute has the valuetrue if the original AV-pair holds, andfalse
otherwise.

Note that after having applied such a transformation the exclusion of multiple values
for an attribute is no longer guaranteed. In order to maintain this principle every new
attribute has the original attribute as it’s type. Now we can say that exclusion of multiple
values holds for binary AV-pairs of the same type. If one binary attribute has the value
true, then all other attributes of the same type have the value false. In this way, each
multi-valued attribute can be represented as a set of atomic propositions.

Classes can now be represented as follows:

c→ (a1 ∨ ... ∨ an) ∧ ... ∧ (b1 ∨ ... ∨ bn)

The class name is represented by the propositionc and implies its features (i.e. AV-
pairs). Features are here represented as atomic propositions with an index for ease of
representation.a1 represents the feature wherea designates the attribute and the index
1 a certain value.

Domain knowledge can be represented by assigning meaningful names to such a
structure. For example:

blackbird→
(plumage = black ∨ plumage = brown) ∧ (bill = yellow)

The domain theoryDT consists of a conjunction of class definitions.

Solution criteria There are several alternative criteria one can formulate with respect
to the goal of the classification process. We define two criteria:1

Weak classification In weak classification (WC) a candidate solution must be a class
c which is consistent with the domain theoryDT and the observationsObs made
thus far. Formally, this set of candidate solutionsS can be expressed by:

S = {c|DT ∪ {c} ∪Obs 0⊥}
1 In Sec. 4.3 we introduce a third form of classification, namely composite-solution classifica-

tion.

2

Strong classification In strong classification (SC) a class c is a member of the set of
candidate solutionsS iff the domain theory together withc explains all observa-
tions. That is, we want candidate solutions to be classes which actually possess the
properties that have been observed. Formally, the criterion for SC is:

S = {c|DT ∪ {c} |= Obs}

The criterion of strong classification is stronger in a logical sense than weak clas-
sification. If a class is a candidate solution according to SC it is also according to
WC. This follows as SC can be formulated as an extension of WC.

3 Tableaux

Semantic tableaux were developed in the 50’s (see e.g. [3]). Like resolution they form a
refutationsystem. In a tableau proof a tree is constructed where nodes are labeled with
formulae.2

In order to test whether a certain formulaϕ follows from a set of premisesΘ a
tableau tree is constructed forΘ ∪ {¬ϕ}. Constructing such a binary tree can be seen
as checking for (in)consistency of the theory. It is build using reduction rules which
determine how the tree is branched. If in any branch, a formula and its negation appear
the branch is said to be closed. If all branches close the theory is inconsistent.

¬¬ Z α β
Z α1 β1 | β2

α2

Table 1.Rules for the tableau trees

Table 1 shows the rules for constructing the tableau tree. The first rule indicates that
double negations are redundant. All propositional formulas containing binary connec-
tives can be divided as belonging to two types: True conjunctive formulas (α-type) and
true disjunctive formulas (β-type). For examplep → q can be rewritten to¬p ∨ q and
so is aβ-formula. The rule forα-type formulas indicates that the conjuncts have to be
placed on the same branch of the tree. Theβ-rule however indicates a branching of the
tree.

To see how this works we give an example. LetΘ be{p → q} andφ = q. We will
check whetherΘ |= ϕ. The resulting tableau is depicted in Fig. 1. Since the tableau is
openϕ does not follow fromΘ. Note that the open branch corresponds to a counterex-
ample forΘ |= ϕ.

2 We limit ourselves here to the description of propositional tableaux since this seems sufficient
for the description of classification. We follow [5] in this description.

3

Θ ∪ {¬φ}

J
J
JJ

¬p q

¬q ¬q

⊗

Fig. 1.Example tableau

4 Tableaux for classification

The general method to use propositional semantic tableaux as a proof procedure for
classification proceeds as follows. The solution criterion for the classification task is
translated into a consistency formula. Subsequently that formula is expanded into a
semantic tableau. If the tableau can be closed or remains partially open, a conclusion
can be derived about the solutions of the classification problem. The precise nature of
the conclusion depends on the nature of the solution criterion.

The closing rule for tableaux for classification can be specialized on the basis of the
ontological commitments described in Sec. 2. Since all features that occur in the domain
theory are considered to be typed propositions and since two distinct propositions of the
same type exclude each other, any path that contains two different propositions of the
same type can be closed. This is equivalent to the addition of formulae of the following
type to the domain theory for each feature:

a1 → (¬a2 ∧ . . . ∧ ¬an)

Building this ontological commitment into the proof procedure retains all properties
of the general procedure such as soundness and completeness, but is more efficient.

4.1 Weak classification

In weak classification we assume that the domain theory and the observations together
are consistent. This assumption is implicit in the way knowledge is represented and can
be viewed as an additional ontological commitment.

Because of this consistency a semantic tableau forDT ∪ Obs will have open
branches. Fig. 2 shows a tableau for the domain theory{c1 → a1 ∧ d2, c2 → a2 ∧ d3}
and the observationd3. The observation is added to the leaves of the tree for the domain
theory.

Now, in order to check which classes are consistent with the observations made up
to this point, each class must be individually added to the tableau. If the tree closes the
resulting theory is inconsistent and the class is not a candidate. If a new observation is

4

made it must be added to the tree and a check for all remaining candidates has to be
made again. Fig. 2 shows classc1 to be inconsistent with the domain theory together
with the observationd3, as its addition to the tableau would close the tree.

DT ∪Obs
�

��

c
c
c

¬ c1
�
��

L
LL

a1

¬ c2 a3 d2

�
��

S
SS

d3 d3 ¬ c2 a3

d3 d3

⊗ ⊗

Fig. 2. Initial tableau for weak classification

The trouble with this representation is that it leads to a rapidly expanding tree. No-
tice that since class definitions areβ−formulae each class definition leads to branching
of the tree. In classification, observations are typically added incrementally. This means
that classes that at some point are proven to be inconsistent will remain part of the tree.
This can be be remedied by putting the observations at the root, instead of adding them
to the leaves of the tableau for the domain theory. The result is a much smaller tree.
Subsequent observations can also be added to the root instead of the leaves. This proof
strategy is depicted in Fig. 3. The example shows a general property of tableau proofs:
the length of a proof typically depends on the order of application of the expansion
rules.

This procedure for weak classification with semantic tableaux can be summarized
as follows:

Procedure WC-1:
1. Construct a tableau for the observations

and the domain theory (in this order)
2. FOR each possible candidate class c DO

IF c (and c alone) is added to the tableau
AND the tableau closes

THEN c is not a possible candidate
ELSE c remains a possible candidate

3. When new observations are made:

5

DT ∪Obs

d3

�
��

Z
Z
Z

¬ c1
�
�
T
T

a1

¬ c2 a2 d2

T
TT

¬ c2 a2

⊗ ⊗

Fig. 3.Alternative tableau for weak classification

a. add observation(s) to top of the tableau
b. redo step 2

It is interesting to view weak classification in terms of what is actually deduced
during the process. In order to prove that a formula follows from a theory with the
help of semantic tableaux one has to prove the inconsistency of the negation of the
formula together with the theory. In the case of weak classification the aim is to prove
the inconsistency of a class together with the domain theory and observations. In terms
of consequence this means proving the negation of a class from the domain theory and
observations. More formally:

DT ∪Obs ∪ {c} `⊥⇔ DT ∪Obs � ¬c

In other words: weak classification only provides negative information about
classes. The method is actually more about ruling out candidates than looking for candi-
dates which can explain the observations. This is left to the stronger criterion of strong
classification.

The procedure WC-1 is still inefficient since it generates the tableau for the en-
tire domain theory. The ontological commitments about the structure of the knowledge
base, i.e. that class definitions are conjunctions of disjunctive feature sets, allow us to
specialize the procedure even more. A branch in the tableau tree that contains no literals
involving classes, can never be closed by adding other parts of the domain theory that
do not concern the class under investigation. This leads to the following procedure:

Procedure WC-2:
1. Construct a tableau for the observations
2. FOR each possible candidate class c DO

2a. add the formulae that concern c from
DT to the tableaux

6

2b. IF c (and c alone) is added to tableau
AND the tableau closes

THEN c is not a possible candidate
ELSE c remains a possible candidate

3. When new observations are made:
a. add observation(s) to top of the tableau
b. redo step 2 for those classes that were

possible candidates

This procedure is much more efficient than WC-1, but given the ontological com-
mitments still sound and complete. In fact, this proof procedure explains why the “test”
part in implemented problem solving methods can remain so simple. It is also clear
from this procedure that generate-and-test methods that do not test for all classes are
sound, but not complete. In set 3b we make use of the fact that addition of new observa-
tions will not make classes that have been ruled out on the basis of earlier observations,
candidates again.

4.2 Strong classification

We now proceed to describe a procedure for testing whether a candidate class fulfills the
SC requirement. If it can be shown for a certain classc thatDT ∪{c}∪{¬o1∨ . . .¬on}
is inconsistent, the criterion of SC is met with respect toc. In order to show this, first a
tableau forDT and the disjunction of negated observations is build. Since this theory
is consistent the tree will have open branches. If c is added to the tree and closes the
tableau,c is a SC candidate, otherwise it is not. Here we make use of the ontological
assumption thatDT ∪ {c} is consistent. An example is given in Fig. 4.

DT ∪Obs
"

"
"
""

HHH
HH

¬c1 a1

%
%%
l
ll

¬c2 a2 d2

B
BB

�
��
T
TT

e
ee

¬a1 ¬d2 ¬a1 ¬d2 ¬c1 a2

�
�
J
JJ

¬a1 ¬d2 ⊗

⊗ ⊗

Fig. 4.Tableau for strong classification

7

This procedure for SC can be summarized as follows:

Procedure SC-1:
1. Construct a tableau for the domain theory
2. Add the disjunction of the negation of each

element of Obs to the leaves of the tableau
for the domain theory

3. FOR each possible candidate class c DO
IF c (and c alone) is added to the tableau

AND the tableau closes
THEN c remains a possible candidate
ELSE c is not a possible candidate

4. IF new observations become available
THEN redo step 2 and 3

SC is in general more complex to compute than WC. To infer the observations from
the domain theory and a candidate class , the disjunction of all negated observations
should be added to the tableau. In contrast to WC, each observation will give rise to a
branching of the tree.

The same specializations of the proof procedure that we have described for WC
apply to SC.

4.3 Classification and abduction

The procedure SC-1 is identical to the way abduction is performed with tableaux as
described in [1]. This is intentional. As defined above SC comes down to an abductive
method. Abduction is often linked to a style of reasoning which produces causal expla-
nations for observations. Classification is rarely, if ever, considered to be an abductive
task. Still the criterion of SC is formally in line with those of abduction, as for example
put forward by [7].

In [1] five different styles of abductive reasoning are defined. GivenΘ (a theory)
andϕ (a sentence),α is an abductive explanation (abducible) if:

– Plain:Θ,α � ϕ
– Consistent:Θ,α � ϕ andΘ,α is consistent.
– Explanatory:Θ,α � ϕ andΘ 2 ϕ andα 2 ϕ
– Minimal: Θ,α � ϕ andα is the weakest such explanation.
– Preferential:Θ,α � ϕ andα is the best explanation according to some given pref-

erential ordering.

Interestingly enough, SC displays four of these properties of abduction. The “’plain”
property follows directly from the solution criterium. Classification is a restricted form
of abduction: the only abducibles allowed are atomic class propositions. Since it is an
ontological assumption that class definitions are individually consistent with the domain
theory (i.e.,DT ∪ c is consistent), it follows that solutions found by the SC-1 method
are consistent. SC is minimal since we restrict the form of abducibles to single classes
(atomic propositions) only.

8

Weak classification does not exhibit any of the properties of abduction, since no for-
mula (ϕ) is assumed to be entailed by the theory (Θ) and the abducibles (α). Intuitively,
WC generates a formula and tests if it is consistent with the current domain theory and
observables, but it does not try to explain anything. This makes WC a very different task
from SC. This is in line with our earlier observation that WC is a ruling out task rather
than an explanation task. From a logical point of view, one could argue that the two
forms of classification are rather different ways of reasoning, even though procedurally
they are very similar. One could even go as far as considering WC not as a classification
task, but as a refutation task.

For the property of minimality, there is a difference between abduction and strong
classification. If we decide to allow not only single classes as abducibles but conjunc-
tions of classes as well we end up with a different style of classification. In that case
we would get a form of classification in which more than one class explains the obser-
vations and counts as a solution. Thus, a conjunction of classes can act as a solution
candidate. This is known as composite-solution classification (CSC) [9].

The solution predicate can be formulated as follows:

S = {c1 ∧ ... ∧ cn|DT ∪ {c1 ∧ ... ∧ cn} |= Obs}

Note however that we can no longer assume the property of consistency (DT ∪
{c1 ∧ ... ∧ cn}), as the simultaneous addition of two or more classes (e.g., a black
bird and a white bird) to the tableau of the domain theory may lead to inconsistency.
Therefore, the procedure will have to test explicitly for consistency. For example, if
DT = {c1 → a1, c2 → a2}, adding the composite solution{c1 ∧ c2} makes the theory
inconsistent, sincea1 anda2 are regarded as exclusive.

If one allows composite solutions, one could still prefer single solutions. In this case
CSC is defined as preferential abduction in the above sense.

5 Discussion

Even though classification is one of the simplest knowledge-intensive tasks in the
knowledge-engineering domain, it has been quite hard to prove that certain compu-
tational methods satisfy logical competence theories. Similarly, it has been difficult
to transform logical competence requirements into an operational method. Problems
encountered include: the abductive nature of classificatory reasoning, the incremen-
tal nature of observation gathering and the mapping of logical theories onto different
computational strategies in classification methods [11]. In this paper we have presented
some steps forward towards solving these problems.

A first insight is that strong classification is a special case of abduction. The solution
of a classification problem is considered as an abducible of some domain theory and
the observed facts. Theories of abduction provide several types of abduction that can
be mapped onto different variants of the classification task. However, classification is
more specific than abduction in the sense that it restricts the vocabulary of abducibles
to a predefined set of classes and that it assumes a particular structure of the domain
theory.

9

Second, it appears that the semantic tableau proof method has some features that
makes it suitable to model various forms of classificatory reasoning. Tableaux pro-
vide a natural way of handling incrementally growing theories as they often occur in
knowledge-based systems, where new facts are incrementally obtained from a user. In
classical logical approaches that attempt to formalize classification reasoning, this prob-
lem is not easily solved [11]. Tableaux also provide a way of thinking about the search
space of possible inferences in a formal context. As we have shown, the ontological
commitments of the task restrict the possible expansions and closures of the tableaux.
These restrictions can be translated into the proof procedure itself, thus reducing the
space of formulae to be processed. This is precisely where knowledge-based systems
derive their power from, when compared to general theorem-proving approaches. It can
be proven that the specialized proof procedures are equivalent to the normal proof pro-
cedure when the ontological commitments are added as axioms to the domain theory.

The third result of our investigation is that PSMs for classification that have been
published [9, 11] can be mapped onto proof procedures. For example, procedure WC-1
and WC-2 formalize the “pruning” method, which can therefore be characterized as
both sound and complete. WC-1 is a “pure” logical method, but computationally not
very efficient. In tableau terminology it generates a much larger tableau than WC-2.
WC-2 is an optimized method which is in fact close to operational methods used in
classification systems. Procedure SC formalizes a generate-and-test method for classi-
fication. Here, we can see from the formalization that if the method would terminate
after having found one solution (which is often the case in operational methods), the
method is sound, but not complete. In short, this type of mapping of PSMs used in
knowledge-based systems onto specific tableau proof procedures provides a powerful
way of establishing the competence of these methods in logical terms.

References

[1] A. Aliseda-LLera. Seeking Explanations: Abduction in Logic, Philosophy of Science and
Artificial Intelligence. PhD thesis, ILLC, University of Amsterdam, Amsterdam, The
Netherlands, 1997.

[2] V. R. Benjamins and D. Fensel. Problem-solving methods.Int. J. Human-Computer Stud-
ies, 49(4):305–313, 1998. Editorial special issue.

[3] E.W. Beth. Semantic entailment and formal derivability. In J. Hintikka, editor,The Philis-
ophy of Mathematics, pages 9–41. Oxford University Press, 1969.

[4] D. Fensel and R. Groenboom. Specifying knowledge-based systems with reusable compo-
nents. InProceedings of SEKE-97, 1997.

[5] M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, New
York, 1990.

[6] T. R. Gruber, G. R. Olsen, and J. Runkel. The configuration-design ontologies and the VT
elevator domain theory.Int. J. Human-Computer Studies, 44(3/4):569–598, 1996.

[7] A. C. Kakas, R. A. Kowalski, and M. Toni. Abductive logic programing.Journal of Logic
and Computation, 2(6):719–770, 1993.

[8] A. Th. Schreiber, J. M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R. Shadbolt,
W. Van de Velde, and B. J. Wielinga.Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press, Cambrdige, MA, 1999.

[9] M. Stefik. Introduction to Knowledge Systems. Los Altos, CA. Morgan Kaufmann, 1993.

10

[10] F. van Harmelen and A. ten Teije. Characterising problem solving methods by gradual
requirements. InProceedings of the Eleventh Workshop on Knowledge Acquisition for
Knowledge-Based Systems (KAW’98), Banff, Alberta, 1998.

[11] B. J. Wielinga, J. M. Akkermans, and A. Th. Schreiber. A competence theory approach
to problem-solving method construction.Int. J. Human-Computer Studies, 49:315–338,
1998.

11

