Int. J. Human—Computer Studies (1997) 45, 183-292 @

Using explicit ontologies in KBS development

G. vaN HEeust,* A. TH. SCHREIBER AND B. J. WIELINGA

University of Amsterdam, Department of Social Science Informatics, Roetersstraat 15,
NL-1018 WB, Amsterdam, The Netherlands.

email: gertjan/schreiber/wielinga@swi.psy.uva.nl

This article presents a number of ways in which ontologies—schematic descriptions
of the contents of domain knowledge—can be constructed and can be used to
improve the knowledge engineering process. The main message is that early in the
knowledge engineering process an application-specific ontology should be con-
structed. To facilitate this, the article presents some principles for organizing a
library of reusable ontological theories which can be configured into an application
ontology. This application ontology is then exploited to organize the knowledge
acquisition process and to support computational design. The process is illustrated
with a knowledge engineering scenario in the domain of treating acute radiation
syndrome. © 1997 Academic Press Limited

1. Introduction

During the last decade, comprehensive knowledge-engineering methodologies have
emerged which provide support for organizing the development process of
knowledge-based systems. Examples are the Generic Task approach (Chandraseka-
ran, 1987), the Role-Limiting Methods approach (McDermott, 1988), the Com-
ponents of Expertise approach (Steels, 1990), the KADS methodology (Wielinga,
Schreiber & Breuker, 1992) and the Protégé framework (Musen, 1989b). These
approaches share the characteristic that they promote the reuse of knowledge
elements by providing libraries of off-the-shelf knowledge components. Such
libraries are necessary to turn knowledge engineering from an “‘art” into a proper
engineering discipline. So far, the emphasis has mainly been on problem-solving
methods—abstract descriptions of the steps that must be taken to perform particular
tasks.

Another type of knowledge which has been suggested as a candidate for reuse are
ontologies—intensional descriptions of the domain knowledge in some field. Many
researchers feel that access to libraries of reusable ontological components would
facilitate the knowledge engineering process and several research groups have taken
up the challenge of developing candidate components. However, the field is still in
its infancy and many problems are unsolved or even unaddressed. To mention a few:
how can ontologies be built, compared, integrated, validated, visualized or used?

In addition, the question needs to be addressed whether a methodology that is
based on the use of generic problem-solving methods can also be based on the use of
generic components for ontologies. In other words: can library components be
specified in such a way that ontologies can be used with different problem-solving
methods and vice versa?

* Present address: Kenniscentrum CiBit, Arthut van Schendelstraat 570, 3500 AN Utrecht, The
Netherlands.

183
1071-5819/97/2130183 + 110$25.00/0/hc960090 © 1997 Academic Press Limited

184 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

This question touches upon a long-standing debate in AI about whether domain
knowledge can be represented independently of how it is used in reasoning.
Clancey’s early work on NEomYCIN suggested that both domain knowledge and
problem-solving knowledge can be reused, provided that the problem-solving
knowledge and domain knowledge are represented separately in the knowledge base
(Clancey & Letsinger, 1984). This belief that separation of control knowledge and
domain knowledge would enhance the reusability of both was also one of the
assumptions that led to the conception of the KADS four-layer model (Wielinga &
Breuker, 1986). However, Bylander and Chandrasekaran (1988) argued against this
belief by presenting the interaction problem:

Representing knowledge for the purpose of solving some problem is strongly affected by
the nature of the problem and the inference strategy to be applied to the problem
(Bylander & Chandrasekaran, 1988).

The interaction problem states that the ontology of the knowledge in a KBS is
strongly affected by the task of the KBS and the methods it uses to perform that
task. Bylander and Chandrasekaran identified two reasons for the interaction
problem. Firstly, the application task determines to a large extent which kinds of
knowledge should be encoded. In general, it is not feasible nor desirable to model
everything the expert knows. Secondly, the knowledge must be encoded in such a
way that the inference strategy used can reason efficiently.

In this article we study the general question of how (explicit) ontologies can be
obtained and used to make the knowledge-engineering process more manageable. In
this context we address a number of relevant research issues. Firstly, we consider the
way in which the knowledge-engineering process needs to be organized in order to
make explicit ontologies useful. In order to use ontologies profitably in knowledge
engineering, they must be embedded in a methodology. In Section 2 an overview is
presented of the way in which current knowledge engineering approaches organize
the KBS development process. The role of ontologies in this process is analysed. A
second issue concerns the way ontologies are obtained. Basically, there are three
ways: ontologies can be constructed from scratch, they can be selected from a library
of off-the-shelf ontologies, or they can be configured from off-the-shelf components.
This issue is addressed in Sections 3 and 7. Thirdly, we study the various ways in
which an ontology can be exploited to support the knowledge engineering process
and to improve the quality of the resulting knowledge based system. (Sections 4-6).
Finally, the relationship between ontologies and problem-solving methods needs to
be studied. It is important to get a handle on the interaction problem to maximize
reuse of both ontologies on problem-solving methods.

2. The knowledge engineering process

To determine how explicit ontologies can be used in knowledge engineering, we
must have an understanding of how the knowledge engineering process is organized.
During the last decade, a number of approaches to knowledge engineering were
proposed that are similar in spirit, although they differ in their details and
terminology. This section presents an overview of the characteristics that are shared
by these approaches. In the sections that follow we will argue how explicit
ontologies can be useful within this general paradigm.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 185

A first characteristic shared by current approaches is that they view knowledge
engineering as a modelling process, as opposed to the older ‘“‘mining” view.
Knowledge engineering is a creative activity which can be supported by providing
modelling principles. A second characteristic is that the resulting knowledge models
should be formulated at the knowledge level (Newell, 1982). Knowledge level
models emphasize the rational behind problem solving in terms of goals, actions and
knowledge; they abstract away from how these are implemented in specific
representation formalisms. The actual implementation of the problem solving
competence in a knowledge based system is delineated in a second model, the design
model. In the design model additional decisions are taken which enable a computer
system to realize the problem solving competence in an efficient way. The design
process can be supported by means of design principles.

2.1. KNOWLEDGE MODELLING PRINCIPLES

In an overview of the field, Musen and Schreiber (1995) identify three modelling
principles that lie at the heart of all recent knowledge engineering approaches.
These are the role-limiting principle, the knowledge typing principle and the
reusability principle. Each will be described briefly. In addition, we consider the use
of skeletal models as a fourth general knowledge engineering principle.

2.1.1. Role-limiting
Role limiting is a mechanism for organizing knowledge by putting constraints on the
ways knowledge elements of particular types can be used in reasoning. Wielinga,
Van de Velde, Schreiber and Akkermans (1993) formulate the role-limiting
principle as follows.

An intelligent agent which is faced with a particular task can be modeled as imposing on
its knowledge a structure, the parts of which play different, specialized and restricted
roles in the totality of the problem-solving process.

2.1.2. Knowledge typing

The role-limiting principles states that different knowledge elements play different
roles in reasoning. Therefore, knowledge elements must be typed according to their
role in problem solving. In the literature, at least five different types of knowledge
are distinguished.

* Tasks correspond to the goals that must be achieved during problem solving.

* Problem-solving methods are ways to achieve the goals described in tasks. In
some knowledge modelling frameworks, problem-solving methods define sub-
tasks to which other problem-solving methods can be applied. We will call such
a decomposition a task instance.

* Inferences describe the primitive reasoning steps in the problem-solving process.
Inferences are also called mechanisms. Together, the inferences form a
functional model which is sometimes called the inference model or inference
structure.

186 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Task-goals

|
realized by

Problem solving methods

generate

l

Task instances

invoke

Inferences

refer to

l

Ontologies
|

describe
Domain knowledge

FIGURE 1. The different components of knowledge models.

* Ontologies describe the structure and vocabularly of the static domain
knowledge.
* Domain knowledge refers to a collection of statements about the domain.

Figure 1 shows how the different knowledge model components are related.

2.1.3. Reusability

Current approaches to knowledge engineering emphasize the reuse of knowledge
components across domains and tasks. The availability of libraries of validated and
well-documented knowledge components not only speeds up the KBS development
process but it also facilitates maintenance and upgrading. However, there are
differences between the approaches with respect to the nature and the grain size of
the components that they consider potentially reusable.

2.1.4. Use of skeletal models

Knowledge model components are often reused in the form of skeletal models. Such
models specify one part of a knowledge model (e.g. the problem solving method).
The knowledge engineer then has to fill in the other parts to complete the
knowledge model. As a result of knowledge typing, the already specified parts in the
skeletal model constrain how the other parts can be modelled. This way, skeletal
models structure the knowledge modelling process. In the literature one can find
skeletal models based on problem solving methods (e.g. Marcus, 1988), inference
models (e.g. Breuker et al, 1987) and ontologies (e.g. Musen, Fagan, Combs &
Shortliffe 1988).

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 187

Knowledge Design
Knowledge model modelling Knowledge o Design
skeleton A g model = model
Modelling principles Design priciples

FIGURE 2. A schematic overview of how modern knowledge engineering approaches view the knowledge
engineering process.

Figure 2 shows how the models, the activities and the principles are related.
Typically, knowledge modelling starts with the selection of a modelling skeleton.
This can either be a general modelling framework or a partially instantiated
knowledge model. Then the skeleton is completed. This process is guided by the
modelling principles. In the design phase, which is briefly described in Section 2.3, a
KBS is designed which operationalizes the problem solving competence specified in
the knowledge model.

2.2. THE MODELLING PROCESS

In some approaches (e.g. CommonKADS) knowledge engineering starts with
modelling the context in which a KBS will function. Such an organization model is
useful for requirements analysis and feasibility studies and its construction typically
precedes knowledge modelling. For the present purpose, we assume that this has all
been done and we concentrate on knowledge modelling.

In the above sections we have briefly described the components of knowledge
models. We will now shift our focus to the process of devising the knowledge model.
In most of the current approaches, constructing a knowledge model involves four
activities as follows.

(1) Construct a task model for the application.

(2) Select and configure appropriate ontologies, and if necessary refine these.
(3) Map the application ontology onto the knowledge roles in the task model.
(4) Instantiate the application ontology with domain knowledge.

2.2.1. Constructing a task model for the application

The first activity in KBS construction is task analysis. The purpose of the task
analysis is to decompose the real-life task into a number of generic tasks and to
associate these with appropriate problem solving methods. Together, the methods
and tasks form a task model.

2.2.2. Selecting and configuring an application ontology

When the task of the target system is recognized as a generic-task instance or a
sequence of generic-task instances, the next activity involves the construction of an
application-specific ontology. In general, ontology construction is a difficult process
that requires the expertise of a knowledge engineer or an informed domain expert.

188 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

A library of reusable ontological theories can ease this process. The knowledge
engineer can select the reusable theories and, if necessary, tune them to meet the
demands of the application.

2.2.3. Mapping the task model onto the application ontology

The application ontology defines the relevant concepts in the domain. When
performing a generic task, instances of particular concept typically fulfill particular
roles in problem solving. For example, in medical diagnosis, instances of the concept
disease will often play the role of hypotheses. By defining mappings between the
roles in the task model and the concepts in the ontology it is made explicit which
concept instantiations may play which roles. The mapping is specific for tasks and
domains as is illustrated by the fact that in therapy planning diseases will often play
the role of data.

2.2.4. Instantiating the application ontology

While the application ontology defines which concepts are used in the domain, the
application knowledge describes the actual instances of these concepts. Besides the
reusability aspect, one of the main arguments for distinguishing between the
ontology and the application knowledge is that the application knowledge must by
definition be presented by the medical expert.

2.3. DESIGN

The knowledge model is an implementation-independent description of the know-
ledge and methods needed to perform a task. The design model describes how the
knowledge model can be operationalized in a knowledge based system. The design
model specifies both the general architecture of the KBS and the representations
and algorithms that are used by the KBS to perform its task. When developing the
design model, the knowledge engineer must take additional decisions to ensure that
the KBS is able to perform its task efficiently.

The design process is guided by design principles. To a large extent, these
principles are similar to principles for system design in software engineering, such as
the use of libraries of reusable software modules. In knowledge engineering, one
typically finds this kind of reuse in the form of expert-system shells, which contain
reusable reasoning engines. Besides the software-engineering principles there are
also principles which are typical for KBS design. An example of such a principle is
that of structure preserving design, which implies that the information content and
structure of the knowledge model is preserved in the final artifact. This principle is
derived from the requirement that knowledge based systems must be able to explain
their lines of reasoning in expert-understandable terminology. Since the vocabularly
of the experts is laid down in the knowledge model, the KBS can only provide this
kind of explanations if the information in the knowledge model is also available in
the design model. Besides explanation, structure preserving design also facilitates
maintenance and code-reuse (Schreiber, 1993).

While current knowledge engineering approaches share many characteristics with
respect to knowledge modelling, there is less consensus with respect to the KBS
design process. In some knowledge engineering approaches, the design model is

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 189

derived automatically from the knowledge model. For example, in the PROTEGE-II
framework, the knowledge models are automatically translated in CLIPS production
rules. In other approaches, KBS design is considered to be a task for the knowledge
engineer (e.g. CommonKADS). Here, the design process is viewed as a knowledge-
intensive activity where additional information is added to the knowledge model in
order to achieve computational adequacy. The pros and cons of these alternatives
are discussed in Sections 4 and 6.

2.4. CONTEXT: THE GAMES-1II PROJECT

Most of the work reported in this article was performed in the context of
GAMES-II, a research project funded by the European Union. The purpose of this
project was to develop methods and tools for medical KBS development. The
approach taken in GAMES-II fits well in the general paradigm described above.
Because some of the issues discussed in later sections are phrased in GAMES-II-
specific terminology, we will now describe some aspect of the GAMES-II work in
more detail.

Within the GAMES-II project we have only investigated three types of medical
tasks: diagnosis, therapy planning and patient monitoring. Further, it was assumed
that these tasks could be modelled by means of a single inference model: the
STModel (Ramoni, Stefanelli, Barosi & Magnani, 1992). This model, which is shown
in Figure 3, views problem solving as a cyclic process of data abstraction, abductive
hypotheses generation and subsequent testing of these hypotheses by means of

Hypotheses

Abduction

Problem

Induction Deduction
features

Astraction

Expected/
observes data

Request
new data

FIGURE 3. Generic inference model (STModel) used in GAMES-IL. The arcs in the figure represent
inferences, the elipses represent knowledge roles.

190 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Generic Knowledge model
knowledge model of the application
components
Task model

Task model inferences:
components abduction

induction
Construct task model
forapplication
Knowledge engineer
or informed expert

—p
/ knowledge roles:
hypothesis

datum
problem feature

~ @@/

STModels
diagnosis
therapy planning
monitoring

Map knowledge
roles onto appli-
cation ontology

Y
Application ontology

Ontology library

Ontological theories -
Select ontologies
anatomy ct onto
physiology and configure
diseases

concepts and relations:
disease
finding
observable

~

Instantiate
ication ontology

Domain expert P»

Domain knowledge

\ tuples representing
domain knowledge

GVHD

acute GVHD chronic GVHD

\gradel grade Il grade lll gradelvj

FIGURE 4. Activities in the construction of the knowledge model.

deduction and induction. The arcs in the figure represent inferences; the ellipses are
knowledge roles. The order in which the inferences in the task model are executed
depends on the problem-solving method used.

To model ontologies, a library of medical ontological theories was developed in
GAMES-II. This library is described in Section 3. The library contains definitions of
often-found medical concepts such as ‘‘physiological process”, ‘‘therapy”,
“symptom”, etc. Together, the generic tasks and the ontological theories form the
reusable knowledge modelling components provided by the project. Figure 4 shows
how the GAMES-II-supplied generic knowledge model components support the
activities in Section 2.2.

3. Principles for ontology library construction

This section presents principles for organizing a library of reusable ontological
theories in the medical field. The focus is on the internal structure of such a library,
how it can be built and how it can be used. The proposed principles are illustrated
with a library of medical ontologies developed by Sabina Falasconi and described in
(Falasconi & Stefanelli, 1994).

In our view, there are two impediments that hinder the development of libraries
of reusable ontologies: the hugeness problem and the interaction problem. The

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 191

hugeness problem concerns the overwhelming amount of knowledge in the world.
This makes the construction of a library of reusable domain ontologies a daunting
exercise. The interaction problem, which was quoted in Section 1, states that domain
knowledge cannot be represented independently of assumptions of how it will be
used in reasoning.

We will put forward a number of hypotheses about the nature of medical domain
knowledge from which principles are derived for organizing a library in such a way
that the hugeness problem and the interaction problem remain manageable. In
short, these principles are that (i) there is a relatively small set of basic concepts that
are reusable across many medical domains and tasks, (ii) medical sub-domains have
domain-specific concepts that are often specializations of the basic medical concepts,
and (iii) many problem-solving methods require additional concepts that are specific
for that method.

The section is organized as follows. In Section 3.1, we present a definition of
ontology and a classification of different types of ontologies. Section 3.2 describes
the organizational principles that the library is based on, thereby showing how the
hugeness problem and the interaction problem can be addressed. Section 3.3 shows
how these principles are used to build an initial library and Section 3.4 explains how
the library can be used during KBS development.

3.1. ONTOLOGY

In philosophy, the term “‘ontology’ refers to “‘a particular theory about the nature
of being or the kinds of existence”. This broad definition can be interpreted in a
number of ways, depending on the metaphysical stance that one takes with respect
to what “existence” is. A number of researchers in knowledge engineering have
therefore suggested more specific, Al-oriented definitions of ontology. In general,
Al definitions avoid referring to reality, but rather use terms as representation and
conceptualization. An often-cited definition is that of Gruber (1994):

An ontology is an explicit specification of a conceptualization. The term is borrowed
from philosophy, where an ontology is a systematic account of Existence. For Al systems,
what “‘exists” is that which can be represented.

Although not explicitly stated, this definition suggests that an ontology is a
meta-level description of a knowledge representation. Thus, the ontology is not part
of the representation itself. As we shall see in detail in Section 6, this is an aspect of
ontologies that will turn out to be important for their application in knowledge
engineering. Another aspect of ontology that is important for the work reported
here can be found in a definition formulated by Wielinga and Schreiber (1993):

An (AI-) ontology is a theory of what entities can exist in the mind of a knowledgeable
agent.

This definition emphasizes that we want to apply the notion of ontology to all

192 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

knowledgeable agents, including humans. Since different knowledgeable agents will
often have different symbol-level representations, it is convenient to formulate
ontologies at the knowledge level. This aspect is important for knowledge
engineering; in Section 5 it will be argued that ontologies can be used as mediators
between knowledge as it is understood by a domain expert and knowledge as it is
represented in a computer system. A third knowledge-engineering oriented defini-
tion of ontologies is given by Alberts (1993):

An ontology for a body of knowledge concerning a particular task or domain, describes a
taxonomy of concepts for that task or domain that define the semantic interpretation of
the knowledge.

In AI the term ontology is often used as a synonym for the terminology in some
domain. This definition emphasizes that it is not the terminology itself that
constitutes the ontology but the semantic interpretation of the terms. Another
important aspect of this definition is that ontologies can be specific for tasks or for
domains. That is, both the domain and the task at hand may affect the ontology.

The three definitions above are not contradictory, and capture a large proportion
of the aspects of ontology that are relevant for the work described here. Combining
the above definitions results in the following definition.

An ontology is an explicit knowledge-level specification of a conceptualization, i.e. the
set of distinctions that are meaningful to an agent. The conceptualization—and therefore
the ontology—may be affected by the particular domain and the particular task it is
intended for.

Ontologies can be classified according to two dimensions: the amount and type of
structure of the conceptualization and the subject of the conceptualization. With
respect to the first dimension we distinguish three categories.

e Terminological ontologies such as lexicons, specify the terms that are used to
represent knowledge in the domain of discourse. An example of such an ontology
in the medical field is the semantic network in UMLS (Unified Medical Language
System; Lindberg, Humphreys & McCray, 1993).

* Information ontologies which specify the record structure of databases. Database
schemata are an example of this class of ontologies. Level 1 of the PEN & PAD
model (Rector, Nowlan, Kay, Goble & Howkins, 1993), a framework for
modelling medical records of patients, is a typical example of such an ontology in
the medical field. At this level, the model provides a framework for recording the
basic observations of patients, but it makes no distinction between symptoms,
signs, treatments, etc.

* Knowledge modelling ontologies specify conceptualizations of the knowledge.
Compared to information ontologies knowledge modelling ontologies usually have
a richer internal structure. Further, these ontologies are often tuned to a
particular use of the knowledge that they describe. Within the context of KBS
development, knowledge modelling ontologies are the ontologies that we are
mostly interested in. The level 2 description of the PEN & PAD model is an

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 193

example of a knowledge modelling ontology in the medical field. At this level, the
level 1 observations are grouped to describe the decision-making process.

The other dimension on which ontologies can be differentiated is the subject of
the conceptualization. Four categories can be distinguished on this dimension: (i)
application ontologies, (ii) domain ontologies, (iii) generic ontologies and (iv)
representation ontologies.

* Application ontologies contain all the definitions that are needed to model the
knowledge required for a particular application. Typically, application ontologies
are a mix of concepts that are taken from domain ontologies and from generic
ontologies (which are described below). Moreover, application ontologies may
contain method- and task-specific extensions. Application ontologies are not
reusable themselves. They may be obtained by selecting theories from the
ontology library, which are then fine-tuned for the particular application. We use
the term application ontology in a similar way as in PROTEGE- (Tu, Eriksson,
Gennari, Sharar & Musen 1995).

e Domain ontologies express conceptualizations that are specific for particular
domains. As mentioned in Section 2, current knowledge engineering methodol-
ogies make an explicit distinction between domain ontologies and domain
knowledge. Whereas the domain knowledge describes factual situations in a
certain domain, the domain ontology puts constraints on the structure and
contents of domain knowledge.

* Generic ontologies are similar to domain ontologies, but the concepts that they
define are considered to be generic across many fields. Typically, generic
ontologies define concepts like state, event, process, action, component, etc. The
concepts in domain ontologies are often defined as specializations of concepts in
generic ontologies. Of course, the borderline between generic ontologies and
domain ontologies is vague, but the distinction is intuitively meaningful and is
useful for building libraries.

* Representation ontologies explicate the conceptualizations that underly knowledge
representation formalisms (Davis, Shrobe & Szolovits, 1993). They are intended
to be neutral with respect to world entities (Guarino & Boldrin, 1993). That is,
they provide a representational framework without making claims about the
world. Domain ontologies and generic ontologies are described using the
primitives provided by representation ontologies. An example in this category is
the Frame Ontology, which is used in Ontolingua (Gruber, 1993).

3.2. ORGANIZATION OF THE LIBRARY

This section presents structuring principles for organizing an ontology library and
illustrates these principles using a medical ontology library that was developed as a
case study in the context of the GAMES-II project. In terms of the categories
distinguished in the previous section, the library consists of domain ontologies and
generic ontologies of the knowledge modelling type. The domain ontologies in this
library are described in (Falasconi, 1993). Many of the generic ontologies were taken
from the Ontolingua library developed at Stanford University.

194 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

The classification of ontologies presented in Section 3.1 is too coarse-grained to be
used as an indexing scheme for the library. Therefore, a number of principles were
formulated that allow a more fine-grained categorization. In short, these principles
are that (i) there are some general categories of medical knowledge that are
fundamental to all kinds of medical reasoning, (ii) in many application domains
there are additional ontological distinctions that are specific for that domain, and
(iii) the use of specific reasoning methods may require additional method-specific
ontological distinctions. Based on these principles, the library is partitioned into two
regions: a core library and a peripheral library. The core part contains definitions of
the generic concepts and of general medical categories. The peripheral part contains
definitions of the domain- and method-specific extensions. The division is important
because the two parts are indexed in different ways. Section 3.2.2 describes the core
library and in Section 3.2.3 the peripheral parts are explained. Before turning to a
more elaborate description of these parts, first some general issues in library
construction are addressed.

3.2.1. Issues in library construction

Language. Ontologies need to be specified in a language. A number of languages
have been proposed as candidates (e.g. MODEL—Tu et al., 1995; CML—Schreiber,
Wielinga, Akkermans, Van de Velde & Anjewierden, 1994), but it is not entirely
clear to date which requirements a language for ontological modelling should satisfy.
The library presented here is developed with Ontolingua (Gruber, 1993). An
Ontolingua ontology consists of a number of definitions, collections of labelled
sentences that constrain the use of a term. Four kinds of definitions are distingu-
ished: classes, relations, functions and instances. Definitions can be grouped into
theories, collections of definitions that are somehow related. Theories can include
other theories, which means that all the definitions in the included theory are also
available in the including theory. Thus, the theory is the main modularity construct
available, and is therefore the principal building block of the library that is described
below.

Modularity. A key to successful library organization is modularity. A modular
organization is one that organizes units in modules so that the cohesion within
modules is maximal, while the interaction between modules is minimal. In the
ontology library presented in this section, the units are definitions and the modules
are theories. There are numerous possible cohesion criteria. Which of these are
useful in this context depends on the intended use of the library.

The main intended use of the library is to support the construction of application
ontologies. Therefore, definitions that are likely to be used in the same application
ontologies should be put together into one theory. There are two features that
determine which definitions are needed for an application ontology: (i) the (medical)
sub-domain that the application should reason about and (ii) the method that the
application uses to perform a (sub-)task. For example, applications in the domain of
cardiac diseases use (at least partially) other knowledge than that used by
applications in the domain of bacterial diseases; similarly, applications that diagnose
cancer are likely to use different knowledge from applications that plan cancer
therapy.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 195

Alternative definitions. It is important to stress that the library is not intended as the
ontology of medical knowledge; the definitions are not claimed to capture the
essence of knowledge categories in some Platonic sense. Instead, the definitions
should be viewed as conceptualizations that have been proven useful for solving
medical problems, either by human experts or by computers. A consequence of this
pragmatic point of view is that it is sometimes necessary to allow for alternative, or
even inconsistent, definitions of a concept in the library. For example, an often used
concept in medical reasoning is ‘‘causality”. Since this concept is reusable across
many applications, it is an obvious candidate for inclusion in the library. However,
the history of philosophy shows that is is extremely difficult to come up with a
satisfying definition of causality. When we look at medical reasoning, it seems that a
number of alternative conceptualizations are being used. For example, in some cases
both the cause and the effect roles of the causes relation are constrained to be
physiological states, while in other cases they need to be events. The temporal
aspects of the concept may also vary; in some cases the relation between cause and
effect is immediate, while in others there may be a delay. Because these alternative
conceptualizations are useful in medical reasoning, we have chosen to allow multiple
definitions of the same concept, leaving the decision of which conceptualization is
appropriate in a particular context to the library user.

The need for a higher-order language. The requirements of a modular organization
and multiple concept definitions make it necessary to allow higher-order expressions
in the ontology specification. The principle of modularity requires that the more
generic aspects of a concept are defined in a core library theory, while the more
domain- or method-specific aspects of those concepts are defined in a more
peripheral theory. Take the previous example, assume that in a core theory causes
is defined as a binary relation that takes states as arguments:

causes ({statel), (state2))

For some method in some domain, the definition of the causal relation needs to be
augmented with a notion of time delay. The typical first-order solution to do this
would be to add a third parameter to causes:

causes ({statel), (state2), (delay))

It is clear that the introduction of an extra parameter violates the earlier
mentioned minimal interaction principle, and thus the principle of modularity. The
addition of the time delay parameter leads to the destruction of the internal
structure of the generic definition of causes, with the result that all the definitions
that rely on the definition of causes also need to be updated. To avoid this, the
domain- and task-specific specializations must be specified by means of higher-order
expressions, such as the following, where causes-tuple refers to a tuple in the
extension of the causes relation:

time-delay ({causes-tuple), {(delay))

Unfortunately, allowing higher-orders introduces some well known difficulties.
Firstly, higher-order languages are not decidable, thus it is impossible to have a

196 G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

QUOTE - - Application Ontology Editor|

| (Fool v) (Layout v) (Ontology ¢) (Theories v) & ¢
Theories el)
=[TIME =
EGENERIC—CONCEPTS E
=

I

FUNDAMENTAL-MEDI TIME

=l ANaTOMY
PHYSIOLOGY
FINDINGS GENERIC-CONCEPTS
DRUGS
SURGERIES - -
CLINICAL - STATE-AS FUNDAMENTAL-MEDICAL -CONCEPTS
DISEASES
TESTS ANATOMY
THERAPIES
CLINICAL- ENVIRONM
GENERIC-PATIENT PHYSIOLOGY
FINDINGS DRUGS SURGERIES
CLINICAL-STATE-ABSTRACTIONS

DISEASES

TESTS THERAPIES

CLINICAL-ENVIRONMENT

GENERIC-PATIENT

FIGURE 5. Theory inclusion graph of the theories defining the basic categories of medical knowledge.
Each node in the graph represents a theory, with its own set of definitions.

system that can prove the internal consistency of the ontological theories. Secondly,
the use of a higher-order language introduces the risk of self-referential sentences
and the paradoxes that they give rise to. Since the language will be used for library
construction, and not for reasoning, we allow the modularity argument to prevail.

3.2.2. Basic categories of medical domain knowledge

This section describes the core part of the library, which contains definitions that are
considered reusable across many medical domains and medical tasks. Figure 5 shows
a part of the theory structure of this section of the library, in the form of a
theory-inclusion graph. The nodes in the graph represent ontological theories, and
the edges denote inclusion relations. Each arrow points from an including theory to
an included theory. If a theory includes another theory, this means that all the
definitions in the included theory are also available in the including theory.

Criteria for partitioning definitions. The decisions about the partitioning of defini-
tions into theories are based on two considerations which we describe further below:
(i) the definitions are to be centred around some ‘‘natural categories”, and (ii) the
number of theory inclusions must be kept to a minimum.

Centre definitions around natural categories. The main criterion for partitioning the
definitions into theories is based on the observation that there are some, but not too
many, basic categories of medical knowledge. These categories are natural in the
sense of Rosch (1973), in that they reflect a social consensus that exists in the

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 197

medical community. Examples of natural categories in the medical domain are
concepts such as patient, disease, therapy, etc. These concepts provide a
coherent body of terminology that allows medical professionals from different
specialities to communicate. These categories recur in almost all medical literature,
and they often provide starting points for information analyses for software
development.

The natural categories are used as anchor points for modularizing the core library.
For instance, the theory diseases is centred around the concept of disease, which
is represented as an Ontolingua class. On the instances of this class several relations
are defined. These definitions, such as disease-etiology and disease-location,
are also located in the diseases theory, since they have no meaning independent of
the meaning of disease. The current organization of the domain theories, as shown
in Figure 5, is based on the knowledge categories that are distinguished in a number
of existing expert systems (e.g. M-KAT; Lanzola & Stefanelli, 1992; and ABEL; Patil,
1981).

Minimization of the number of inclusions. An agent that commits to a particular
theory necessarily also commits to the theories included by that theory. Therefore,
organizing the theories in such a way that a theory includes few other theories,
reduces the overhead of committing to that theory and allows a more flexible use of
the library. Therefore, the second criterion used to partition the definitions into
theories is that the number of inclusion links must be kept to a minimum. A theory
must include, directly or indirectly, the minimal set of theories that it presumes. For
example, the concept disease, which is defined in diseases, is a sub-class of
clinical-process, which is defined in fundamental-medical-concepts. There-
fore, it is necessary that diseases includes fundamental-medical-concepts.

As depicted in Figure 5, two indirect inclusion paths connect clinical-
environment, defining concepts related to the context in which medical activities
take place, to diseases. The classes therapy and test are defined in separate
theories, enabling external agents to commit to one of the theories without
committing to the other. However, because both theories include diseases, all
agents committing to one of the two theories must commit to the same definition of
diseases. For this reason it is important to avoid ontological overcommitment. In the
core part of the library only general characteristics of the concepts should be
defined, more specific characteristics should be defined as domain- or method-
specific extensions in the peripheral areas of the library.

Contents of the core library. Table 1 contains brief descriptions of some of the
theories in the core library which is shown in Figure 5. As an example, Figure 6
shows the Ontolingua definition of the class observable which is defined in the
theory findings. The sentence labelled as :axiom-def expresses that observable
is a sub-class of human-body-state-variable, which is defined in the theory
fundamental-medical-concepts. The :axiom-constraints sentence defines four
possible sub-classes of observable. The difference between the :axiom-def and
:axiom-constraints sentences is that the former are considered to be definitional
while the latter are assertional (for an explanation of the difference, see Gruber,
1992). The terms subclass-of and subclass-partition are defined in the Frame
ontology.

198 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

TaBLE 1
Characterization of some theories in the core library as shown in Figure 5 and
described in (Falasconi & Stefanelli, 1994)

Theory Characterization of contents

generic-concepts Defines basic notions such as system, process,
action from an “engineering” point of view. For
example, a system is conceptualized as a collection of
interconnected components characterized by states
and processes.

fundamental-medical-concepts Contains definitions of basic notions useful for medical
knowledge representation, such as human-body and
medical-agent . The definitions in this theory
specialize notions defined in generic concepts. For
example, human-body is a sub-class of the class
system, i.e. it is conceptualized as a class of complex
entities describable through states and concerned with
physiological or pathological (e.g. clinical) processes.

anatomy Define ontological categories such as anatomical-

physiology part, physiological-process and organ that are
generally used in medical contexts. The definitions are
mostly based on the work of Patil (1981).

findings Define and classify respectively observable findings,
drugs conceptualized as values on state variables that
surgeries indicate the clinical state of a patient, drugs and

surgical interventions. They are useful for mapping
knowledge modelling ontologies onto ‘‘information
ontologies’ underlying the patient medical-record
structure.

clinical-state-abstractions Defines concepts for representing clinical states in
compact ways, for instance, to synthesize a set of
patient findings. This theory defines, for example,

(i) qualitative-clinical-state-abstraction
expressed using symbolic values such as “low” or
“high”, and

(ii) quantitative-clinical-state-abstraction
expressed using numerical values (e.g. a measure such
as the body surface computed from body weight and
height).

diseases Defines a disease as a clinical process whose evolution
can be described through finding or clinical
abstraction-values over time, and tries to define
taxonomies, used commonly in medical practice,
based on diseases characteristics such as time
evolution characteristics (e.g. “acute”, “chronic”),
etiology and location.

The principle behind the core definitions is that these should be minimal. For
example, stating that an observable is associated with a quantitative value set (the
possible values of the observable are numbers) would be an ontological overcom-
mitment, as this is not likely to hold for every application. Therefore, such a
qualification should be defined as an extension.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 199

(define-class OBSERVABLE (?observable)

‘'An observable is a state-variable whose values can—contextually —indicate
pathological or physiological states which can be observed. They can be
classified according to the way they are obtained. '’

: AXIOM-DEF (subclass-of observable human-body-state-variable)

: AXIOM-CONSTRAINTS (subclass-partition observable

(set-of sign
laboratory-observable
special-investigation)))

FIGURE 6. The Ontolingua definition of the notion of “observable”. Ontolingua definitions consist of the
name of the defined concept, a number of instance variables, and sets of labelled sentences. The sentence
labelled as :axiom-def defines that observable is a sub-class of human-body-state-variable, which
is defined in fundamental-medical-concepts. The :axiom-constraints sentence defines four possible
sub-classes of observable. For details of the Ontolingua language, see Gruber (1993).

3.2.3. Method- and domain-specific extensions

The categories described in the previous section are considered basic, in the sense
that they are more or less standard across medical tasks and medical domains and
form a generally agreed upon body of terminology in the medical field. We have
already mentioned that this set of theories, while relatively small, still allows for
alternative definitions. In the core part of the library, the definitions are very
general, in the sense that they allow for further specialization according to
application specific requirements. We will now describe the more application
dependent parts of the library. Applications may vary on two attributes: (i) the
domains that they reason about, and (ii) the tasks that they perform and the
methods that they use.

Reuse of domain-specific concepts across domains. At first glance, the reuse of
domain-specific concepts across domains seems a contradiction in terms. However,
domain-specificity is not a dichotomy: some concepts are obviously more domain
specific than are others. For example, the concept of ““fungal skin infection” is more
specific than that of ‘“dermatological disease’, while both are more specific than
“disease”.

This observation can be used to organize the library in such a way that more
reusable concepts are put in other theories than less reusable concepts. To do this,
the notion of domain specificity must be operationalized. One candidate for this
operationalization is the notion of abstraction level: definitions that specify less
detail are often less domain specific than definitions that specify more detail.
However, there are some problems with this operationalization. Firstly, the relation
between more abstract and less abstract definitions is a many to many relation. A
concept which is specified in detail can have multiple abstractions, depending on the
point of view that one takes. This makes it difficult to specify the inclusion relations
between theories which contain detailed definitions and theories which contain
abstract definitions. In principle, a theory containing detailed definitions should
include all the theories that contain abstract definitions of the same concept.
However, this would violate the criterion that the number of inclusion relations
should be kept to a minimum. A second problem with an organization according to
the level of abstraction is that this dimension does not discriminate between
concepts on the same level of abstraction. For example, concepts such as ischemia

200 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

and glaucoma, which are on the same level of abstraction, are likely to be reusable
under different circumstances. An organization along the dimension of abstraction
level would not make this explicit.

Issues such as the ones mentioned above make it clear that there are many
unsolved problems with respect to the organization of a library in such a way that
concepts that are likely to be reused under the same circumstances are stored in the
same theory. Therefore we have adopted a pragmatic approach. Taking the division
of medical practice as a starting point, every concept in the peripheral part of the
library is associated with a domain-specificity value. The domain-specificity attribute
indicates to what sub-domain, or set of sub-domains, a concept applies. To decide on
the domain-specificity of concepts, a hierarchy of medical specialities is used. Each
of the nodes in this hierarchy represents a medical sub-domain that may be used as a
value for the domain-specificity attribute of a concept. When a concept has a
particular domain as its domain-specificity value, it is specific for that domain, but it
is reusable across all its sub-domains.

The domain hierarchy reflects the existing organizational structure of medical
practice. Example elements of the hierarchy are disciplines such as immunology,
pathology, internal medicine and its specializations, etc. Of course, the organization
of medical practice varies between countries. Therefore, the structure of the
peripheral parts the library is to a certain extent situated. This is another motivation
for distinguishing between a “universal” core library and situated extensions of that
core. Figure 7 shows a part of the domain hierarchy.

Reuse of method-specific concepts across methods and tasks. According to the
interaction problem, the way in which knowledge is represented is necessarily highly
interwoven with the way that knowledge will be used in reasoning. Therefore, it is
difficult to reuse knowledge that is defined with a particular method in mind for
another method. Taken literally, the interaction problem precludes the reuse of
concepts across methods. In this section it will be argued that the interaction
problem does not hold to the same extent for every concept, and it will be shown
that the degree of method-specificity of concepts can be used as an index to organize
the ontology library.

As mentioned in Section 2, we have concentrated on three medical tasks:

Medicine

Internal Medical
medicine pharmacology
Cardiovascular Opthalmology Psycho Anesthesiology
medine : pharmacology 2
Heart
diseases

FIGURE 7. A part of the domain hierarchy for the medical field. The hierarchy reflects the organization of
the medical practice.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 201

diagnosis, therapy planning and patient monitoring. Furthermore, it is assumed that
these generic tasks can be modelled as instantiations of one inference model: the
STModel (Figure 3).

Each of the inference steps in the STModel can be realized through a number of
methods, and each of these methods may have specific ontological requirements. For
example, the abduction of hypotheses from patient findings can be done by
interpreting direct associations between findings and diseases. This method thus has
the ontological requirement that such associations exist. The following production
rule is an illustration of this kind of abduction:

IF chest-pain = present AND
sustained-pain = yes
THEN myocardial-infarct = probable

In some systems that perform abduction by direct associations, the associations
are qualified with certainty factors, representing the likelihood that the disease is the
cause of the findings. This is, for example, the case in myciN (Shortliffe, 1979). Using
this method thus introduces another ontological requirement.

Alternatively, the diseases that may cause a particular finding could be found by
tracing pathways in causal networks—a method which requires the existence of
causal connections in the domain. For specific methods, the causal links in such
networks may need further qualification. For instance, cHEck (Console & Torasso,
1993), a system for abductive diagnosis, makes a distinction between necessary
causal connections and possible causal connections. Another example of this is
provided by causal-probabilistic networks, where the causal relations are quantified
through probability distributions.

Based on the ontological commitments that they require, the methods employed
in medical reasoning can be organized in a specialization hierarchy. Descending this
hierarchy introduces additional ontological commitments. Figure 8 shows a part of
the method hierarchy for abducting diseases from findings in medical diagnosis. The
concepts of disease and finding, which are used by all methods for medical
abduction, are defined in the core library. The manifestation-of relation, which
models direct associations between findings and diseases, is specific for methods that
are specializations of ‘“abduction by direct associations between findings and
diseases” (Method 2.1 in Figure 8). Further specializations of these methods may
require additional ontological commitments, such as the existence of certainty
factors or evoking strengths for these direct associations.

The level of the method hierarchy were an ontological requirement is introduced,
is an indicator for the method-specificity of the corresponding concept. In the same
way that the domain hierarchy is used to associate concepts with domain-specificity
attributes, the method hierarchy is used to assign a method-specificity values to
concepts.

It should be emphasized that the organization of methods according to the
ontological commitments that they introduce is only one possible way of organizing
problem solving methods. For the purpose of the ontology library, this organization
is suitable because the hierarchy will be used for retrieving the definitions that are
required by the methods. However, we do not claim that we have solved the
problem of indexing problem-solving methods.

202 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Task Medical diagnosis

Has Has Has Has "
.- inference inference inference inference _

a7 s Q A
1 Abstraction 2 Abduction of 3 Ranking 4 Deduction of

Interences of findings disease from hypothesized predictions from
from data findings diseases hypothesized

PN diseases
Implemented-by Implemented-by
rd ' A

21 Abduction by 2'2Abduction by tracing
direct associations : causal pathways
between findings | between findings
and diseases i i and diseases

Inference T

methods Has-specialization Has-specialization

i 222
Abduction by
bayesian probability
propagation

§2'2'1 Abduction by
] traversing causal
links with possible
and necessary
causal connections |

FIGURE 8. Partial hierarchy of methods used in medical diagnosis.

3.2.4. Structure of the library

Section 3.2.2 argued that there are basic categories of medical knowledge that are
reusable across all medical domains and medical tasks. These categories form the
core part of the library, and they are organized in theories according to the criteria
mentioned earlier.

Two attributes determine the degree of reusability of a concept: the domain-
specificity and the method-specificity. For the definitions in the core part of the
library, these attributes are not discriminating, as they are intended to be reusable
across most medical domains and methods. However, this is not the case for the
definitions in the extended part. By making the value of concepts on these attributes
explicit, it is possible to determine to what extent and under which circumstances
these concepts can be reused. Since concepts that have the same values on both
attributes are likely to be applicable under the same circumstances, they should be
stored in one theory. In this way the attributes provide a scheme for modularization.

For every combination of a node from the domain hierarchy and a node from the
method hierarchy, there can be a theory in the library. This theory contains the
definitions that are specific for the method and the domain, but that are reusable
across the specializations of the method and sub-domains of the domain.

For instance, the theory ‘““abduction by tracing causal pathways between findings
and diseases in the domain of cardiovascular medicine” would contain all the
definitions that are specific for that method in that domain (e.g. artery-obliteration),
but it would not specify that there are probability distributions that describe the
nature of the causal connection between pathophysiological states, since these are
specific for one particular specialization of the causal tracing method (see Figure 8).
The theory would also not contain a definition of pathophysiological state. Since

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 203

Domain hierarchy Core library Method hierarchy
(" Theorv phvsioloay)
Theory physiology
Medicine Physiological Medical method
N process
\x -
S H
N :
J/ N Peripheral library
H ~
Theorvipd)
\\ Theory: p-1
~ Abduction of
Pathophysiological < diseases from
state Sso findings
D — Sso
{Theorv-p-2) ~ N : N
Intsrqal Theory: p-2 ~~_ Abduction by tracing Abduction by
medicine A causal pathways direct assosiations
N Artery p==-=-== 7T > between findings between findings
e obliteration e and diseases and diseases
. N — Pid
Opthalmology Cardiovascular 4| Mheoviod) - /\‘
i eory: p-! - X
medine =2 Abduction by
_A Coronary . traversing causal Abduction by
- oblteration links with possible bayesian probability
Heart o -1 ~—— and necessary propagation
diseases causal connections

FIGURE 9. The organization of the peripheral parts of the library. The dashed lines show how the theories
in the peripheral library are indexed on domain specificity and method specificity. The arrows in the two
hierarchies represent specializations. Thus, cardiovascular medicine is a specialization of internal
medicine and ‘““‘abduction by traversing causal links with possible and necessary causal conditions” is a
specialization of “abduction by tracing causal pathways between findings and diseases”. Concepts are
stored in the theories with the same values on the domain- and method-specificity attributes.

this concept is reusable across a wider range of domains than cardiology, it is defined
in the core library.

Figure 9 shows the organization of the peripheral part of the library by example.
The dashed arrows in this figure represent the values on the domain-specificity and
method-specificity indexes. The arrows in the two hierarchies represent specializa-
tion relations. Thus, cardiovascular medicine is a specialization of internal medicine
and “‘abduction by traversing causal links with possible and necessary conditions” is
a specialization of ‘“abduction by tracing causal pathways between findings and
diseases””. Concepts with the same method specificity and the same domain
specificity are stored in the same theory. Retrieving concepts from the library thus
amounts to indicating the domain(s) and the method(s) that are relevant for the
application and then collecting the theories that have the domain(s) and
method(s)—or their parents in the hierarchy—as indexes.

3.3. BUILDING THE LIBRARY

The previous section described the principles of organizing the library of medical
ontologies. Here, the issue of filling the library is addressed. Because this involves a
large amount of work, only a prototype library has been developed in our project.
Rather than aiming at completeness, the project focuses on formulating standardized
procedures for adding new definitions to the library. The availability of standardized
procedures will make it easier to augment the library and it will enable the
development of tools for semi-automatic library maintenance. The currently used
procedure consists of four steps: (i) take an existing medical Al application, (ii)
describe the ontology and the inference methods of the system, (iii) score the
definitions in the ontology on the domain-specificity and method-specificity attrib-
utes, and (iv) put the definitions in the appropriate library theories. The next
sections will elaborate and illustrate each of these steps.

204 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

3.3.1. Start with an existing application
The definitions that are most likely to be usable for medical KBS development are
the definitions that are already employed in existing systems. Therefore, the initial
library is based on analyses of such systems. We will use casNnet (Weiss, Kulikowski,
Amarel & Safir, 1984) as an example. CASNET allows the representation of causal
associational networks that describe processes of diseases and has been used to build
an application for diagnosing glaucoma.

CASNET was chosen as an example for several reasons. Firstly, as a shell it provides
a framework for developing applications in various medical domains. Therefore it is
likely that its domain ontology is a good candidate for reuse across domains.
Secondly, in addition to this general causal network ontology CASNET provides
idiosyncratic ontological distinctions required by casNET's reasoning methods. This
combination of properties makes CASNET an attractive illustration for developing
method-specific extensions to the library. To illustrate the idea of domain-specific
extensions, we have added the concept glaucoma, which was used in the glaucoma
application developed with CASNET, to CASNET’S ontology.

3.3.2. Model the application

It is often the case that existing medical KBS do not have explicit descriptions of the
underlying domain ontologies. In these cases, it is up to the library builders to define
such an ontology. This is done in three steps: (i) scoring the current application on
the domain-specificity and method-specificity attributes, (ii) retrieving the concepts
from the library that could be useful for modelling the ontology of the application
and (iii) defining the additional concepts necessary for the application’s ontology.

As described in Section 3.2, the possible values of the domain-specificity and
method-specificity attributes are specified in the corresponding hierarchies. CASNET is
a general shell for medical applications, but since we have added the concept
glaucoma, the system is assigned the value ‘“opthalmology” on the domain-
specificity attribute. For the method specificity, we concentrate on the abduction
step. CASNET uses a causal network for abduction, so “abduction by tracing causal
pathways” is selected as the value for the method-specificity attribute. Actually,
CASNET uses a specialization of this method, but as yet this specialization—which we
will call the casNeT method—is not represented in the method hierarchy.

When the application is scored on the method-specificity and the domain-
specificity attributes, the concept definitions that are already available in the library
can be retrieved. To complete the application ontology, the library builder has to
define the additional classes, relations and functions required for the application.
For the purpose of library construction, these newly defined concepts are the
important ones. Because the method actually used by casNET is not in the method
hierarchy, the library builder also has to model the method of the system.

CASNET’s application ontology. Applications build with casNeT have an explicit
representation of a network, the nodes of which represent pathophysiological states.
The links in the network represent causal relations between the states. States are
labelled with a confirmation status, which must be one of confirmed, denied, or
uncertain. The evidence for the confirmation status of a state comes from patient

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 205

Causation nlw
strength ! f
\ o

inverse forward
strength (n.) weight (n.) eight (n.)
c.l| Disease \
1] Disease | o w | [o]Commenes] [o] Gow
causes (c.l.) | measure
" classifies (p.l.) X
weight(n.) confide‘:nce (n) costs (n.)
n.|Glaucoma| [p.l] Path i i
| | | |p l | p.l. Pathophysiological «—— evidence-for (p.l.)

state
TN

summarizes (p.l.) c.l. Symptom x

labelled-as (n.)
[c1] “sign][e.l] Lab-test]

begins (p.1.) terminat/e’s_,(p.l.i"//

| Start pathophysio- | End pathophysio-
p- logical state i

logical state
n.] status | [c.1] Event |
has fre%“ency (n.) threshold by (n.)
| n. A priori n.| Threshold |
frequency
Legend __+B Relation between A and B
. . retrieved from core library.
: Concept retrieved from _relation (c.l.)
the library A »B Relation between A and B |
m Concept retrieved from A Jelation (p.l) g retrieved from peripheral library.
the peripheral library relation (n.) Newly defined relation between
m Newly defined concept A— ' B concept A and concept B.
ject >
AT Ais a specialization of B.

FIGURE 10. The application ontology of CASNET represented as an ontological semantic network.

observations. A specific state of the network is interpreted in terms of diseases in
various states of progression.

Figure 10 presents parts of the reconstructed application ontology of CASNET in the
form of an ontological semantic network (Abu-Hanna, 1994). There are three types
of definitions in the application ontology: (i) definitions retrieved from the core
library, (ii) definitions retrieved from the peripheral library and (iii) new definitions.
The concepts retrieved from the peripheral library are specific for the causal tracing
method, but generic across all the different specializations of causal tracing. None of
the concepts that were retrieved from the opthalmology specific extensions were
used for the application ontology. As mentioned above, the newly defined concept
glaucoma was added to the application ontology as a sub-type of disease. To decide
on the method specificity of the newly defined concepts, the cASNET method must be
modelled for analysing the ontological requirements of the method.

CASNET’s inference methods. The analysis of cAsNET'S inference methods is based on
the STModel. We will describe the methods for abduction and for ranking.

As mentioned, “‘CAsNET abduction” is a specialization of “abduction by tracing
causal pathways between findings and disease”. The method consists of three
primitive procedures. The first of these uses the evidence links between observations
and states and their associated confidence measures to compute the confidence
measure of the state. The second procedure then labels the states with confirmed,
denied or undetermined by applying a threshold to the confidence measure of the
states. Finally, the third procedure classifies paths of labelled states with no denied
states as diseases.

The problem-solving method that casNeT uses for the ranking inference [Figure

206 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Inferences =~ ——— Abduction — (_ hypotheses Inferences——

Ranking by weight to cost ratio
weigh state likelihood __ rank according to

Inferences in path weight to cost ratio
methods
~ v A e v s
calculate label states interpret weigh weigh maximize
state according labelled forward inverse evidence
confidence to threshold states

evidence evidence
i\ I A

X N </ \ X \ /
Confidence a priori
oMrIe‘::t(:é measure | Treshold | frec;)uency[| W, | | w, | | W, |
ontology . \ / \)

confidence thresholded-by has forward inverse weight costs
frequency weight weight

(a) (a)

FIGURE 11. The inference methods used in CASNET for abduction of hypotheses (a) and ranking of
hypotheses (b).

11(b)] consists of two procedures: weighing the evidence for the hypothesized
diseases and ranking the diseases according to the weights of the evidences. The
weighing procedure consists of three steps, which use the strengths of the causal
relations between the states. The total weight of a state is the maximum of the
forward and the inverse weights. The forward weight of a state summarizes the
weight of the evidences coming from the causes of that state. The inverse weight
summarizes the weight of the evidences coming from the effects of the state. When
the status of a state is undetermined, the starting state’s a priori frequency is used
for the calculation of its forward weight. The procedure that ranks states
(hypotheses) uses the ratio of the weight of the hypothesis and the costs of testing
that hypothesis.

Figure 11 shows the methods that perform the abduction inference [Figure 11(a)]
and the ranking inference [Figure 11(b)]. The figure also shows some of the
ontological commitments that are required by the method.

3.3.3. Scoring the definitions

When the ontology of the application has been specified, the newly defined concepts
must be indexed and stored in the library. In the case where the core library is
largely complete, this is not difficult. The newly defined concepts are then all method
or domain specific, and must be stored in the peripheral part of the library. In the
case where the core library is also incomplete, the indexing is more difficult. In that
case the library builder has to decide whether the definition represents a basic
category of medical knowledge, or whether it is a method- or domain-specific
extension. The procedure to follow in this situation is based on the principle that the
concepts in the core library are intended to be reusable across many tasks and
domains. If the library builder estimates that this is true for a concept under
consideration, it is stored in the core library, otherwise it is considered as an
extension. Of course, the subjective estimates of the library builder are not
error-proof, but at present this is the only method available. One of the

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 207

assumptions that underlie this approach to library construction is that there are only
a small number of truly basic categories of medical knowledge, so that it is likely
that the current core library is already more or less complete.

For casNEr, scoring the definitions on the method-specificity attribute amounts to
deciding whether the concepts that are newly defined in Figure 10 are all specific for
the inference methods of casNET and not for their parents in the method hierarchy.
Again this requires a subjective estimate of the library builder. After inspecting how
the new concepts relate to casNET’s methods (see Figure 11) it is decided that the
newly defined concepts are specific for the methods employed by casneT, except for
glaucoma. Because glaucoma does not add method-specific aspects to the definition
of its super concept, the core library concept disease, it is assigned the value
“medical method” on the method-specificity attribute. ‘“Medical method” is the root
of the method hierarchy.

The concepts must also be scored on the domain-specificity attribute. In the
general case, this requires medical expertise. For the current application, deciding
on the domain specificity of concepts is straightforward because CASNET was
developed as a general shell for medical applications. Therefore, all the concepts—
except glaucoma—get the value ‘“Medicine” on the domain-specificity attribute,
which is the root of the domain hierarchy. glaucoma is assigned the value
“glaucoma management”’.

In summary, glaucoma is indexed as ‘‘specific for the domain of glaucoma in all
medical methods”. The other newly defined concepts that are used for abduction in
CASNET (e.g. confidence-measure and threshold) are indexed as specific to
“casNET abduction in medicine”. Figure 12 shows how the newly defined concepts
are scored on the method-specificity attribute.

3.3.3. Storing the definitions in the library

When the definitions are scored, they must be stored in the proper parts of the
library. For the new concepts with the domain-specificity value ‘““Medicine’” and the
method-specificity value ‘““CASNET abduction” or “‘CAsNET ranking”, two new theories
are created in the library: ““casNET abduction in medicine” and ‘“‘CASNET ranking in
medicine”. For glaucoma, the theory “glaucoma management in medical methods”
is added to the library. Because ‘‘glaucoma” was not yet part of the domain
hierarchy it is added as a specialization of opthalmology. Finally, the methods
employed by casNeT must be added to the method hierarchy. For example, “CASNET
abduction” is added as a specialization of ‘“‘abduction by tracing causal pathways
between findings and diseases’.

3.4. USING THE LIBRARY

This section explains how the library can be used for constructing a part of the
application ontology of a KBS. Basically, this amounts to classifying the domain of
the application in terms of the domain hierarchy and specifying the methods that the
application will use in terms of the method hierarchy. When a domain or a method
is not in the hierarchy, the most specific ‘“‘super domain” or ‘“‘super method”” must be
used. For example, if one is building an application in the field of cardiovascular

208 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

: W, W ¢
Causation §
strength casnet ranking] casnet ranking|
casnet abduction inverse
; forward
* We'ihl/ weight
: trength
Disease s A
_ | w Confidence Cost
K causes ! measure casnet ranking
, classifies casnet ranking lcasnet abduction T
bt we\ghl/' . / costs
| | con/fldence
Glaucoma Path - -] :
Teucoms | | Pathophysiological | 7once fo
[_glaucoma _] /‘ \ state b
- PAachi N
! termipnates _--" . P RN
begins - , . - N AN
-7 R summarizes ' \ -
Eids 4 labelled-as
Start-p'athophysio- End—péthophysio— \ Lab-test
Ioglcallstate logical state Status ” Event |
has frequency ‘th}sholded pyicasnet abduction
v
A priori
froquoncy Threshold
casnet ranking| casnet abduction
Legend
. Object stored in
Object core library
Object stored in
Object existing part of relation relation stored in
peripheral library core library ~ _» B objects of type A may
. Object stored in) . . /relarmn have relation "relation
Object “"casnet abduction relation relation stored in with objects of type B

existing part of

casnet abduction| i icine" S 5
in medicine’ peripheral library

_y B Aisasubclass of B

i Object stored in i . . .
Object “casnet abduction relation ;eel\e’nvng:rtstoofred in s
casnet (amng in medicine’ peripheral library A
N Object stored in
Object theory "glaucoma
glaucoma management in

medical method"

FIGURE 12. The application ontology of CASNET. The labels associated with new concepts show the
method-specificity values of these concepts.

medicine and the domain hierarchy does not have an entry for this domain, internal
medicine should be used instead (see Figure 7).

When the application is scored on the indexes, the library can be used to collect
the concepts that are likely to be useful for the application. The peripheral theories
that are included in the application ontology must satisfy two criteria. First, the
theories must have a domain-specificity index that is equal to—or subsumes—the
domain-specificity value of the application. Secondly, the theories must have a
method-specificity index that is either equal to—or subsumes—the method-
specificity values of the application. For example, for a system that uses the method
“abduction by tracing causal pathways between findings and diseases” in the domain
of cardiovascular medicine, the library would suggest including the theories P-1 and
P-2, but not P-3 from Figure 9.

For retrieving definitions from the core part of the library, the indexes cannot be
used. However, concepts defined in the peripheral parts of the library are often
defined as specializations of core ontology concepts. In this case, the peripheral
theories and the core library theories are connected by means of inclusion relations.
When theories include other theories, the included theories are also automatically
retrieved. In cases where core ontology theories are needed which are not retrieved
because of the inclusion relations, it is up to the library user to select these theories.

For a particular application ontology and a particular reasoning step in the

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 209

Method-
speciality
Domain + method
Pathophysiological specific extensions
Abduction by state
=T oL T | T i
pathways Disease-path
Abduction PPt
of diseaseg—~ : M M O B
from findings Core library ;
:
Method State Disease K
independnt}-- e Artery-—- Artery- COrONAFy---------oreeee
definitions State Observatiol K obliteration obliteration
sign .

labtest .
g Domain-specificity

Generic Fundamental Internal Cardiovasular Heart
concepts medical medicine medicine diseases
concepts

FIGURE 13. A diagram showing some definitions that are suggested for inclusion in the application
ontology of a system that diagnoses heart diseases. The positions in the diagram reflect the locations of
the definitions in the library.

STModel, the reusability characteristics of the definitions can be illustrated in a
reusability diagram. Figure 13 shows such a diagram for abduction in an application
that diagnoses heart diseases. The domain-specificity axis of the diagram is
constructed by starting from the specific domain in the domain hierarchy, and then
moving upwards through the domain hierarchy. Each of the parent nodes in the
hierarchy is used as a value on the domain-specificity dimension. The method-
specificity axis is constructed in a similar way, using the method hierarchy.

The region at the lower left part of the diagram contains the definitions that are
retrieved from the core part of the library, which was described in Section 3.2.2. The
definitions that are both method independent and generic are retrieved from the
theory generic-concepts. For the other definitions in this region, the positions in
the reusability diagram do not reflect from which theories they originate.

3.5. SUMMARY

The starting point of the work presented in this section is the observation that,
although the potential merits of libraries of reusable ontologies are widely
recognized, there are few libraries available today. Ontology libraries could provide
building blocks for an application ontology, which is a specification of all the
ontological distinctions that are required to perform a particular task in a particular
domain. Two reasons were identified to explain the unavailability of such a library:
the hugeness problem and the interaction problem.

We have presented an analysis of these problems in the context of medical
knowledge, and suggests ways to make them manageable. In short, the interaction
problem is addressed by the introduction of a method-specificity attribute for
concepts, based on a classification of inference methods. To the hugeness problem

210 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

there are two aspects: the large number of concepts makes building the library a
daunting exercise, and it also complicates retrieving the appropriate concepts when
they are needed. Because of the first aspect, we have concentrated on the
formulation of procedures for augmenting an initial library. The other aspect of the
hugeness problem is addressed by the introduction of a domain-specificity attribute,
similar to the method-specificity attribute. Based on this analysis and an analysis of
the intended use of the library, three principles have been identified that can be used
to impose a structure on an ontology library: organizing concepts according to (i)
natural categories, (ii) inference methods, and (iii) domain division in practice. The
first of these principles advocates structuring ontologies of medical knowledge
according to ‘“‘topics” that often recur in medical practice. These general categories
are located in the core part of the library. The importance of this organizational
principle is that it provides anchors for the more specialized concepts in the other
part of the library, thereby ensuring that concepts that are defined in different ways
for different methods or subdomains, have at least some common ground. The
second principle says that inference methods should be used as an index for the
ontological distinctions that they introduce. This facilitates the construction of
application ontologies because it is easy to find out which domain concepts are
required for a particular inference method. The third principle suggests that domain
concepts that are specific to a particular branch in medical practice should be
indexed by that sub-domain. This facilitates the construction of application
ontologies because it can be used to suggest concepts that are specific for problem
solving in that domain, and it also suggests what kinds of external knowledge will be
available in the runtime environment of the KBS.

4. Model-based knowledge acquisition tools

One important role for ontologies is that they can be used by knowledge acquisition
(KA) tools to direct the acquisition of domain knowledge. This issue is investigated
in this section and the next. In this section, we present an overview of the ways in
which tools can support the knowledge engineering process. In Section 5, we present
a number of tools that exploit explicit ontologies to provide some of the types of
support identified in this section.

4.1. KNOWLEDGE ACQUISITION AND MODELLING

One of the recurring themes in the recent knowledge acquisition literature is that
knowledge acquistion is a modelling activity, as opposed to the older view of
knowledge acquisition as mining. There are at least two different interpretations of
this modelling process. In the first interpretation, which we will call “KA as
modelling”, modelling is viewed as a bottom-up constructive process where a
structure is imposed on already elicited knowledge (e.g. Ford, Bradshaw, Adams-
Webber & Agnew, 1993). In the second interpretation, called ‘“model-based KA*,
modelling is viewed as a top-down process where an abstract model is selected or
constructed which is then instantiated with application-specific knowledge (e.g.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 211

KA as Modelling Model-Based KA

Elicit knowledge Select/Construct
skeletal model

Impose structure on the Instantiate skeletal
elicited knowledge model

. J A J

FIGURE 14. Two alternative interpretations of the modelling process in knowledge acquisition.

Breuker & Wielinga, 1989). Figure 14 shows the alternative interpretations of the
modelling view.

One could argue that all forms of knowledge acquisition use some abstract model
of the domain knowledge, although this model might be weak. Therefore, it is better
to view the two interpretations in Figure 14 as the extremes of a continuum which
ranges from weak model support to strong model support.

To gain a better understanding in the possible types of models and the way in
which they can be used in the knowledge acquisition process, this section makes a
comparison between a number of well-known knowledge acquisition tools. To
identify dimensions on which the tools can be compared, Section 4.2 presents a
general framework for describing the knowledge acquisition process according to the
model-based-KA paradigm. Section 4.3 describes how this paradigm evolved.
Section 4.4 then describes how each of the sub-tasks in the paradigm can be
supported by tools and in Section 4.5 a number of well known tools are described
and compared. Because we are mainly interested in the role of the abstract models,
the comparison is biased towards tools that are closer to the model-based-KA edge
of the continuum.

4.2. A FRAMEWORK FOR COMPARING TOOLS

In order to compare existing model-based KA tools, we need a general framework
in which they can be described. This section proposes such a framework which
distinguishes four main activities in model-based knowledge acquisition: (i) skeletal
model construction, (ii) model instantiation, (iii) model compilation and (iv) model

212 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

refinement. The framework is based on an analysis of the types of support provided
by existing knowledge acquisition tools.

The first of these sub-tasks, skeletal model construction, involves the creation or
selection of an abstract specification of the knowledge that is required to perform a
particular task in some domain. Such skeletal models may come in different flavours,
and they vary in the amount of detail that they specify. For example, generic tasks
(Chandrasekaran, 1987) specify both the method that is used to perform a task and
the way that domain knowledge must be represented. In contrast, KADS
interpretation models (Wielinga et al., 1992) specify the method (using control
knowledge and inference structures), but they do not specify how the domain
knowledge must be represented. In the PROTEGE approach (Musen, 1989a), both the
method and the domain-specific classes are specified in the skeletal model. Here,
only the instances of the classes and their relations are unspecified.

Model instantiation, the second activity in knowledge acquisition, involves
“filling” a skeletal model with domain knowledge to generate a complete knowledge
base. Many well-known knowledge elicitation tools concentrate on this activity in
the knowledge acquisition process (Boose, 1985; Shaw & Gaines, 1987; Marcus,
1988; Musen et al., 1988). For example, SALT concentrates on the elicitation of
knowledge that is required for the Propose-and-Revise skeletal model. In the model
instantiation activity the elicited knowledge is often, but not always, represented in a
non-executable language.

In the model compilation activity, the instantiated skeletal model is transformed
into an executable knowledge base. This subtask is only required when the
instantiated model is formulated in a non-executable language.

The fourth activity in model-based knowledge acquisition is refinement of the
executable model. In this activity, the dynamic characteristics of the KBS are
validated using a number of selected test cases. When the KBS does not solve the
test cases correctly, or produces invalid explanations, this provides feedback about
erroneous or missing knowledge in the executable model. In cases where the
executable model and the instantiated model are different, this activity requires
“uncompilation”: the parts of the instantiated model that correspond to the
erroneous parts of the executable model must be identified.

Figure 15 shows the four basic activities in model-based knowledge acquisition. It
should be emphasized that this task breakdown does not imply that the four
activities are necessarily performed sequentially. As argued by Shadbolt and
Wielinga (1990), the KA process is typically a cyclic process.

The dotted arrow in Figure 15 represents a fifth activity in the paradigm: the use

1 Construct 2 Construct .3 Com_plle
instantiated
skeletal model skeletal model
\/ \ model
Skeletal model Instantiated Executable
skeletal model model
w AN
.......... T 4Refine
"""""""""""""""""""" instantiated
model

FIGURE 15. The four basic activities in model-based knowledge acquisition.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 213

of the instantiated model to provide feedback about the validity of the skeletal
model. Negative feedback can be used for identifying parts of the skeletal model
that need to be adapted while positive feedback could for example be used for
deciding to put a model—or parts of a model—in a library. Although, this activity is
obviously important, there are at present no tools that support this activity.

The four activities require different kinds of expertise and different types of
support tools. Whereas the model construction activity is inherently difficult and
requires the expertise of a knowledge engineer, the knowledge instantiation activity
can often be performed by domain experts, after some initial explanation of
representation and tool usage. The compilation activity requires the expertise of a
computer programmer, but in many existing KA tools this activity is fully
automated. The knowledge refinement activity can be performed by domain experts,
provided that they understand the control regime of the inference engine
(Davis, 1979).

43. EVOLUTION OF THE PARADIGM

This section gives a historical overview of the developments in automated
knowledge acquisition, illustrated with references to some well known tools that
have been described in the literature. The overview is mainly intended to sketch
trends in the history of knowledge acquisition tools. To emphasize these trends, the
presentation is not completely chronological.

4.3.1. Ancient times: rule editors

Knowledge acquisition tools of the first generation were derived from existing expert
systems. For example, kas (Duda, Gasching & Hart, 1979), emyciN (van Melle,
1979) and expErT (Weiss & Kulikowski, 1979) were derived from PROSPECTOR, MYCIN
and casNET respectively. Tools of this era assumed that the domain expert or the
knowledge engineer was able to build an initial knowledge base without extensive
(tool) assistance. Only after this initial knowledge base was available could the tools
support the KA process by providing feedback about the origin of erroneous
solutions. The power of these tools was solely based on the explanation facilities of
their inference engines, which facilitated the job of locating missing or incorrect
parts of the knowledge base.

Thus, of the activities described in Section 4.2, only model refinement was
extensively supported by these tools. They barely supported model construction,
while the support for model instantiation was limited to symbol-level facilities such
as rule editors.} Tools of this generation could not provide much support for model
instantiation because of their weak skeletal models. For example, Emycin's skeletal
model only specified that the reasoning method is backward chaining and that the
domain knowledge is organized in a context tree, a simple hierarchy of domain
entities. Because in this early systems the instantiated model was formulated in
terms of directly executable representation formalisms no compilation activity was
required.

A notable exception with respect to the lack of support for model instantiation
was TEREISIAS (Davis, 1979). Like other tools of its generation, TEREISIAS did not

1 Some tools of this generation used simple template-based natural language front-ends to hide the
most deterrent details of the underlying representation formalisms.

214 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

have an explicit model of the types of knowledge that had to be elicited, but during
the knowledge elicitation process TEREISIAs used already elicited knowledge to
formulate expectations about what other knowledge might be needed. These
expectations, which were represented as rule models, served a similar purpose as
explicit skeletal models. However, because the rule models were not available at the
beginning of the model instantiation phase, they could only provide support after a
significant amount of knowledge had already been elicited.

Another exception is ROGET (Bennett, 1985). This system was especially designed
to support the early phases of knowledge engineering. The system helps the domain
expert to design the conceptual structure of a target consultation system, by
interacting with the expert. ROGET is able to provide guidance because it has access
to a library of conceptual structures of existing knowledge-based systems. These
conceptual structures can be considered as kinds of skeletal models. ROGET was able
to translate the constructed conceptual models into EMYCIN context trees. ROGET is
very different from the other first-generation tools and could best be viewed as an
early predecessor of the model construction tools of third-generation workbenches.

4.3.2. Mediaeval times: task- and method-specific architectures

Whereas the first generation of tools merely supported model refinement, the
second generation of knowledge acquisition tools also supported the model
instantiation activity. This higher level of support for model instantiation was a
result of the fact that these tools acquired knowledge in a form that was more
intuitive to the domain experts than the production rules in the earlier tools. Put
differently, tools of this generation were capable of knowledge-level communication
with domain experts. The type of support provided by second-generation tools can
be classified into three categories.

A first reason why tools of this generation could better support model instantia-
tion than their ancestors was because of their more restrictive skeletal models. For
example, tools as MOLE (Eshelman, 1988) and saLt (Marcus & McDermott, 1989)
used knowledge of problem-solving methods such as Cover-and-Differentiate and
Propose-and-Revise to engage in a structured dialogue with the domain expert.
Because these tools knew what kind of knowledge was required for these methods,
they could strongly focus the knowledge elicitation dialogue. Another system in this
category was opAL (Musen et al., 1988). opaL did not only make assumptions about
the method that the KBS was going to perform, but also about the domain that the
system would reason about: oncology. Because of this, orAL was able to communi-
cate with domain experts in domain-specific terminology.

A second way in which tools of this era bridged the gaps between the ways in
which humans process knowledge and the ways knowledge is represented in Al
formalisms was the use of graphical user-interfaces. For instance, the graphical
user-interface of opaL allowed the oncologists to enter knowledge in forms that
resembled the paper forms that they were used to working with. The tool then
automatically translated these forms into an internal representation which was
subsequently compiled into production rules.

A third group of tools of this generation based their support on interviewing
techniques which originated from psychology. Typical examples of this category are
tools such as Ets (Boose, 1985) and its successor AQUINAS (Boose & Bradshaw,

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 215

1988), which embody the repertory grid technique and aLto (Major & Reichgelt,
1990), which is based on the laddering technique.

With respect to the activities described in Section 4.2, tools of this generation
provided stronger support for the model instantiation activity than their predeces-
sors because they used stronger skeletal models. However, these skeletal models
were hardwired in the tools: it was not possible to edit skeletal models or construct
new ones. Thus, the model construction activity was not supported. Some of these
tools acquired the knowledge in a format that was not directly executable. For these
tools, an explicit compilation activity was required. This compilation was usually
automatic and could not be controlled by the knowledge engineer. Although some
of the tools of this generation had a refinement facility similar to those of the earlier
tools, the emphasis was on getting the knowledge model right the first time.

4.3.3. Modern times: integrated KA workbenches

Only recently tools have been built that support skeletal model construction. In
contrast with the systems of the first and the second generation, which are often
presented as stand-alone programs, these tools are usually embedded in larger
knowledge engineering environments, called KA workbenches. One of the first
systems that supported model construction was PROTEGE (Musen, 1989a). This tool
uses an abstract model of a problem-solving method, and allows the knowledge
engineer to associate the knowledge roles of the method with domain-specific labels.
Based on these associations, PROTEGE can be used to generate model instantiation
tools such as opaL, which interact with experts in domain-specific terminology. A
limitation of PROTEGE is that it is based on one problem-solving method: episodic
skeletal-plan refinement. Other systems of this generation allow the construction of
arbitrary skeletal models from sets of primitive components.

Most of the existing KA workbenches concentrate on the earlier activities of the
model-based knowledge acquisition paradigm. Typically, skeletal-model construc-
tion is supported by libraries of model components which can be selected and
adapted for an application by means of specialized editors. The model instantiation
activity is supported by tools that exploit the explicitly represented skeletal model to
focus the elicitation activity. In most workbenches, the instantiated skeletal model is
formulated in a non-executable language, so compilation is required. This compila-
tion may or may not be automatic. In most of the workbenches there is little
emphasis on the knowledge refinement activity.

4.4. TYPES OF TOOL SUPPORT

In Section 4.2 a framework was presented for comparing model-based knowledge
acquisition tools which distinguishes four activities. This section identifies for each of
these activities ways in which they can be supported or automated by knowledge
acquisition tools. Section 4.5 will use the results of this analysis to make a
classification of a number of well-known knowledge acquisition tools.

4.4.1. Supporting skeletal-model construction

As mentioned, different types of skeletal models have been proposed in the
literature. Here we will adopt the view that skeletal models consist of a task model
and an application ontology (this is also the view in CommonKADS and PROTEGE-II).
Together, these specify what kind of application knowledge is required to solve

216 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

problems in the application domain. The most obvious form of support for the
construction of skeletal models is by means of (graphical) editing facilities.
Dependent on the expressiveness of the formalism in which the models are
expressed, such editors can perform several types of consistency checking and
completeness checking. A second type of support is by providing libraries of
primitive components and typical configurations of those. Usually, these two types
of support are combined: libraries provide generic configurations that can be
fine-tuned for particular applications using specialized editors. The third, most
ambitious type of support for skeletal model construction is process support. This
type of support requires a prescriptive theory of how skeletal models should be
constructed from primitive components. For task models, such a theory is currently
under development (e.g. Aben, 1995). However, for application ontologies such a
theory is not yet available. Section 3 will describe principles that can be viewed as a
first sketch of such a theory.

4.4.2. Supporting model instantiation

In general, stronger skeletal models allow better support for model instantiation
because it can more easily be determined which knowledge is valid and required for
problem solving. There are five ways in which model instantiation can be supported:
(i) checking if the entered knowledge is consistent with the skeletal model, (ii)
checking whether the entered knowledge is all the knowledge that is required
according to the skeletal model, (iii) using domain specific terminology, (iv) using
intuitive visualization techniques, and (v) use of a structured dialogue.

The simplest form of support, consistency checking (e.g. syntax checking, type
checking), can also be found in conventional programming tools such as syntax-
driven editors. However, the other types of support are dependent on the stronger
skeletal models used in knowledge engineering. For example, there are two types of
completeness checking: checking whether for all the knowledge types knowledge has
been elicited and checking whether all the knowledge of a particular type has been
elicited. To provide this support, the skeletal model should define which knowledge
types there are in the domain and what the constraints are on the quantity of the
knowledge pieces for each of these knowledge types. The use of domain-specific
terminology requires that this terminology is defined. Also, specialized visualization
techniques are based on strong assumptions about what is to be visualized. For
example, when it is assumed that the knowledge in the domain consists of objects
and values of these objects on a number of dimensions, it can be decided to use grids
for visualizing the knowledge. Dialogue structuring requires—amongst other
things—the ability to find out what knowledge still needs to be elicited and is
therefore dependent on the capacity to perform completeness checking, which in
turn requires a strong skeletal model.

4.4.3. Supporting model compilation

The model compilation activity is only required when the knowledge is elicited using
a non-executable language. The advantage of such knowledge-level languages is that
they facilitate model-instantiation because they are easier to understand for
non-programmers. Therefore, it is to be expected that for tools that give better
support for model instantiation the compilation activity is more complex.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 217

In some tools, the compilation activity is completely automated. Once the skeletal
model is instantiated, the tool is able to generate an executable knowledge base
without further assistance. This type of support for compilation may seem the most
powerful type, but there is a serious drawback. Compilation becomes more difficult
when the source language is more expressive. With current compilation technology,
automatic compilation would in many cases yield computationally inefficient
executable models.

Alternatively, tools may engage in an interactive compilation dialogue. Here the
tool attempts to compile the instantiated model automatically, but whenever the
compiler does not have sufficient information to select an appropriate representa-
tion, it may ask for additional information to resolve the ambiguities.

In a third group of tools compilation is considered as an activity to be performed
by the knowledge engineer. Here, the emphasis is on supporting the knowledge
engineer instead of on replacing the knowledge engineer. Manual compilation can
be supported by providing libraries of reusable compilation procedures from which
the knowledge engineer can select the most appropriate one.

4.4.4. Supporting model refinement

Model refinement, which takes place in the context of a running system, may be
supported in four ways. Firstly, the tool may provide a tracing facility that shows the
reasoning steps that lead to the solution that the system arrived at. This type of
support is also provided by tools that support software engineering. Secondly, tools
may be able to inspect such traces to answer why and how questions. For such a
facility, the tool must have a persistent representation of the trace. The explanations
of first-generation tools were for example based on such persistent traces. A third
type of support is the ability to answer why not and what if questions. Such a facility
requires that the tool is capable of hypothetical reasoning. Finally, tools may be able
to locate the missing or incorrect knowledge pieces in the knowledge base that are
responsible for the erroneous solution. That is, they are capable of blame
assignment.

4.5. KNOWLEDGE ACQUISITION TOOLS

In this section, a number of existing knowledge acquisition tools are analyzed with
respect to the types of support that were identified in the previous section. The tools
that are described were selected because they are prototypical representatives of
different classes of tools. The results of the analysis are shown in Figure 16, Figure
17 and Figure 18. For some tools, describing the functionality in terms of the four
sub-tasks of the model-based KA paradigm required some reinterpretation. How-
ever, in order to be able to compare different tools it is necessary to have a common
framework, and we believe that the framework presented in Section 4.2 is
sufficiently general to do justice to the particularities of the different tools. The tools
are described in a roughly chronological order.

4.5.1. Emycin

EMYCIN (van Melle, 1979), a shell based on the domain-independent core of MYCIN, is
intended as a tool for the development of consultation programs. As already
mentioned in Section 4.3, EmMycIN has a fixed skeletal model based on the

218 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

backward-chaining method and the context tree. Because this skeletal model is
under-constrained, the tool can provide only limited support for model instantiation.
The knowledge is entered into the system using the “Abbreviated Rule Language” a
user-friendly interface on top of the production rules that EmyciN uses for
representing knowledge. A rule that is entered is checked for syntactic validity, and
to a limited extent for ‘“‘semantic” validity: EMYCIN checks whether an entered rule
does not directly contradict another rule, and whether the entered rule is subsumed
by another rule. Because the entered knowledge is directly mapped onto production
rules there is no need for compilation. To support model refinement, EMYCIN has
tracing facilities and it is able to answer why and how questions.

4.5.2. Kas

KAs (Duda et al., 1979), which is derived from PROSPECTOR, is very similar to EMYCIN
but has richer facilities for supporting model instantiation. For example, the tool
protects against errors such as disconnecting parts of the semantic network that kas
uses for knowledge representation. Further, the tool keeps a record of unfinished
elicitation jobs, thereby performing a kind of completeness checking.

4.5.3. Expert

Compared to the previous tools, EXPERT (Weiss & Kulikowski, 1979) makes stronger
assumptions about the kinds of knowledge that must be elicited: findings and
hypotheses. It distinguishes three kinds of rules: finding-to-finding rules, hypothesis-
to-hypothesis rules and finding-to-hypothesis rules. However, although EXPERT has a
stronger skeletal model than EMyciN and kas, the tool does not use this model for
supporting model instantiation. In EXPERT, the rules need to be entered using text
editors. After syntax checking, these rules are then automatically compiled into an
efficient internal representation. For refinement, EXPERT provides similar facilities as
EMYCIN and KAS.

4.5.4. Mole

MOLE (Eshelman, 1988) is a knowledge acquisition tool for systems that use the
Cover-and-Differentiate problem-solving method. The (built-in) skeletal model of
MOLE is derived from the knowledge requirements for this method. MOLE uses its
skeletal model to engage in a focused dialogue with the domain expert. During the
model instantiation phase, MOLE uses static analysis techniques to decide on the
consistency and completeness of the entered knowledge. Internally, the entered
knowledge is represented in the form of production rules, so compilation is not
needed. MOLE has advanced facilities for supporting the model-refinement activity. If
MOLE makes an incorrect diagnosis in the model refinement phase, the tool tries to
locate the source of the error and recommends possible remedies. Thus, in addition
to tracing and explanation, this tool is also capable of blame assignment.

4.5.5. Salt

saLT (Marcus & McDermott, 1989) can be used to develop expert systems that use
the Propose-and-Revise problem-solving strategy. The tool has built-in expectations
about the knowledge requirements of this method to structure the knowledge
acquisition dialogue. For Propose-and-Revise, there are three types of knowledge:

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 219

propose knowledge, constraint knowledge and knowledge for fixing constraint
violations. sALT is capable of consistency checking and completeness checking.
Initially, the entered knowledge is represented in a dependency network which is
then automatically compiled into production rules. To support knowledge refine-
ment, SALT is able to answer how, why, what-if and why-not questions.

4.5.6. Opal

As already indicated in Section 4.3, the skeletal model of opaL (Musen et al., 1988)
is based on the method that the knowledge-based system will use (episodic
skeletal-plan refinement) and on the domain about which it will reason (oncology).
Because of this strong model, the tool is able to perform extensive consistency and
completeness checks, to communicate with experts in domain-specific terminology,
and to use specialized visualization techniques. opaL compiles the entered know-
ledge automatically into production rules. The tool has no knowledge refinement
facilities.

4.5.7. Aquinas

AQUINAS (Boose & Bradshaw, 1988) is a system for building classification expert
systems. Like its predecessor, ETs (Boose, 1985), the tool is centred around the
repertory grid technique, which is a psychological technique for eliciting concepts
and “‘personal constructs”. These personal constructs are dimensions on which the
concepts may have values. The elicited concepts and distinctions together form a
skeletal model that is used to direct the further KA process, which consists of
assigning values to the concepts on the dimensions. In the knowledge instantiation
phase, the concepts are organized in hierarchies and assigned values on the
dimensions. This process is supported by graphical visualization and by dialogue
structuring. The tool is able to perform simple completeness checks. The elicited
knowledge can be compiled automatically into various expert system shells (e.g. KEE,
EMYCIN, ops5, etc.). The facilities for supporting knowledge refinement are those of
the shells into which the knowledge is compiled.

4.5.8. Alto

aLto (Major & Reichgelt, 1990) is a tool that implements the laddered-grid
knowledge-elicitation technique, intended for hierarchy elicitation. The tool expects
that knowledge can be modelled in terms of tree structures. Based on this
assumption, the tool visualizes the elicited knowledge in terms of directed graphs,
thereby providing the user with an intuitive overview of the elicited knowledge.
During model instantiation, the tool performs consistency checking and some forms
of completeness checking. For example, it insists that sibling concepts have at least
one discriminating attribute. The elicited knowledge is semi-automatically translated
into CommonSLOOP, an object-oriented representation system. During compila-
tion, aLTo asks for additional knowledge for resolving ambiguities. ALTO has no
facilities for supporting knowledge refinement.

220 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

4.5.9. Protégé

PROTEGE (Musen, 1989b), which was described briefly in Section 4.3, was probably
the first tool that recognized skeletal model construction as a distinct activity. The
tool has a fixed task model, but allows the knowledge engineer to specify the
ontology. This specification is then used to generate tools similar to opaL, but for
different application domains.

4.5.10. Spark-burn-firefighter

Another tool that supports model construction is spark, which belongs to the
SPARK-BURN-FIREFIGHTER (SBF) environment (Klinker, Dhola, Dallemagne, Marques &
McDermott, 1991). spark allows the user to indicate which of the tasks in a
particular industrial environment could be performed by a KBS. To do this, the tool
employs a general model of the tasks that are performed in some domain. Based on
this analysis and a theory of what methods are used in particular organizational
environments, SPARK generates a specification of the method of the KBS, in the form
of a configuration of mechanisms. This mechanism configuration is then used by
BURN, the model instantiation tool of the sBF workbench, to elicit the domain
knowledge that is required by the method. For each mechanism in the library, BURN
has a specific knowledge acquisition module. It is not entirely clear from the
literature which kinds of support are provided by BURN. As explained in (Yost,
Klinker, Linster, Marques & McDermott, 1994), the knowledge refinement tool
FIREFIGHTER was never implemented.

4.5.11. Keats

The keaTs system (Motta, Rajan, Domingue & Eisenstadt, 1990) consists of a
number of tools that support the various activities in model-based KA. The skeletal
models in KEATS are coding sheets, templates that define the structure of the skeletal
model. In Motta et al. (1990) both task-oriented coding schemes and domain-
oriented coding schemes are mentioned. However, it is not clear from the literature
whether the system supports the development of such coding schemes. The coding
schemes can be filled-in to arrive at an instantiated skeletal model. The instantiated
model is then used to develop an executable knowledge base. For the executable
model, KEATs uses a hybrid representation language for which it provides a forward-
and backward-chaining rule interpreter, a nonmonotonic truth maintenance system,
a frame-based representation language and a constraint-based language. KEATS has a
number of facilities for supporting model refinement. For example, the tool has
graphical visualization tools for inspecting persistent traces of problem-solving
sessions at different levels of abstraction.

4.5.12. Shelley

SHELLEY (Anjewierden et al., 1992b) is a workbench that provides tool support for
the KADS methodology. The system supports model construction by providing an
inference structure editor that has access to a library of interpretation models.
Model instantiation is supported by a number of facilities (e.g. a concept editor, a
card sort tool, a protocol editor, etc.). SHELLEY concentrates on the earlier activities
of the knowledge acquisition process, and it does not produce executable knowledge
bases. Therefore, model compilation and model refinement are not supported.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 221

4.5.13. Kadstool

KADSTOOL (Albert & Jacques, 1993) is a commercial system based on the same ideas
that underlie SHELLEY, but it is based on a more recent version of the KADS
methodology. Besides an inference structure editor, kapstooL provides facilities for
defining domain ontologies. The system has an editor that supports domain
modelling. Some actions that this editor supports can be considered as ontology
construction. For example, it is possible to define that domain relations are
transitive. This knowledge can then be used to decide how domain knowledge must
be visualized. However, in KADsTOOL ontology construction and model instantiation
are not clearly separated. Similar to SHELLEY, KADSTOOL is intended as a tool for
knowledge analysis; it does not support model compilation or model refinement.

4.5.14. Kew

KEW (Shadbolt & Wielinga, 1990; Anjewierden, Shadbolt & Wielinga, 1992a),
another third-generation KA environment, is a large system that embodies a variety
of knowledge elicitation and knowledge refinement tools. As in its predecessor
SHELLEY, the skeletal models that are used in KkEw are KADS-based. However, in
contrast with the original KADS approach, kew does not merely provide a library of
such skeletal models, but it uses the theory of ‘“generalized directive models”
(GDMs) for providing active support for the model construction activity (van Heijst,
Terpstra, Wielinga & Shadbolt, 1992). As in sBF and SHELLEY, the skeletal models in
KEw are task models—there is no explicit notion of ontology. KEw has a number of
knowledge instantiation tools, which represent the elicited knowledge in private
representation languages. These private representations can be translated into a
frame language and into first-order predicate logic. For both languages kKEw has
interpreters and knowledge refinement facilities.

4.5.15. Krest

The kresT workbench (Steels, 1993) is yet another example of a third-generation
KA environment. In this system, which is based on the componential framework
(Steels, 1990), skeletal-model construction consists of two parts: (i) the construction
of a task structure, which is a task decomposition tree, and (ii) the construction of a
model dependency diagram, which is a specification of the domain models (or
ontology) that are needed to perform a particular task. For both constituents KREST
provides editors. KREST is intended to be used in combination with an application kit
which is a library of reusable components. In parallel with the task structure for the
application, a task structure for knowledge acquisition is constructed. Thus, for
every problem-solving method, an application kit must also have an associated
knowledge acquisition method or tool. It is not clear from the literature in which
ways model instantiation is supported. The elicited knowledge is compiled into
CLOS code. kresT does not support knowledge refinement.

4.5.16. Dids

In the pips system (Runkel & Birmingham, 1994), the emphasis is on separating task
knowledge and search control knowledge. The skeletal model is formed by a
description of a problem space, a set of operators (the task model) and a set of
knowledge structures (the ontology). Based on this skeletal model, a number of

222 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

mechanisms for knowledge acquisition are selected, and a knowledge acquisition
method is specified. The mechanisms for knowledge acquisition use specialized
visualizations and may have private validation procedures. In the model-compilation
phase, the knowledge engineer associates problem-solving mechanisms with the
operators. The mechanisms can be associated with code for compiling to different
problem solvers. Because the compilation procedures make assumptions only about
the mechanisms, and not about the instantiated knowledge, they can be stored for
reuse once they are developed.

4.5.17. Protégé-I1

Current work on PROTEGE-I (Puerta, Egar, Tu & Musen, 1992) attempts to overcome
the limitations of PROTEGE. PROTEGE-I is a large environment that embeds a number
of tools, amongst which a mechanism configuration facility and an ontology editor.
Mechanisms are primitive building blocks for problem-solving methods. In the
PROTEGE-II framework, the configuration of mechanisms and the application
ontology together form the skeletal model. Another tool of the workbench, DAsH,
uses the ontology to generate a model instantiation tool, which is capable of
consistency checking and communication in domain-specific terminology. The user
of pasH (usually a knowledge engineer) is responsible for defining an intuitive
user-interface and, to some extent, a sensible dialogue structure. Similar to PROTEGE,
PROTEGE-II compiles the generated knowledge directly into CLIPS production rules.
The system does not support knowledge refinement.

The results of the analysis of the different tools are summarized in Figure 16,
Figure 17 and Figure 18. It should be emphasized that tools which have many pluses
in the tables are not necessarily the ideal tools for knowledge acquisition. Some
tools support all activities to some extent, while other tools provide extensive
support for one activity only. For example, although aqQuiNas does provide editor
support for ontology specification according to Figure 16, the type of things that can
be specified are restricted to concepts and dimensions. Further, there is always some
form of subjectivity in analyses as the one presented here. This subjectivity is
manifest in the tools that were selected, the dimensions that were used for the
comparison and the way in which the consulted literature was interpreted. However,
in spite of these difficulties we still think that the tables are a useful starting point for
comparing tools and investigating which facilities an ideal knowledge acquisition
tool should provide.

4.6. SUMMARY

This section has presented a framework for comparing model-based knowledge
acquisition tools. The framework distinguishes four activities in the model-based KA
paradigm: the construction of a skeletal model, the instantiation of that model, the
compilation of the instantiated model into an executable model and the dynamic
evaluation of the executable model to provide feedback about the validity of the
instantiated model. Also a fifth activity was mentioned: the use of the instantiated
model to provide feedback about the validity of the skeletal model, but since there
are at present no KA tools that support this activity it was left out of the

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 223

Skeletal model construction

Task model Ontology
Tool Editor Library Process Editor Library Process
EMYCIN - - - o - -
KAS - - - - - -
EXPERT - - - - - -
MOLE - - - - - -
SALT - - - - - -
OPAL - - - - - -
AQUINAS - - - o - -
ALTO - - - o - -
PROTEGE - - - + - -
SBF + + + — - -
KEATS ? + - ? + -
SHELLEY + + - - - -
KADSTOOL + + - + - -
KEW + + + — - -
KREST + + - + + -
DIDS ? + - ? + -
PROTEGE-II + + - + + -

FIGURE 16. A summary of the means by which the tools described in this section support the model

construction activity. Editor support means that the tool has editing facilities for specifying the skeletal

model, library support means that the tool provides access to a library of reusable skeletal models or

components of skeletal models, and process support means that the tool actively supports the modelling

process. +: the type of support is provided; o: the type of support is only provided to a limited extent; -:

the type of support is not provided; n.a.: not applicable; ?: could not be determined from the literature
whether the type of support is provided.

framework. For each of the four activities, ways were distinguished in which they
could be supported by tools. Then, a number of well-known KA tools were
compared with respect to these types of support.

An important reason for developing the framework was to gain insight in the
range of skeletal models that have been used in KA tools and the effects of the use
of these models on the other knowledge acquisition activities. Although it was
claimed that all knowledge acquisition tools are model based to some extent, the
model-based-KA perspective has introduced some bias in the selection of dimen-
sions for comparison. For example, a number of researchers in the KA-as-modelling
paradigm have emphasized the importance of using multiple experts (e.g. Shaw &
Gaines, 1989). Tools developed from this perspective often have advanced features
for integrating the opinions of different experts, but this feature was not chosen as a
dimension for comparison.

Based on the analysis, the following conclusions can be drawn. Firstly, different
types of skeletal models have been used in model-based knowledge acquisition,
which contain different types and different amounts of information. The skeletal
models can be classified according to a number of dimensions. There are

¢ tools which use widely applicable but weak skeletal models (e.g. EMYCIN) and tools
which use very a specific skeletal model which have a limited scope (e.g. MOLE);

224 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Model instantiation

Consistency Completeness Domain Intuitive Dialogue
Tool checking checking terminology visualization structuring

EMYCIN
KAS
EXPERT
MOLE

SALT

OPAL
AQUINAS
ALTO
PROTEGE
SBF

KEATS
ICONKAT
SHELLEY
KADSTOOL
KEW
KREST
DIDS
PROTEGE-II

[}
I
|
|

|
|
|
+ + |

o

4+ A+

~
+

+++++++++++++++000
!
|

|
|

R e e
\

2t o+ o+
~

FIGURE 17. A summary of the means by which the tools support model instantiation. Key as in Figure 16.

Model compilation Model refinement
What
Semi- Library How/ if/why Blame-
Tool Automatic automatic support Tracing why not assignment
EMYCIN n.a. n.a. n.a. + + - -
KAS n.a. n.a. n.a. + + — -
EXPERT + - - + + - —
MOLE n.a. n.a. n.a. + + ? +
SALT + - - + + + —
OPAL + - - + ? ? -
AQUINAS + - - n.a. n.a. n.a n.a
ALTO - + - + — - —
PROTEGE + - - ? ? -
SBF + - + - - -
KEATS ? ? ? + + - -
ICONKAT =+ — - + + n.a n.a
SHELLEY - - - - - - -
KADSTOOL - - - - - - -
KEW o - - + + - -
KREST + - - + - - -
DIDS - - + + — - —
PROTEGE-II + - - + - - -

FIGURE 18. A summary of the means by which the tools support model compilation and refinement. Key
as in Figure 16.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 225

¢ tools which use skeletal models of a knowledge representation formalism (e.g.
EXPERT) and tools which use knowledge-level skeletal models (e.g. SHELLEY);

¢ tools which use fixed, implicit skeletal models (e.g. opaL) and tools which allow
user-defined, explicit skeletal models (e.g. PROTEGE-1I);

¢ tools where the skeletal model is a model of the reasoning processes (e.g. KEW)
and tools where the skeletal model is elicitation oriented (e.g. AQUINAS); and

¢ tools where the skeletal model describes the types of domain knowledge (e.g.
ALTO) and tools where the model describes the knowledge requirements of the
problem-solving method (e.g. SALT).

In model-based knowledge acquisition, the information in the skeletal model is
used to support model instantiation, model compilation and model refinement.
Therefore, it is important to know how the different types of information that
skeletal models may contain are related to the types of support that can be provided
for the other activities. In the next section, this question is addressed for the model
instantiation activity. The section describes the cuE workbench which uses informa-
tion specified in one part of the skeletal model—the application ontology—to
support model instantiation by consistency checking, by completeness checking, by
using domain-specific terminology, by using specialized visualization and by dialogue
structuring.

Section 6 addresses the question of how skeletal models can be used in the model
compilation activity. It presents an approach where user-defined, knowledge-level
skeletal models are mapped onto skeletal models of the representation formalisms
used by problem solvers. These mappings may be considered as extensions to the
knowledge-level skeletal model for compilation purposes.

5. Ontology-based knowledge acquisition in cue

The analysis in the previous section of the state of the art with respect to tools that
support the model-based knowledge acquisition paradigm shows that there is an
emerging theory of the various activities in this process and of the ways in which
tools can support these activities. We now present cUE as a KA environment that
operationalizes this theory. Many of the ideas behind cUE are thus not new, but are
just an explicit integration of principles that underly existing tools. CUE was
developed as a testbed for extending this emerging KA process theory, in particular
in the areas of (i) exploiting a library of ontologies such as the one described in
Section 3, and (ii) the exploration of the notion of knowledge-elicitation strategies.
The library of ontologies acts as a repository of previous knowledge engineering
experiences, and enables the knowledge engineer to reuse descriptions of the
structure of domain knowledge that have proven useful in the past. Knowledge-
elicitation strategies are principles for organizing the knowledge-elicitation dialogue,
and present an alternative for existing techniques that either have predefined
dialogue structures or leave navigation to the user.

As mentioned in Section 2 we distinguish four activities in knowledge modelling:
building a task model, building an application ontology, mapping the task model

226 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

TABLE 2
The activities in constructing the knowledge model that are
distinguished in Section 2 approach, and the CUE tools that
support these activities

Modelling activity CUE tool
Construct task model for application QUITE
Construct application ontology QUOTE
Map task model onto application ontology QUITE
Instantiate application ontology QUAKE

onto the application ontology and instantiating the application ontology (see Figure
4). Table 2 shows the cUE tools that support these activities.

Section 5.1 presents a global overview of how the cUE tools are intended to be
used in the KA process. Section 5.2 describes the two tools that support skeletal
model construction in CUE: QUITE, a task modelling editor and QUOTE, an editor for
ontologies in Ontolingua. Section 5.3 describes QUAKE, a tool that exploits the
skeletal models developed with QuITE and QUOTE to elicit domain knowledge in a
focused way. In the context of QUAKE an analysis of possible knowledge-elicitation
strategies is presented. In Section 5.4, cUE is compared with KEwW, PROTEGE-II and
pIDS, and some strengths and weaknesses of the system are described. This section
only describes cug’s facilities for supporting model construction and model
instantiation. Section 6 describes how cUE could support model compilation. The
current version of cUE does not support model refinement, the fourth activity of the
model based knowledge acquisition paradigm.

5.1. STEPS IN KNOWLEDGE MODELLING

To help understand why the different tools have their specific functionalities, this
section presents an analysis of the different steps in the knowledge modelling
process in the form of a generic scenario. In principle, each of the steps should be
supported by a knowledge engineering workbench. The scenario is based on the
activities mentioned in Table 2, but some activities are divided into multiple steps
because different support facilities are needed.

(1) Informally describe domain and task of the application. KBS development
always starts with getting an initial picture of the kind of application that is required.
This typically requires talking to managers and domain experts, reading some
publications about the field, etc.

(2) Identify generic tasks. Based on the informal domain and task description, the
knowledge engineer then constructs an initial version of a task model. This
model—a configuration of generic-task instances—is underspecified: it only models
the high-level structure of the reasoning task that the application should perform.
Because of the strong assumptions about the structure of generic tasks (the
STModel), the task model still gives guidance about the types of domain knowledge
that are needed.

(3) Specify which parts of the task must be automated. Usually, only some parts of

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 227

the reasoning process will be performed by a KBS. This should be specified in the
task model.

(4) Construct the application ontology. For constructing the application ontology
the ontology library is provided. As described in Section 3, the library is indexed by
domain and by methods. By specifying the domain and the method, the library can
be used for retrieving concept definitions that are likely to be useful in the
application ontology. If there is no entry for the domain in the library, constructing
the application ontology requires more creativity from the knowledge engineer.t
(5) Specify the role-to-role mappings. When the application ontology has been
built, the task model can be completed. This involves specifying which knowledge
roles are shared between the generic-task instances, by means of role-to-role
mappings.

(6) Map task model onto ontology. The connection between the task model and the
application ontology must be specified. This can be done by defining ontology
mappings. These mappings specify that particular roles in the task model may only
be fulfilled by instances of particular ontological concepts. Once the mappings have
been specified, the skeletal model is completed.

(7) Create elicitation agenda. Now the application ontology must be instantiated.
The first step in this process is creating an elicitation agenda—a list of elicitation
activities that should be performed.

(8) Specify knowledge-elicitation strategy. After having defined the -elicitation
agenda, a knowledge-elicitation strategy may be specified. This can best be viewed
as an ordering on the elicitation activities in the agenda.

(9) Elicit domain knowledge. Finally, the tuples and instances of the relations,
functions, and classes in the application ontology should be elicited and saved in a
knowledge repository.

In principle, all of the steps in the generic scenario should be supported by cue
tools. In the following sections, it will be explained to what extent this is realized in
the current cUE implementation.

5.2. SKELETAL MODEL CONSTRUCTION IN CUE

As mentioned in Section 2, in our approach the skeletal models consist of a task
model and an application ontology. For both components, cUE contains a tool that
supports their construction. QUITE, the task model editor, graphically supports the
configuration of STModel instances into a task model for the application. QUOTE
supports construction of application ontologies.

5.2.1. Quite
In Section 4 it was argued that there are three ways in which tools can support the
construction of task models: (i) by providing specialized editors, (ii) by providing
libraries of reusable components, and (iii) by providing support for the modelling
process.

In the context GAMES-II, library support is quite easy. Because the task models
are configurations of the STModels for diagnosis, therapy planning and patient
monitoring, the task modelling library contains only three models. QUITE users can

1 Section 7 will present a number of guidelines for acting in this situation.

228 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

select instances of these STModels and connect them by means of control links and
role-to-role mapping. Control links are global indications of the order in which the
instantiated STModels must be invoked to perform the application task. They are
intended for supporting knowledge acquisition and do not contain sufficient
information to drive problem solving. The nitty gritty of task control is specified in
the design model. Role-to-role mappings indicate data-flow between STModel
instances. For example, they could specify that diagnostic hypotheses are mapped
onto therapeutic problems.

QUITE users can specify control links and role-to-role mappings by setting the tool
in the appropriate mode and drawing lines between the objects that need to be
connected. If the specified links or mappings do not violate syntactical constraints,
they are added to the task model. An example of a syntactical constraint is that roles
should not be mapped onto roles within the same instance of a generic task.

In many cases, the KBS that is being developed will only automate parts of the
problem solving process, while other parts remain the responsibility of human
agents. QUITE supports this by allowing the user to indicate which of the inferences in
the task model will be performed by the application. The other tools in cue will only
attempt to acquire the knowledge required for these parts of the reasoning process.

The task model is an informal, high-level overview of the medical reasoning
process which fulfils two functions in the remainder of the knowledge acquisition
process; (i) providing guidance for constructing the application ontology, and (ii)
providing background knowledge for specifying the global control regime when the
design model is constructed. For the first of these purposes, QUITE allows users to
specify ontology mappings between STModel components and components of the
application ontology. The ontology mapping editors are described in Section 5.2.2.
For the second purpose, QUITE has extensive documentation facilities: every
STModel, knowledge role, inference and mapping in the task model can be
documented individually. Figure 19 summarizes the functionality provided by QUITE.

5.2.2. Quote

A second tool of the cuE environment is QuoTE. This tool is intended to support the
development of application ontologies, either from scratch or by fine-tuning
ontological theories selected from the ontology library described in Section 3.
Further, the tool can be used for the development of ontological theories for the
library.

Levels of support in QUOTE. QUOTE supports the definition of ontologies at three
levels. The first of these, the ontology level, has to do with the selection of theories
from a library to build an application ontology. The graphical interface enables users
to get a quick overview of the contents of an ontological theory, without an analysis
of the internal details of the definitions.

The second level of support is the theory level. QuOTE graphically shows the type
constraints that are specified in the definitions of a theory. Whenever a parameter of
a relation or a function is not typed, a warning is given.f QUOTE also warns the user

1 In principle, nothing is wrong with untyped parameters. Neither Ontolingua nor QUOTE enforce such
typing. However, the ontologies defined in QUOTE are intended for driving the knowledge-elicitation
process, and type constraints on parameters are important for the validation of elicited knowledge.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 229

Summary of QUITE’s functionality
* Supported activities from Section 5.1
—2. Build an initial task model.
—3. Specify which parts of the task must be automated.
—35. Specify the role mappings.
—6. Map task model onto ontology.
* Intended users
—Knowledge engineers, in cooperation with domain experts.
* Support types
—Editing facilities.
—Library support.
* Input from other tools
—For the construction of the task model, QUITE requires no input from other tools.
—For the mapping between the task model and the application ontology, QUITE requires an
ontology defined in Ontolingua.
* Output
—A task model.
—A series of ontology mappings.
* Theoretical background
—Task models can be constructed by configuring STModels for the three generic tasks in
medicine: diagnosis, therapy planning and patient monitoring.

FIGURE 19. A synopsis of QUITE’s functionality.

when definitions refer to classes, relations or functions that are not defined in the
theory or its included theories; or when concepts are defined more than once.

The third level of support has QuoTE provides is at the level of Ontolingua
definitions. The definition editors facilitate the definition of classes, relations and
functions by syntax checking, automatic indentation, and by providing direct access
to relevant parts of the on-line documentation distributed with Ontolingua.
Therefore, every definition that is created or modified in QUOTE is guaranteed to be
consistent with the Ontolingua language definition. QuoTE works directly on
Ontolingua theories. Theories that are created using QUOTE are saved as Ontolingua
files, and thus can be used directly as input for the Ontolingua translators described
in (Gruber, 1993). Furthermore, QUOTE can also be used to edit or visualize
Ontolingua files that were not created with the tool. For these reasons the tool can
also be used outside the cUE framework.

QUOTE’s functionality. The functionality of ouoTe will be demonstrated by showing
how the tool supports the development of a simple application ontology in the
domain of managing graft-versus-host disease (GVHD).

When QuOTE is started, the first window that appears is the theory-inclusion-graph
viewer shown in Figure 20. This facility can be used to select and load theories from
the library. The loaded theories are automatically added to the application ontology.
The theory-inclusion-graph viewer visualizes the theories that are part of the
application ontology and their inclusion relations. As explained in Section 3, a
theory includes another theory when the definitions in the former depend on
definitions in the latter. For example, the theory finding, which contains the
definition of the concept finding, includes the theory observable, which defines the
concept observable, because findings are defined as expressions about

230 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

[R U 1 - Aopication Onioiogy cato]

Tool v) (Layout v) (Ontology v) (Theories v) (& ¢

Theories IKImD] |
I FRAME-ONTOLOGY |=
E GENERIC-VALUE E
id

OPERATOR
SCALE-ONTOLOGY

MEDICAL-ONTOLOG
OBSERVABLE GENERIC-VALUE OPERATOR SCALE-ONTOLOGY MEDICAL-ONTOLOGY

FINDING
]

FRAME~-ONTOLOGY

OBSERVABLE

Pl COCTOaTmy T
Name: _finding-disease
Type: _domain

Included Theories: finding diseasq

FINDING

il eI L

FIGURE 20. A visualization of the theory structure of an application ontology in QUOTE. The arrows
indicate direct inclusion relations. When the user presses the OK button, the theory finding-disease is
added to the graph.

observables. All theories that are part of the inclusion graph in Figure 20 are loaded
from the library of ontological theories.

In Figure 20, the user is defining a new theory, finding-disease, in which the
concepts will be defined that specify how diseases are related to findings in the
GVHD domain.} Since the definitions of these concepts depend on the definitions of
findings and of diseases, the theories that contain these definitions are included in
the new theory.

When the new theory is created, it is automatically added to the theory inclusion
graph. The contents of theories can be specified or altered by means of theory
editors. The user interface of a theory editor consists of two areas (see Figure 21).%
The upper area contains a number of browsers which show the classes, relations and
functions that are defined in the theory, and one which shows the theories that are
imported by the theory. The lower area shows a graphical representation of the
structure of the theory. The rounded boxes in the lower area of the tool represent
already defined classes, and the rectangular boxes represent defined relations. The
texts finding-importance, evoking-strength and frequency represent
functions.

QUOTE distinguishes between classes that are only intensionally defined and classes
for which the instances are enumerated in the definition. We call the latter
enumerated classes. The difference between these two types of classes is important
because it affects the knowledge acquisition process: the definition of instances of
enumerated classes is part of application ontology construction, whereas the
definition of instances of intentionally defined classes is part of the model
instantiation activity. Defining an enumerated class is a way to prevent CUE from

1 In reality, finding-disease is also part of the ontology library. We assume here that it must be
defined by the knowledge engineer to illustrate the functionality of QUOTE.

1 Actually, there are three areas since every CUE tool has a feedback area at the bottom of the tool.
This area is used to provide the users with feedback about the actions that they initiate.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 231

Fr— e [

(Tool v) (Theory v) (View v} (Definitions v) (Classes v) (Relations v} (Functions v) (imports v) (Help v) &) t

Qasses Relations Functions

T IMPORTANCE-RATE MANIFESTATION-OF =IFINDING-IMPORTANCE
FREQUENCY-VALUE FREQUENCY
- STRENGTH-VALUE EVOKING-STRENGTH
= =
1K !
=
FINDING MANIFESTATION-OF DISERSE
—_—
o~
[- ~
! e - > ~
A » A
FINDING—IE’IPURTRNCE FREEILIIENCY EVUKING—.STREHGTH

IMPORTANCE-RATE FREQUENCY-VALUE STRENGTH-VALUE
(J N J

-

One-of One-of One-of

nu#ﬂse‘{!&tnmsn“; NEL Yoevurn; e \ :
HIGHLY-IMPORTANT | iCOMMON-FINDING {ALMOST-DEF INITE-CRUSE |
PROBHBLV—IHPORTHNTE PLAUSIBLE-FINDING: :PLAUSIBLE-CAUSE i
= POSSIBLY-INPORTANT! IPOSSIBLE-FINDING i POSSIBLE-CAUSE
= UNIMPORTANT i IRARE-FINDING {RARE-CAUSE

INON-SPECIFIC

****** Furelamzntal

FIGURE 21. QUOTE’s theory editor visualizing the theory finding-disease. Note that the terms “disease”
and “finding” in the imports browser refer to the theories included by finding-disease. In these theories
the concepts finding and disease are defined.

attempting to elicit other instances of that class during the model instantiation
activity. A typical use of enumerated classes is for defining value sets for attributes.
For enumerated classes, QUOTE also shows the instances. For example, in Figure 21
the instances of the enumerated classes importance-rate, strength-value and
frequency-value are displayed. The arrows in the graph indicate type constraints.
For instance, the relation manifestation-of shown in the figure is defined to have
a disease and a finding as its arguments.

The user can edit the definitions by opening a definition editor on a relation, class
or function. Definition editors allow modification of the definitions at the Ontolin-
gua level. For instance, in Figure 22 the user has opened a definition editor for the
function frequency. Definition editors are text buffers which provide emacs-like
editing facilities. The cuUE architecture ensures that the graphical representation and
the underlying Ontolingua definitions are always consistent. This architecture is
based on a user-interface management system which detects user actions and
propagates these to the data structures, and which automatically detects changes in
the data structures and propagates these to the visualizations. A detailed description
of this architecture can be found in Wielemaker and Anjewierden (1989) and
Anjewierden et al. (1992a).

In Section 4 three types of support were identified for ontology construction;
specialized editing facilities, library support and process support. Only the first two
of these support types are provided by quott. The specialized editing support is
based on three types of functionality: syntax checking, type checking and graphical

232 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

=
QUOTE - - theory FINDING-DISEASE

(Tooi v) (Theory v) (View v) (Definitions v} (Classes v) (Relations v) (Functions v) (imports v) 8 t

Casses Relations Functions

‘f IMPORTANCE-RATE = MANIFESTATION- OF FINDING-IMPORTANCE
FREQUENCY-VALUE FREQUENCY

E STRENGTH-VALUE EVOKING-STRENGTH

(=

NI

FINDING

Layout ¥) Pvevl " |

amnj
B ’
3

(de;;ne-f‘unction Frequencyl('?maniFestation-nF) 1=> ?fre
he frequency is an qualitative assessment of the lxkel.\houd
FINDING'IPPURTGNCE of the occurrence of a finding given some discase.
$AXIOM-DEF
((Sunctlo? frequency)
_ {domain frequency manifestation-of)
IMPORTANCE-RATE FREQUI {range frequency frequency-value)
{arity frequency 2}))

FIGURE 22. QUOTE’s theory editor when the user is editing the function frequency. The window labelled
“frequency” in the lower area of the theory editor is an example of a definition editor.

visualization. Although these functionalities facilitate the definition of ontologies
significantly, the support remains passive: the user defines the concept, and the tool
warns that something might be wrong or missing. The creative aspect of ontology
construction remains a task for the user. However, the ontology library ensures that
in many cases application ontology construction is reduced to library selection.
Figure 23 summarizes the functionality provided by QUOTE.

Summary of QUOTE’s functionality

Supported activities from Section 5.1.

—4. Construct the application ontology by selection, editing and configuration.

Intended users

—Knowledge engineers, in cooperation with domain experts.

Support types

—Editing facilities.

—Library support.

Input from other tools

—QUOTE does not require input from other tools, but it can be used to visualize or edit
Ontolingua theories developed outside the CUE environment. QUOTE can best be used
together with a library of ontological theories, but this is not a requirement.

Output

—An application ontology, consisting of a number of Ontolingua theories.

Theoretical background

—The theory that underlies QUOTE is the Ontolingua theory: ontologies consist of
definitions of classes, relations and functions that are organized in theories. A definition
consists of a set of labelled sentences.

FIGURE 23. A synopsis of QUOTE’s functionality.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 233

5.2.3. Connecting task model and application ontology

Once the task model and the application ontology have been developed, they must
be connected. This can be done using QuITE which has specialized mapping editors
for supporting this activity. Every role and every inference in the task model can be
associated with ontology mappings. For knowledge roles, these mappings specify
which domain concepts may play these roles. For example, it may be specified that
instances of the ontological class disease may play the role of diagnostic hypotheses.
For, inferences, the mapping specify the types of domain knowledge that are used to
perform the inference step. Thus, in the case of inferences, the mappings specify
how the ontological requirements of the problem-solving methods associated with
the inferences are satisfied. The screen dump of QuiTE in Figure 46 shows two
mapping editors.

5.3. MODEL INSTANTIATION IN CUE

Skeletal models specify which kinds of knowledge are needed for applications, and
how the knowledge will be used during reasoning. The purpose of QUAKE, CUE’s
model instantiation tool, is to interact with the domain expert to collect the domain
knowledge and store it in a knowledge repository. In Section 4, five types of support
were identified for model instantiation: (i) consistency checking, (ii) completeness
checking, (iii) use of domain specific terminology, (iv) use of intuitive visualization
and (v) dialogue structuring. This section describes how each of these forms of
support are provided by CUE.

QUAKE can be used in two modes of interaction: passive, where the user
determines the structure of the knowledge elicitation dialogue, and active, where the
tool acts as an interviewer. Section 5.3.1 describes how QUAKE can be used in passive
mode, thereby illustrating how the tool performs consistency checking and how it
uses domain specific terminology. Section 5.3.2 describes the active mode, in which
the tool also checks for completeness and structures the knowledge elicitation
dialogue. Section 5.3.3 describes the use of specialized visualization techniques in
QUAKE. Finally, Section 5.3.4 explains how QUAKE exploits the application ontology
to support model instantiation.

5.3.1. QUAKE as a passive consistency checker

QUAKE provides a narrow view on the underlying knowledge base. Only parts
directly relevant to the current elicitation activity are shown. QUAKE’s basic user
interface, shown in Figure 24, consists of three areas. The upper left area is the
object window. An object is either an instance of a class or a tuple of a relation. The
object window is used for displaying information about the object that is the focus of
the current elicitation activity. The right upper area contains a multi-functional
browser. Depending on the nature of the elicitation activity, this browser can show
different types of objects. The lower area of the tool is the interaction window. In
this window the user is prompted to assert new knowledge in the knowledge
repository.

The use of QUAKE in passive mode will be illustrated with a fragment of a
knowledge-elicitation scenario for a system that diagnoses GVHD. For this scenario,
we use the application ontology described in Section 5.2.2. The scenario will also be
used in Section 5.3.2 to describe some more advanced features of the tool.

234 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

QUAKE -~ Application Knowledge Editor]

(Tool v) (Agenda v} (Knowledge Base v) (Ontology v) (Form Object v) (Expression v) (8] t I
NET_1¥]) [] Instances of class DISEASE

o]) 1=} RECURRENT-PRIMARY-DISEASE
CYTO-REDUCTION

VENO-OCCLUSIVE-DISEASE
I GVHD
f e |

4
<4

Enter DISEASE: ACUTE-HEPAT Q

FIGURE 24. QUAKE after the domain expert has entered some diseases. The entered diseases are
visualized in the browser on the right side of the tool. The user is just entering a fifth disease:
ACUTE-HEPATITIS.

A knowledge-elicitation scenario. In the example scenario, the domain expert starts
the knowledge elicitation session by entering diseases. Therefore, the user focuses
the tool on the class disease, which turns the multi-functional browser into a
browser for disease instances. The expert enters the names of some diseases that are
relevant in the application area. The result is shown in Figure 24.

Once five diseases have been entered, the user decides to concentrate on one of
them: GVHD. The disease is selected and visualized in QUAKE’s object window. In
the application ontology, no attributes are defined on instances of class disease.
Therefore, the user decides to ask the tool for the relations that are defined on
diseases. According to the application ontology, there are three kinds of relations
defined on instances of the class disease: disease-subtype, f manifestation-of
and has-treatment. The relations are shown in the browser, which is now used as
a relation browser. In Figure 25, the relation disease-subtype is mentioned twice,
because GVHD can play two roles in this relation. In the first relation specifier
GVHD plays the role of the supertype, whereas in the second specifier GVHD
would be the sub-type.

The domain expert decides to work first on the manifestations of GVHD, so (s)he
selects that relation in the browser. The tool responds by showing all the findings
that are defined as manifestiations of GVHD. However, in this case there are as yet
no findings associated with GVHD. The domain expert decides to enter the
presence of a rash as a manifestation of GVHD and selects the corresponding
pulldown option, which results in the tool showing a template for the
manifestation-of relation in the interaction window. Because the domain expert
is working on GVHD, the disease parameter is already instantiated. As illustrated in
Figure 26, the user enters the finding “‘rash = present” in the text field. When the

1 Note that the disease-sub-type relation is an object level relation that can hold between instances of
the ontological class disease. This relation has nothing to do with the sub-class relation which is used in
Ontolingua.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 235

[IR o0 -- Arpication Knowiesge Etor R o
(Tool v) (Agenda v) (Knowledge Base v) (Ontology v) (Form Object v) (Expression v) & €

N [] Relations on DISEASE
": MANIFESTATION-OF <finding> GVHD
E

HAS~-TREATMENT GVYHD <therapy>
DISEASE-SUBTYPE «disease> GYHD

| —
LS
E type: DISEASE
= DISEASE-SUBTYPE GVHD «disease>

object: GVHD

attributes:

|

FIGURE 25. QUAKE showing the relations defined on the class of GVHD.

domain expert is finished ouake checks whether the entered expression is
syntactically correct and consistent with the application ontology. If the new
expression is correct and does not conflict with previously entered information, it is
asserted in the QUAKE knowledge base. An example of a possible conflict would be
that the domain expert had already asserted that rash is an instance of disease.
Since it is defined in the application ontology that a finding has an observable as
its first parameter and disease is not specified as a sub-class of observable or vice
versa, QUAKE would in that case refuse to accept the entered finding.

QUAKE - - Application Knowledge Edito

(Tool v) (Agenda v} (Knowledge Base v) (Ontology w) (Form Object v) (Expression v) (8 i I

NET 1) [] Tuples of pattem:
‘: MANIFESTATION- OF <«finding> GVHD
E type: DISEARSE Defined on GVHD
v |
A

object: GVHD

attributes:

[«

{ MANIFESTATION-OF <finding> GVHD)

Enter FINDING: BASH = PRESENT, |

FIGURE 26. QUAKE when the domain expert enters that the presence of rash is a manifestation of GVHD.
When the user does not know in which form the finding should be entered the tool can be asked to show
a template of the relation.

236 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

R 77— et ool T
(Tool v) (Agenda v) (Knowledge Base v) (Ontotogy v) (Form Object v) (Expression v) &) L

N« 1>} [I Tuples of pattern:
': MANIFESTATION- OF <finding> GVHD
E type: MARNIFESTATION-OF Defined ogn GVHD

object:

{manifestation-of
{(Finding rash = present)

(manifestation- of
(finding rash = present}
gvhd)

amnj

gvhd) (manifestation- of
(finding fever = present)
attributes: gvnd)
[ESIGETEIENN - Unkown
FREQUENCY = Unkown

{ EVOKING-STRENGTH (MANIFESTATION-OF (FINDING RASH e PRESENT) GVHD)) =) «<strength-value»

Enter STRENGTH-VALUE: o
X B ATHOGNOMONIC
Co ALMOST-DEFINITE-C
PLAUSIBLE- CAUSE
POSSIBLE-CAUSE

RARE-CAUSE
NON-SPECIFIC

FIGURE 27. QUAKE when the domain expert enters the evoking strength of the presence of rash for
GVHD. Because strength-value is an enumerated class, the tool is able to show the allowed values.

In the scenario, the domain expert continues by asserting that another manifesta-
tion of GVHD is the presence of fever. After that (s)he decides to specify some
further qualifications of the first mentioned manifestation. The corresponding tuple
is selected in the browser and displayed in the upper left window. According to the
application ontology, manifestation-of relations have two attributes: evoking-
strength and frequency.} The user first selects the evoking-strength attribute
and as a result a template for the function appears in the interaction window (Figure
27). Because in the application ontology evoking-strength is defined to have a
strength-value as its value, which is an enumerated class, QUAKE is able to
generate the list of possible values for the attribute. This list is used to support an
auto-completion facility (which is also displayed in Figure 27). This example clearly
illustrates the importance of the distinction between intensionally defined and
enumerated classes mentioned in Section 5.2.2: in the model instantiation phase it is
not possible to define instances of enumerated classes.

The scenario shows that QUAKE uses the application ontology to provide strong
guidance for the model instantiation process. The tool prevents the user from
entering expressions that conflict with the definitions in the ontology, and the tool
interacts with the user in domain oriented terminology: it prompts for diseases and
findings, and not for method-specific knowledge types, such as hypotheses and data,
or for symbol-level constructs such as rules or constraints. Of course, the ability of
the tool to communicate in domain-specific terminology depends on the domain

+ QUAKE interprets unary functions as attributes.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 237

specificity of the application ontology. If a knowledge engineer uses only generic
vocabulary in the definitions, QUAKE is only able to communicate in generic terms.
The knowledge engineer should take this into account when constructing the
application ontology.

QUAKE confronts the user with a limited amount of information at a time. For
instance, Figure 27 shows only the manifestations of GVHD, and the evoking-
strength and the frequency for one of these manifestations. The rationale behind this
approach is that this narrow, focused view on the underlying knowledge base guards
the domain expert from not seeing the wood for the trees. Experiences with earlier
KA workbenches showed that domain experts often get confused when large
amounts of heterogeneous domain facts are displayed at one time.

5.3.2. QUAKE as an active knowledge collector

Experience with QUAKE as a passive application knowledge editor has revealed some
shortcomings. Because of QUAKE’s narrow view on the knowledge base, users quickly
forget which knowledge has already been asserted and which knowledge still must
be entered. For example, in the scenario described in the previous section, the user
first entered five diseases, then (s)he concentrated on one of these, GVHD, and
asked the tool which relations were defined on this disease. Of the four relations,
manifestation-of was selected, and two tuples of this relation were entered. In
the course of this scenario many tasks were left unfinished. For instance, besides the
five diseases shown in Figure 24 other diseases need to be entered which also have
findings as manifestations. Further, the disease hierarchies (the disease-subtype
tuples) must be specified, etc. In passive mode, QUAKE leaves the navigation in the
knowledge space defined by the skeletal model completely to the user.

To overcome this difficulty, QUAKE is also equipped with a more active interaction
style. In active mode, the tool not only waits for the user to take action, but it can
also take the initiative. The active component of the tool consists of two parts: (i) an
agenda mechanism, responsible for completeness checking and (ii) an interpreter for
knowledge-elicitation strategies, responsible for dialogue structuring.

Agenda mechanism. The purpose of the agenda mechanism is to keep a record of
which parts of the skeletal model are fully instantiated, partially instantiated, or
empty. In some cases, QUAKE can decide whether a part of the skeletal model has
been fully instantiated. For example, one of the assumptions made by QUAKE is that
attributes must always have values. Therefore, the tool can decide that a particular
attribute still needs to be specified without intruding upon the user. Furthermore,
sometimes the application ontology explicitly defines that a specific number of
relation tuples or class instances must exist. For instance, it could be defined that
instances of some type of disease may have at most one therapy. QUAKE’s agenda
manager can use such information to decide whether parts of the skeletal model are
fully instantiated or not.

Most of the time, however, the decision as to whether a part of the skeletal model
is fully instantiated must be taken by the domain expert. In the scenario, it was the
domain expert who had to decide that all the relevant diseases were entered, that all
the manifestations of all the diseases were specified, etc. In contrast, in active mode
it is up to QUAKE to keep the agenda up to date. Whenever a user decides to start
working on another part of the knowledge base and the tool cannot determine by

238 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

| current status description —
QO | = empty O Patial o Fun Elich tuples of type DISEASE-SUBTYPE GVHD <disease>
O | = empty O Patiat © Fun Elicht tuples of type DISEASE-SUBTYPE <disease> GVHD
O | = emty o Patia o Fun Eilch tuples of type HAS-TREATMENT GVHD <iherapy>
O | o emty = patia © Fun Elici tuples of type MANIFESTATION- OF <finding> GVHD
O | = empty o Patia o Fun Elicit instances of class THERAPY
O | © empty o patial © Fu Elicit instances of class DISEASE
0O | o empty o Patial 3 Fun Elicit IMPORTANCE-RATE that Is a FINDING-IMPORTANCE of <RASH = PRESENT>
O | = empty o Patial o Fun ElicH tuples of type MANIFESTATION-OF “FINDING® <disease>

Number of jobs = 26, not started = 24, partially completed = 2, finished = 0

FIGURE 28. QUAKE’s agenda mechanism.

itself that the job that was worked on has been completed, QuOTE asks the user. For
example, when the user in the scenario in Section 5.3.1 decided to start working on
the manifestations of GVHD, the tool in active mode would first have asked
whether the entered diseases are all the relevant diseases in the application domain.
The response of the user would then be used to update the agenda. Figure 28 shows
QUAKE’s agenda after the five diseases and the two manifestations were entered.

Knowledge elicitation strategies. The agenda mechanism maintains a list of
knowledge-elicitation activities that are completed, partially completed, or not yet
initiated. However, the decision as to the order in which the different elicitation
activities are performed is still left to the user. For example, in the scenario in
Section 5.3.1 it was the user who decided to start working on the diseases, and it was
the user who decided to select the manifestation-of relation from the relations
defined on GVHD. After a while, the decision as to which knowledge-elicitation
activity should be performed next becomes a complicated task in itself, because the
number of activities rapidly increases as new knowledge is entered. For example, in
the above scenario, four activities are added to the agenda for every disease which is
entered in the knowledge base (elicitation of the manifestations, treatments,
sub-types and supertypes of the entered disease).

Many knowledge acquisition tools that are specialized in the model instantiation
activity of the knowledge acquisition process, take a more active role. For example,
MOLE (Eshelman, 1988) and saLt (Marcus & McDermott, 1989) instantiate their
skeletal models using a dialogue where the system takes the initiative. In these
systems, the tool decides which knowledge should be elicited when. We call the
structuring principles for such a dialogue a knowledge-elicitation strategy. In other
words, a knowledge-elicitation strategy is a specification of the order in which the
domain instances and expressions are to be elicited.

In the above-mentioned second-generation KA tools, it was possible to hardwire
the knowledge-elicitation strategies in the program because these tools were based
on a fixed skeletal model. MoLE for example, begins a knowledge-elicitation session
by asking the user to list some of the complaints that would indicate that there is a
problem to be diagnosed. After these are entered, the tool asks for states or events
that explain these complaints. In turn these states may also need to be explained. In

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 239

this way MOLE builds, in a breadth-first manner, a network of causally related states
and events. MOLE derives its power from the strong assumptions that it makes about
the structure of the causal network that is required for the Cover-and-Differentiate
problem-solving method.

It is not possible to use built-in knowledge-elicitation strategies in systems like
CUE, where the construction of the skeletal model is also considered part of the
knowledge acquisition process. Because the suitability of a strategy depends heavily
on the nature of the skeletal model, the strategy can be determined only after the
skeletal model has been constructed. In the current version of cUE this problem is
addressed by making the specification of the knowledge-elicitation strategy part of
the construction of the skeletal model, as is also the case in pips (Runkel &
Birmingham, 1994) and krEesT (Steels, 1993).

To formulate knowledge-elicitation strategies as part of the skeletal model, a
simple Lisp-based language has been defined which can be interpreted by QUAKE.
This language allows the knowledge engineer to express ordering constraints in
terms of the application ontology. A very simple example of a knowledge-elicitation
strategy defined in this language is the following.

(define-ka-strategy main ()
(elicit-all ?d (disease ?d)) (1)
(for-each ?d (disease 2d) (2)
(elicit-all $f (manifestation-of (finding $f)
(disease ?2d)))))

The first expression tells QUAKE to start eliciting all the diseases in the domain.
The second specifies that, once the diseases have been elicited, all the manifestations
for each disease must be elicited. The constructs elicit-all and for-each are the
main primitives of the language. elicit-all takes a specification and tells QUAKE to
elicit expressions that are in accordance with that specification. In the body of the
construct, operations can be specified that must be performed on each of the elicited
expressions. for-each works similar, but instead of eliciting expressions according
to the specification, it retrieves expressions that are already stored in QUAKE’s
knowledge repository. The language is extended with constructs for sequencing,
iteration and simple conditionals and allows recursion. The suitability of the
language has been tested by using it for specifying the knowledge elicitation
strategies of MOLE and SALT.

The use of a language for this purpose allows specification of any knowledge-
elicitation strategy which can be defined in ontological terms. It is left to the
knowledge engineer to decide which of these strategies are sensible. This is an
undesirable situation because it makes the job of the knowledge engineer more
difficult. What is really needed is a KA tool that is able to determine an appropriate
knowledge-elicitation strategy by itself. Such a tool would need to have knowledge
of general guidelines for the formulation of knowledge-elicitation strategies. At
present, such general principles are not available. In the remainder of this section,
some candidate principles on which knowledge elicitation strategies can be based are
discussed.

Principles for structuring the KA dialogue. To investigate the question as to whether
which dialogue structuring principles are sensible, we have compared the elicitation

240 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

strategies employed by a number of existing tools. For one of these tools, MOLE, we
have already described its elicitation strategy. sALT constructs its knowledge base in
a similar way. The skeletal model of this tool requires three types of knowledge:
procedures, constraints and fixes. The knowledge pieces are organized in a
dependency network with three types of relations: contributes-to, constrains, and
suggests-revision-of. To instantiate this skeletal model, the tool allows the user to
start elicitation at any point in the network. saLT then cues the user for appropriate
links and keeps track of how the elicited knowledge pieces are fitting together and it
also warns for inconsistencies.

ALTO (Major & Reichgelt, 1990) is a tool for the elicitation of concept hierarchies,
based on the laddering technique. The underlying skeletal model distinguishes two
types of knowledge: concepts, which are organized in is-a hierarchies, and
attributes of those concepts. ALTO starts the elicitation process by asking for a seed
item. From this seed item, the user may move up or down the hierarchy, or to the
siblings of the seed item. After that, the attributes of the new concept are elicited
and the process continues with the elicited concept as the new seed item.

Analysis of the three knowledge-elicitation strategies described above reveals
some striking similarities. All these tools seem to do some kind of “graph traversal”.
This is one example of a potentially general principle for formulating knowledge-
elicitation strategies: use elicited pieces of knowledge to prompt for related pieces of
knowledge. This principle may be applied in a depth-first manner, a breadth-first
manner, or a combination of both and it can make use of multiple relations (e.g.
“contributes-to”” and ‘‘constraints” in SALT).

A second general principle is based on the observation that in many application
domains, there are ‘“‘basic” objects. The nature of these objects depends on the
application task. For example, in diagnostic applications, the basic objects are the
diagnoses, whereas in design applications, the basic objects are components. This
observation is for example used in KEw’s advice and guidance module to organize
the KA process. When the task of the application is of a diagnostic nature, KEW’s
task scheduler suggests starting by eliciting the potential solutions. In cases when the
number of solutions is infinite, or very large, KEw instead suggests starting by
eliciting the solution components.

Contrary to the first principle, the second principle is dependent on the task. The
ability of QUAKE to implement such strategies depends on the mapping between the
task model and the application ontology. For example, in the GVHD domain,
QUAKE should know that the potential solutions for the diagnostic problem are
diseases. In general, this heuristic could be formulated as follows. In every
application, there are basic objects. What these basic objects are depends on the
nature of the task and on the mapping between the task model and the application
ontology. Knowledge acquisition should start by eliciting these basic objects.

In summary, based on an analysis of the strategies used in existing knowledge
acquisition tools, the following dialogue-structuring principles can be formulated.

¢ Use already elicited knowledge to prompt for related pieces of knowledge (graph
traversal).

* Center elicitation around ‘“‘basic objects”. Which objects are basic depends on the
task type and the mapping between the task model and the application ontology.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 241

Principles such as these can be used as global constraints that elicitation strategies
should satisfy. However, they are not sufficiently restrictive to derive a single best
elicitation strategy from a task model and an application ontology. Further, the
optimal strategy could also depend on other, not ontology related considerations
such as the level of expertise of experts and the level of experience with tools
(Burton, Shadbolt, Rugg & Hedgecock, 1990).

5.3.3. Specialized visualization in QUAKE

In the sections above it was illustrated how QUAKE checks for consistency and how it
uses domain specific terminology (Section 5.3.1) and how it checks for completeness
and structures the knowledge elicitation dialogue (Section 5.3.2). The final way in
which tools can support model instantiation is by the use of specialized visualiza-
tions. aLto, for instance, visualizes the elicited concept hierarchies in the form of
directed graphs. The tool has this ability because it makes ontological assumptions
about the structure of the knowledge that needs to be elicited. In arLTO these
assumptions are hard-wired in the tool. In contrast, QUAKE cannot make such
ontological assumptions because it must be able to instantiate arbitrary ontologies
defined with QUOTE.

In order to use specialized visualizations for particular parts of the knowledge
base, QUAKE must be able to determine on the fly which visualizations are
appropriate for which parts of the knowledge base. One way to realize this is to
explicate the ontological assumptions upon which specialized visualizations are
based. This makes it possible to decide whether a particular class or relation can be
displayed using a specialized visualization, based on the definition of that class or
relation in the application ontology. Currently, the only specialized visualization
facility provided by QuUAKE is a directed graph viewer. This viewer can be used for
relations that are binary, transitive and anti-symmetric. Whenever QUOTE is able to
determine that these properties hold for a certain relation, the tuples of this relation
may be visualized using the directed graph viewer. Figure 29 shows this facility when
visualizing tuples of the disease-subtype relation.

DISEASE-3UBTYPE

(Tool v) (Layout v) (Laddering v) & L
I[KIND] ~

ACUTE-GVHD-I
_ ACUTE-GVHD-II
ACUTE~-GVHD-III
GVHD <

ACUTE-GVHD-IV

CHRONIC-GVHD <LIMITED-EHRUNIC—GVHD
EXTENSIVE-CHRONIC-GVHD

)

FIGURE 29. QUAKE’s directed graph viewer, visualizing tuples of the disease-subtype relation.

242 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Summary of QUAKE’s functionality
* Supported activities from Section 5.1

—7. Create elicitation agenda.

—38. Specify knowledge-elicitation strategy.

—9. Elicit domain knowledge.

* Intended users

—Domain experts.

* Support types

—Consistency checking.

—Completeness checking.

—Use of domain specific terminology.

—Intuitive visualization.

—Dialogue structuring defined by knowledge engineer.

* Input from other tools

—QUAKE Requires an application ontology defined with QUOTE.

—When there is also a mapping between the task model and the application ontology
QUAKE can use this to generate an initial agenda. Otherwise, the user will have to aid the
tool.

* Output

—A complicated knowledge model, which can be handed over to a programmer to

construct the design model.
* Theoretical background

—The theoretical background of QUAKE is basically the theory of model-based knowledge
acquisition that was set out in Section 4: focused knowledge elicitation requires a
restrictive skeletal model. In QUAKE, the skeletal model is made restrictive by
incorporating the application ontology.

FIGURE 30. A synopsis of QUAKE’s functionality.

The directed graph viewer can also be used as a simple laddering tool. To do this,
the user must select an object in the hierarchy and select the “Ladder Up” or
“Ladder Down” option (from the Laddering pulldown menu). The tool then
searches for the corresponding job in the agenda and starts it up. Figure 30
summarizes the functionality provided by QUAKE.

In summary, the cUE tools support the steps distinguished in the generic scenario
of Section 5.1 in the following ways.

(1) Informally describe domain and task of the application. ciE does not support
this step.

(2) Identify generic tasks. In cUE, this step is supported by quiTE. This tool allows
the user to select generic-task instances and to configure these into a task model
(by mouse clicking and dragging).

(3) Specify which parts of the task must be automated. QuITE allows the user to
indicate which parts of the task model are to be performed by the KBS.

(4) Construct the application ontology. QUOTE supports ontology construction by
selecting ontological theories from a library, configuring the theories into an
application ontology and refining the definitions in the theories for the particular
application.

(5) Specify the role-to-role mappings. QuITE allows the user to specify the mappings
between already defined roles (by dragging lines between the roles in the
graphical representation of the task model).

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 243

(6) Map task model onto ontology. The task model can be mapped onto the
ontology in QUITE via the use of ontology mapping editors.

(7) Create elicitation agenda. Before the elicitation activity starts, QUAKE generates
an initial agenda which is automatically kept up to date during the elicitation
session.

(8) Specify knowledge-elicitation strategy. This step is only partially supported.
QUAKE provides a simple tailored language for specifying knowledge-elicitation
strategies, but it does not have specialized editors to support the language.

(9) Elicit domain knowledge. This step is supported by QUAKE. The tool interprets
the knowledge-elicitation strategy and prompts the user to enter new knowledge
until the knowledge base is—according to the application ontology—complete.
QUAKE checks for consistency and is able to select appropriate visualizations for
parts of the knowledge base.

5.3.4. How it works

QUAKE’s ability to support model instantiation is almost entirely based on its capacity
to inspect Ontolingua definitions. Consistency checking in QUAKE means checking
whether the entered piece of knowledge is consistent with the corresponding
Ontolingua definition. Also, completeness checking in QUAKE (determining if a KA
activity has been completed) is done by examining Ontolingua definitions to see how
many instances or tuples of a particular class or relation are allowed. Further, to
decide how knowledge pieces should be visualized, the corresponding definitions are
inspected. This section describes the components of an Ontolingua definition and
how QUAKE is able to inspect these.

Ontolingua definitions. An Ontolingua definition consists of a number of labelled
sets of sentences that specify how the defined class, relation or function may be
used. For our purposes, the most important distinction between these sets of
sentences is that some sets consist of axioms in which the defined term is used, while
other sets of sentences consist of meta descriptions of the defined terms. In the
former, which are called first-order sentences in Ontolingua, the truth functional
properties of the logical connectives are used to constrain under which circumst-
ances the defined term can be used for formulating valid expressions. The other sets
of sentences consist of meta descriptions of the defined terms. These expressions are
called second-order sentences in Ontolingua. A simple example of a sentence of the
first type is:

(= (manifestation-of ?finding ?disease) (1)
(disease ?disease))

An example of a sentence of the second type is;
(nth-domain manifestation-of 2 disease) (2)

The two sentences both express the fact that the second argument of
manifestation-of must be a disease. However, while the first sentence expresses
this fact only implicitly, using material implication, the second states the fact
explicitly.t

+ The terms implicit and explicit are used in the same way as in (Kirsh, 1990): something is explicitly
represented when it can be derived from a knowledge base without the application of inference steps.

244 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

User-defined
Ontolingua
F;a:'ﬂe L » Canonicalization 7 Loom
ontolo T
gy Translation
Canonical ion—-» iki
Ontolingua Translation Epikit
Translation
~a Other
representation

FIGURE 31. The Ontolingua translation architecture.

The vocabulary for writing these explicit meta axioms about ontological terms is
defined in the Frame ontology, a special representational ontology that comes with
Ontolingua. The Frame ontology is provided to facilitate the translation of
Ontolingua ontologies into a number of different representation formalisms, which
was the main purpose for developing Ontolingua. The idea is that the terms defined
in the Frame ontology capture cliches for which many (frame-based) problem
solvers provide specialized inference procedures. The translators are able to inspect
the meta axioms for deciding how a particular definition should be translated.

In order to facilitate the job of the Ontolingua translators, the Ontolingua system
first performs a canonicalization step. In this step, the system attempts to recognize
first-order cliches and reformulate them in terms of the Frame-ontology axioms. The
canonicalization pass guarantees that the translation output profits as much as
possible from the special inference procedures of the target systems. Figure 31 shows
the Ontolingua translation architecture. A detailed description of this architecture
can be found in Gruber (1993).

ouotTE and Ontolingua. The definition editors that are provided by oquoTe for
specifying ontology definitions provide emacs-like editing facilities such as paren-
thesis checking, automatic indentation, etc., but they are not syntax-driven. Users
can use both types of sentences mentioned above in their definitions. Once they are
satisfied with a definition, it is checked for syntax errors, and then handed over to
the Ontolingua system. Ontolingua canonicalizes the definition entered by the user,
and then passes it to a QUOTE-specific translator, which translates the definition into
QUOTE’s internal data structures. Then, QUOTE invokes its pretty-printer to produce a
nicely formatted textual representation of the canonicalized definition in the
definition editor. Figure 32 summarizes this process.

A result of this design is that the internal representation—and the visualized
representation—of QUOTE are always equivalent to canonical Ontolingua, making
maximal use of the axioms in the Frame-ontology. This is important because the
other tools in cUE can inspect only the meta-axioms. For example, when QUAKE
needs to know the type of the second argument to manifestation-of it would
understand sentence 2 above, but it would not understand sentence 1. However, the
architecture ensures that sentence 1 is automatically reformulated as sentence 2.

QUAKE and Ontolingua. Just as the Ontolingua translators are able to inspect the
meta axioms in Ontolingua definitions to decide how a particular term should be
translated, QUAKE is able to inspect the meta axioms to retrieve information needed

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 245

/yntax—checking\

[o manifestation-of | Internal quote
(butfer) (layout V) (preview V) representation
T [

Canonicalization <+——

(define-relation - ()

Internal quote
representation

Internal quote
= representation

Pretty-printing Translation
Internal quote
representation

FIGURE 32. The interaction between QUOTE and the Ontolingua translation architecture.

to support knowledge elicitation. For example, in Section 5.3.3 it was mentioned
that for visualizing the tuples of a relation as a directed graph, QUAKE requires that
the relation is binary, transitive and anti-symmetric. Since each of these terms is
defined in the Frame ontology, QUAKE only needs to inspect the meta axioms of the
ontology definition of the relation to decide whether these properties hold. In the
same way, meta axioms about the cardinality of relations can be used to decide
whether a particular knowledge acquisition job has been completed. For example,
when it is defined that the maximum-slot-cardinality of a particular class and a
particular binary relation is three, QUAKE can decide that the corresponding KA job
is finished after three tuples of that relation have been elicited.

QUAKE makes a KA-oriented interpretation of the concepts defined in the Frame
ontology, in the same way that the target representations that Ontolingua translates
to make a reasoning-oriented interpretation of these concepts. Of course, not every
concept in the Frame ontology can be used for all types of model-instantiation
support provided by Quake. Figure 33, which is based on the description of the
Frame ontology by Gruber (1993), summarizes the kinds of information that can be
derived from the terms defined in the Frame ontology. The information can be used
for three purposes: consistency checking, completeness checking and visualization.
The other types of support for model instantiation, domain-specific terminology and
dialogue structuring, are not directly based on the inspection of the meta axioms in
the definitions. The use of domain specific terminology comes for free as a result of
the use of an explicitly defined application ontology, the dialogue structuring
facilities are partially based on QUAKE’s capacity for completeness checking.

5.4. CUE IN PERSPECTIVE

In this section we have presented three tools that are part of the cuE knowledge
engineering workbench. cug falls in the same category of knowledge acquisition
environments as DIDS and PROTEGE-1I, which were described in Section 4. This section
highlights some similarities and differences between cue and these other systems.
The work must closely related to the work presented here is that on the PROTEGE-T
system. In particular, the work on pasH (Eriksson, Puerta & Musen, 1994) is in a
similar spirit. DASH is a tool that can be used to build knowledge elicitation tools
from application ontologies specified in MODEL, the PROTEGE-II ontology language.
The relation between QUAKE and DASH is similar to that between an interpreter and

Type Relation Arguments Cons. Comp. Vis.
c relation ?relation - - +
c function ?Munction - - +
c class ?class - - +
r instance-of ?individual ?class - - -
f all-instances ?class: — ?set-of-instances + - -
f one-of (@instances :— ?class + - —
r subclass-of ?class ?class + - -
T superclass-of ?2class ?class + - -
r subrelation-of ?relation ?relation + - -
r direct-instance-of ?individual ?class + - -
r direct-subclass-of ?class ?class + - -
f arity ?relation:— ?n + - -
f exact-domain ?relation :— ?relation + o -
f exact-range ?relation :— ?class + o -
r total-on ?relation ?relation + o -
r onto ?relation ?range-class + o -
c n-ary-relation ?relation - - +
c unary-relation ?relation - - +
c binary-relation ?relation - - +
c single-valued ?binary-relation + + -
f inverse ?binary-rel:— ?binary-rel o - -
f projection ?relation ?column - - -
f composition ?rell ?rel2:— ?binary-rel - - -
r composition-of ?binary-rel ?list-of-rels - - -
f compose (@binary-rels ?binary-rel - - -
r alias ?rell ?rel2 - - -
r domain ?relation ?class + - —
r domain-of ?class ?relation + - -
r range ?relation ?class + - -
r range-of ?class ?relation + - —
r nth-domain ?rel ?integer ?class + - -
r has-value ?inst ?binary-rel ?value - - -
f all-values ?inst ?binary-rel - - —
r value-type ?inst ?binary-rel ?class - - -
f value-cardinality ?inst ?binary-rel:— ?n - - -
r same-values ?inst ?rell ’rel2 - - -
r inherited-slot-value ?class ?binary-rel ?value - - -
f all-inherited-slot-values ?class ?binary-rel:— ?values + - -
T slot-value-type ?class ?binary-rel ?class + - -
f slot-cardinality ?class ?binary-rel:— 7n - + -
r minimum-slot-cardinality ?class ?binary-rel ?n - + -
r maximum-slot-cardinality ?class ?binary-rel ?n - + -
r single-valued-slot ?class ?binary-rel - + -
r same-slot-values ?class ?rell ?rel2 + - -
c class-partition ?set-of-classes + - -
r subclass-partition ?class ?class-partition + - -
r exhaustive-subclass-partition ?class ?class-partition + - -
c asymmetric-relation ?binary-relation - - -
c antisymmetric-relation ?binary-relation + - +
c antireflexive-relation ?binary-relation + - +
c irreflexive-relation ?binary-relation - - -
c reflexive-relation ?binary-relation - - -
c symmetric-relation ?binary-relation - - -
c transitive-relation ?binary-relation - - +
c weak-transitive-relation ?binary-relation - - o
c one-to-one-relation ?binary-relation + - -
c many-to-one-relation ?binary-relation + - -
c one-to-many-relation ?binary-relation + - -
c many-to-many-relation ?binary-relation - - -
c equivalence-relation ?binary-relation o - -
c partial-order-relation ?binary-relation - - o
c total-order-relation ?binary-relation - - o
r documentation ?object ?string - - -

FIGURE 33. A summary of how QUAKE uses terms defined in the Frame ontology, to support consistency

checking (cons.), completeness checking (comp.) and specialized visualization (vis.). +: QUAKE uses the

relation for a type of support; o: the relation could be used but that the current implementation does not;

c: class; r: relation; f: function; :—: separates domain parameters from range parameters for functions.
Parameters starting with @ may be bound to multiple arguments.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 247

a compiler. Whereas QUAKE interprets application ontologies to communicate in
domain specific terminology, bAsH uses these ontologies to generate other tools that
communicate in domain specific terminology. DAsH-generated tools act as user-
friendly front-ends for the underlying knowledge base. They are similar to QUAKE in
passive model in that they do not aim for completeness. That is, they do not actively
search for missing information. Therefore it is to be expected that users of DAsH
generated tools will face the same problems as those encountered with QUAKE when
used in passive mode.

The pips system (Runkel & Birmingham, 1994) has a facility for specifying
knowledge-elicitation strategies. Runkel and Birmingham distinguish two elements
that drive knowledge elicitation, namely (i) ‘“mechanisms for knowledge acquisi-
tion” (MeKA), which define for each knowledge construct in the ontology an
elicitation, a verification and a generalization procedure, and (ii) a ‘“‘knowledge
acquisition method” which defines the sequencing of MeKAs. The MeKA’s are
knowledge acquisition tools that are specialized for particular types of knowledge.
This similar to the use of specialized visualizations in cue. The knowledge-
acquisition method is similar to knowledge-elicitation strategies in cUE, although
they are typically more coarse grained.

The main contribution of the work on cuE is that it provides a theoretical
foundation for how the different types of support for knowledge elicitation can be
achieved by separating ontology and application knowledge. If the ontology is
available, it can be inspected to check the elicited knowledge for consistency and
completeness, to communicate with the expert in domain specific terminology and to
choose suitable visualizations. It was hypothesized that also a fifth type of support
could be derived from the ontology: dialogue structuring. To experiment with
different dialogue structuring principles cUE is equipped with a language for defining
knowledge elicitation strategies.

6. Knowledge-based integration of representation formalisms

The previous section described how cuE supports model construction and model
instantiation. This section presents an approach to model compilation where an
explicit ontology is used to select appropriate representation formalisms and
reasoning techniques. The approach is based on two principles. Firstly, an attempt is
made to use existing problem solvers when possible.f Secondly, it is assumed that in
many cases it will not be possible to find a single problem solver that is appropriate
for implementing the entire reasoning process.

The basic idea is that different parts of the reasoning process can be implemented
by different problem solvers. These problem solvers should be selected in such a way
that they are adequate for the part of the reasoning process for which they are
responsible. Problem solvers that cooperate to solve a problem must be able to
communicate. This communication is complicated by the use of existing problem
solvers which may use different representation formalisms. To achieve cooperative
problem solving in this situation requires the specification of what the expressions in
the formalism of one problem solver mean in the formalisms used by other problem

+ We use the term “problem solver” for a combination of a reasoning technique and a representation
formalism.

248 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

solvers. That is, the representation formalisms of the problem solvers must be
integrated. This section presents a possible approach for realizing such an
integration.

Section 6.1 explains why it is in general not possible to find a problem solver that
is appropriate for implementing the entire reasoning process which is modelled in
the knowledge model, thus illustrating the need for using multiple problem solvers
and representation formalisms. Section 6.2 discusses some problems with hybrid
integration, the way in which representation formalisms are usually integrated.
Section 6.3 presents an alternative way of integrating problem solvers which is called
knowledge-based integration. Section 6.4.1 describes a prototype implementation of
an architecture that supports knowledge-based integration in cuUE, and in Section
6.4.2 and Section 6.4.3 the impact of knowledge-based integration on knowledge
engineering and problem solving is discussed. In Section 6.5 the present proposal is
compared with other recent proposals in the literature.

6.1. THE NEED FOR MULTIPLE REPRESENTATIONS

It is widely acknowledged in the artificial intelligence community that there are
different types of knowledge. For example, a number of researchers have identified
dimensions according to which knowledge can be classified [e.g. deep knowledge vs.
shallow knowledge (Steels, 1985), causal knowledge vs. heuristic knowledge
(Console & Torasso, 1988; Simmons, 1992), knowledge of structure and behaviour
vs. functional knowledge (Abu-Hanna, Benjamins & Jansweijer, 1991)].

For reasoning with these different types of knowledge, a large number of problem
solvers have been developed which use different knowledge representation formal-
isms and have different inferential capacities. The reason for these differences is that
problem solvers should be sufficiently expressive to represent all the relevant
knowledge in a natural way and have the inferential power to derive all the
interesting implications of the represented knowledge in an efficient way. As argued
by Levesque and Brachman (1985) these two requirements are antagonistic.
Therefore every problem solver must make a trade-off between expressiveness and
inferential power.

The problem solvers that have been developed can be characterized by the way
they trade representational power for inferential power. The restrictions that have
been put on the expressiveness to keep inferencing in these languages tractable can
be categorized into three classes as follows.

* Firstly, there are representation languages that maintain tractability by putting
syntactic restrictions on the expressions in the language. For example, many
production rule interpreters can only handle facts in the form of triples. Another
example is Prolog, which is based on first-order logic, but does not allow negation
or disjunction in the conclusions.¥}

A second group of representation languages derive their inferential power from
epistemological assumptions about the structure of knowledge. Frame-based
representations are typical examples of this category; these systems assume that

+ We are only referring to Prolog as a representation formalism here. Of course, Prolog can be used as
a programming language for implementing interpreters for other representation languages, which make
the trade-off between representational power and inferential power in another way.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 249

knowledge is typically organized as structured objects that are arranged in
subsumption hierarchies, and they provide efficient reasoning schemes for such
structures. The main difference between this category and the previous one is that
here inferential power is achieved by adding specific forms of expressiveness,
whereas in the previous category inferential power is achieved by reducing the
expressiveness.

e Unlike representation languages in the first two categories, representation
schemes in the third category explicitly delimit the range of domains for which
they can be used. Representation languages in this category maintain inferential
power by making ontological assumptions about the domains and the task that
they will be used for. A typical example of this approach is GpE (de Kleer &
Williams, 1987), a system for model-based diagnosis, which requires that the
devices that are to be diagnosed can be represented in terms of interconnected
components.

Besides computational tractability, a second requirement for knowledge represen-
tation formalisms for KBSs is epistemological adequacy: a representation formalism
must be able to reflect all the distinctions that are important for performing a
particular task in a particular domain, while it should not force the knowledge
engineer or the domain expert to make additional, irrelevant distinctions. The
epistemological adequacy of a representation formalism depends on the type of
knowledge that needs to be represented. For instance, it has often been noticed that
the production rule formalism is well-suited for representing heuristic, associational
knowledge, but is ill-suited for causal models (e.g. Simmons, 1993).

Since solving real world problems often involves different types of knowledge, the
requirements of epistemological and computational adequacy imply that a KBS that
is to solve these problems must be able to use multiple representations and
reasoning techniques. The use of multiple problem solvers poses a potential
problem: how are the different problem solvers to be integrated? It was mentioned
that the representation formalisms that the problem solvers use can have a different
syntax, can be based on different epistemological assumptions, and can make
different ontological commitments. To make such diverse problem solvers cooperate
clarification is required as to how expressions in one formalism map onto
expressions in another formalism. In existing systems that use multiple representa-
tions, integration is usually realized by predefined syntactical mappings. The next
section presents some problems with this kind of integration.

6.2. HYBRID KNOWLEDGE REPRESENTATION

For different types of knowledge, the trade-off between expressive power and
computational power should be made in a different way. This observation has
initiated the development of a number of reasoning systems that use multiple
representations and multiple inference engines [e.g. KEE (Fikes & Kehler, 1985),
LooM (MacGregor, 1991), kryproN (Brachman, Fikes & Levesque, 1985) and cycL
(Lenat & Guha, 1990)]. In these so-called hybrid architectures the different
components are tightly connected: a problem solver can send queries to other
problem solvers and use their result for its own reasoning.

In hybrid architectures the problem solvers are typically specialized for particular

250 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

(defframe (identifier) ({type))
((slot-name) (value))

.)
¥
(type) ({identifier)) O
(slot-name) ({identifier), (value)) O

FIGURE 34. A possible mapping between different representations in a hybrid system. In this mapping,
the type of the frame is mapped onto a unary predicate and the slots of the frames are mapped onto
binary predicates.

types of (sub-)problems. In Loom for example, one reasoning engine, which uses a
semantic network representation, is responsible for terminological reasoning, while
another problem solver, which uses a logical representation, is responsible for
assertional reasoning. Another combination of problem solvers which is often found
in hybrid architectures is the use of a first-order theorem prover for deductive
reasoning and a frame-based problem solver for default reasoning.

In these hybrid systems the integration issue arises. When one of the problem
solvers wants to invoke another problem solver it must know how to formulate the
query for the other problem solver. In hybrid architectures this problem is solved by
specifying mappings between the different representation formalisms. Of course,
these mappings can only be partial: the differences in the expressive power between
the formalisms is the main reason for having the hybrid architectures. The partial
mappings specify the interface between the representation formalisms. For example,
a partial mapping between a frame-based representation and a logical representation
could specify that frames are mapped onto unary predicates and slots and slot-values
onto binary predicates. Figure 34 gives an example of such a mapping for the case of
frames and predicate logic.

As can be seen in Figure 34, the integration is only based on the syntactical
structure of the different formalisms: whenever something is represented as a frame
slot in the frame language, it will be interpreted as a binary predicate in predicate
logic. In hybrid systems, the integration is realized by mappings between syntactical
structures. This is necessarily so, because in these systems the mappings are defined
when the hybrid tool is built. At that moment, the syntactical structures are the only
invariants available on which the mappings can be based.

A disadvantage of integration as realized in hybrid systems is that the fixed
mappings constrain the ways in which the representations can be used. When it is
decided to represent a particular piece of knowledge in some way in one of the
representation formalisms, this puts constraints on the ways in which knowledge can
be represented in the other formalisms. Therefore, it is not always possible to
exploit the full power of all the constituting formalisms. Further, sometimes the
hybrid solution is not feasible because there is no obvious way in which the
syntactical structures of one formalism should be mapped onto the syntactical
structures of another formalism.

For these reasons, hybrid representation is not the optimal solution for the
present purpose: representing instantiated knowledge models of arbitrary expres-
siveness. The next section presents an alternative, more flexible approach for
integrating multiple problem solvers.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 251

6.3. KNOWLEDGE-BASED INTEGRATION

The problem with hybrid representations is that they integrate formalisms based on
the syntactical form of the expressions in the constituting languages. Therefore, it is
not always possible to represent a piece of knowledge in the form that is most
appropriate for that piece of knowledge in each of the formalisms.

Instead of a syntactical mapping, it is also possible to integrate formalisms based
on the content of the knowledge. This is what we call knowledge-based integration.
Basically, the idea is the following. When a knowledge engineer starts a project, one
of the first tasks is to construct a knowledge-level model of the domain knowledge
that is required to perform the application task. This model must be formulated in a
language that is formal but which may have an unlimited expressiveness, since it will
not be used for reasoning. One component of this knowledge-level model is the
application ontology, which makes the underlying structure of the domain know-
ledge explicit. When the knowledge model is completed, the knowledge engineer
selects a number of problem solvers for implementing the system. Every problem
solver has an associated representational meta-model. This is a model that specifies
what can be represented in a particular formalism, but which abstracts from the
syntactical details of the representation. The integration of the different representa-
tion formalisms of the problem solvers is then realized by specifying mappings
between the application ontology and the representational meta-models. Figure 35
shows the difference between knowledge-based integration and hybrid integration.

Application ontology. The application ontology is a specification of the domain
knowledge that is needed to perform a particular task in a particular domain. The
following logical sentence is a typical example of an expression that would be part of
an application ontology in a medical domain. It states that a finding is a tuple that

Application
Knowledge ontology
level
(di sease ?x)
Representational Representational Representational Representational
Symbol meta model 1 meta model 2 meta model 1 meta model 2
level (and
(state-variable ?x) (frame ?x) (state-variable ?x) (frame ?x)
(sub ?x disease))
Knowledge level integration Hybrid integration

FiGURE 35. The difference between knowledge-based integration and hybrid integration is that the
former is based on a knowledge-level application-specific mapping, whereas the latter is based on a
symbol-level syntactic mapping.

252 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

consists of an observable, an operator and an element of the value set of the
observable.

VX, Y, Z finding(X, Y, Z)—
[observable(X)Ooperator(Y) 0Z e value_set(X)]

Representational models. The representational meta models are abstract descrip-
tions of the types of expressions that are allowed in a knowledge representation
formalism. They are formulated in the same language as the application ontology.
The representational meta-models of problem solvers can vary from coarse-grained
descriptions of conditions and actions in the case of production rule interpreters to
fine-grained ontological models of what can be represented in systems like GDE. For
example, the following expression, which states that a condition consists of a set of
attribute expressions, could be part of the representational meta-model of a
production rule interpreter, where the rules have condition parts and action parts.

VX,Y [condition(X) OY e X]— attribute_expression(Y)

Mapping. The mappings between the application ontology and the representational
meta-models specify how expressions from the language defined by the application
ontology can be translated into the representation formalisms and vice versa. This
serves two goals: (i) it specifies how the knowledge-level model can be implemented
on a computational architecture in the design phase for the application and (ii) the
mapping specifies the meaning of the expressions of the representation formalism in
terms of the application ontology. As there is a mapping for each of the participating
problem solvers, the application ontology specifies a language that is understood by
all. Therefore, it can be used for communication between problem solvers.
Mappings which are only used for the first goal are called static mappings. They are
only used once, during the construction of the system. Mappings which are used for
communication between problem solvers, are called dynamic. These mappings are
used at run time, to translate output from one problem solver into input for another
problem solver.

As an example of the mapping between an application ontology and a representa-
tional meta-model, consider the following mapping rules:

finding(X, Y, Z)+— attribute_expression({X, Y, Z))
[disease(X) Oqualitative_probability(X, Y)] — attribute_expression((X, =, Y))

Conceptually, these mappings are quite simple. For instance, the first rule expresses
that findings, as defined in the application ontology, are represented as attribute
expressions in the production rule formalism. However, in this simple example there
are some technical complications that the mapping mechanism should account for.
Whereas finding is a ternary predicate in the application ontology, attribute_
expression is a unary meta-predicate in the representational meta-model. In the
example, the mismatch is purely notational: in the representational meta-model
attribute_expression is defined to hold for three-placed tuples that have an
operator as their second element. However, the knowledge engineer should be
aware of conceptual incompatibilities, in which case the selected problem solver is
not epistemologically adequate.

The mapping mechanism must be able to perform the mappings in both

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 253

directions. In the example, this is possible because the qualitative probability
relation is defined to have a disease as its first argument. Therefore, the type of the
first element of the attribute expression tuple can be used to decide on the
corresponding application ontology expression: if it is an observable, the corres-
ponding expression is a finding, if it is a disease, the corresponding expression is a
qualitative probability.

Although the mapping relations will usually be more complicated than the ones
shown here, they should remain relatively simple. When it is not possible to define
simple mappings, this could indicate that the expressiveness of the problem solver is
not sufficient for expressing the distinctions made in the application ontology. For
example, if the attribute expressions in the representational meta-model only allow
the = operator while in the findings in the application ontology also the < and >
operators are used, complicated mapping rules would be required. The complexity
of the mapping relation can therefore be viewed as an measure for the suitability of
the problem solver: if the mappings are simpler, the problem solver is more
appropriate.

As argued in Section 6.1 it is often impossible to find a problem solver that is able
to represent the full spectrum of knowledge types that is specified in the application
ontology. In such cases, the task that the application must perform is broken up into
subtasks, each of which is associated with a problem solver. Problem solvers must be
selected so that the knowledge that is needed to perform the particular sub-task can
be adequately represented in the problem solvers’ representation.

To summarize, the difference between hybrid integration and knowledge-based
integration is that in the former the integration is realized directly, while in the latter
the integration is realized through an intermediate knowledge-level model: the
application ontology.

6.4. APPLYING KNOWLEDGE-BASED INTEGRATION

Using knowledge-based integration has important consequences for the practice of
knowledge engineering and thus for the required functionality of Al toolkits. Since
knowledge-based integration is based on the contents of the application ontology,
the integration can only be realized after knowledge acquisition. Therefore, the
decision on how to integrate the selected problem solvers must be taken by
knowledge engineers when they develop an application. Knowledge engineering
methodologies should recognize this activity as an integral part of the knowledge
engineering process and provide methods and tools to support it. Section 6.4.1
describes a prototype of a toolkit that supports knowledge-based integration. In
Section 6.4.2 it is illustrated how this system can be used to develop an application
and Section 6.4.3 illustrates the impact of knowledge-based integration on the
problem-solving process.

6.4.1. Knowledge-based integration in cUE

Section 5 presented cUE’s knowledge acquisition tools: QUITE, QUOTE and QUAKE. The
output of these tools is a non-executable knowledge-level description of the domain
knowledge needed for an application. This section presents cUEg’s facility for
developing design models. A first prototype of this module has been implemented.

254 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Application
ontology

Mappings

Representational
meta model 1

Representational
meta model 1

A A

A 4 Y

Causal probabilistic
network

Causal probabilistic
network

i Lisp code i Lisp code |

FIGURE 36. Mappings and translations in knowledge-based integration.

CUE is an open architecture that allows arbitrary problem solvers to be plugged-in.
This requires two steps: (i) the representational meta-model of the problem solver
must be constructed and (ii) it must be specified how this model is related to the
internal representation of the problem solver. In cug, the representational meta-
models are also specified in Ontolingua.t The links between the meta-models and
the internal representations are realized by problem solver specific translators,
written directly in Lisp. An example of the architecture of an application that is
constructed with cut is depicted in Figure 36.

Whereas the mappings between the application ontology and the representational
meta-models must be specified for every application, the Lisp code for translation
between the meta-models and the internal representations of the problem solvers
needs to be specified only once. When this is done, the problem solvers and the
associated representational meta-models and translation code can be put into a
library for reuse. Thus, while the mapping relation must be specified by the
knowledge engineer, the translation code will be written by the developers of CUE’s
problem solver library.

6.4.2. An example

The use of cue will be illustrated with some fragments from a scenario which is
based on an exercise to reconstruct parts of the FREecaLL system (Post, Koster,
Zocca & Sramek, 1993) in cur. The exercise was intended to test the idea of
knowledge-based integration, and not to develop a realistic system. Therefore, some
of the design decisions may seem odd from an engineering perspective.

FREECALL is a KBS that supports ambulance dispatchers in their decision whether
to send an ambulance after an emergency call. In the exercise, we concentrated on
two sub-tasks of the system: (i) the generation of a set of initial hypotheses, and (ii)
the assessment of the likelihood of these hypotheses. In the example only the use of
dynamic mappings will be illustrated. Section 7 will present some examples of static
mappings.

1 Although Ontolingua is used for both the application ontology and the representational meta-models,
we do not entirely agree with the Ontolingua philosophy. Section 6.5 discusses the exact relation between
the present work and the work of Gruber.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 255

The application ontology of FREECALL contains definitions of findings (as in
Section 6.3), diseases, and the way they are related. Because of the large number of
potential hypotheses—a computational consideration—it is decided to use produc-
tion rules to generate the initial hypotheses set. The mapping between the
application ontology and the representational meta-model of the production rule
interpreter is described in Section 6.3. For the second sub-task DEAL is selected from
the problem solver library. IDEAL (Srinivas & Breese, 1990) is a system for evaluating
causal probabilistic networks and influence diagrams. The representational meta-
model of IDEAL defines the class state_variable and the relation influences.}

VX, Y influences(X, Y)—
[state_variable(X) Ostate_variable(Y)]

The relation state_expression is defined as follows.

VX, Y state_expression(X, Y) -
[state_variable(X)OY e value_set(X)]

Further, the representational meta-model specifies that every state expression S§;
has a number of associated conditions Ci, ..., C,. A condition C; is a set of state
expressions i, ..., S, with a state expression S, € C; for every state variable that
influences the state variable of S;. For every condition C; that is associated with S;
there is a conditional probability P(S; | ;) so that 0= P(S; | C;)) < 1.

For bEAL, the mapping between the application ontology and the representational
meta-model is more complicated than for the production rules. It is decided that
observables are represented as state variables and findings as state expressions about
these variables. Diseases are represented as state variables too, with two admissible
values: present and absent. Alternatively, the diseases could be represented as
admissible values on a state variable diagnosis, but this would make it impossible
to hypothesize multiple diseases. Furthermore, it would make it impossible to use
probabilities as described in the medical literature—an epistemological consideration.

In the representational meta-model, state expressions are represented as binary
relations between state variables and values. There is no explicit mentioning of an
operator, it is assumed that only the equality operator is used. Therefore, IDEAL can
only be used when the findings only use the equality operator. This is another
example of an epistemological consideration.

The following expression is an example of the (dynamic) mapping between
findings and state expressions. It states that if a particular finding holds, this means
that the probability of this finding is 1.0.

finding(X, Y, Z) — P(state_expression(X, Z)) = 1.0

6.4.3. Running a cuk application

The impact of knowledge-based integration on the problem solving process can be
illustrated with a session with the above described version of FREECALL. In the
example, the caller is a man whose 28 year old son complains about lasting chest
pain. The trace in Figure 37 shows example mappings and translations at the stage

+ We use the logical notation instead of the Ontolingua notation which is used in cUE. The logical
notation is more concise and probably more familiar.

256

G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

System’s action

comment

1)

initial-data: finding(chest_pain, =, present)
initial-data: finding(sustained_pain, =, yes)
initial-data: finding(age, =, 28)

(2) mapping
attribute_expression ((chest_pain, =, present))
attribute_expression({sustained_pain, =, yes))

3)

IF (and (=chest-pain present)
(=sustained-pain yes))

THEN (=angina-pectoris possible)

Lisp translation

4) Lisp translation
attribute_expression({angina_pectoris, =, possible))
attribute_expression(¢hyperventilation, =, possible))
attribute_expression({infarction, =, probable))

(5)

hypothesis: disease(angina_pectoris)
qualitative_probability(angina_pectoris, possible)
hypothesis: disease(hyperventilation)
qualitative_probability(hyperventilation, possible)
hypothesis: disease(infarction)
qualitative_probability(infarction, probable)

mapping

The patient data are entered as
findings, as defined in the applica-
tion ontology. The label initial-data
indicates the role of the findings in
the reasoning process.

Because the hypotheses generation
sub-task is assigned to the produc-
tion rule interpreter, the findings
are rewritten in terms of the rep-
resentational meta-model of the
production rule interpreter

and then further translated into the
private representation of the prod-
uction rule interpreter, so that it can
be matched against rules such as the
one shown here.

The production rule system gener-
ates three hypotheses, together with
a qualitative assessment of their
likelihood. This output is translated
back into the representational meta-
model language.

Finally, the output is rewritten in
terms of the application ontology.
The generated diseases are assigned
the role of hypotheses (this is con-
trol information). This completes
the hypotheses generation sub-task
in the FREECALL system.

FIGURE 37. Trace of mappings and translations for hypothesis generation using a production rule
interpreter.

where FREECALL generates the initial hypotheses. Note that whereas in step 2 in this
figure the findings are rewritten as attribute expressions, in step 5 attribute
expressions are rewritten as qualitative probability assessments.

The second sub-task in the FREECALL system is a quantitative assessment of the
probabilities of the disease in the differential—the set of hypotheses generated with
the production rule interpreter. Hence, an influence diagram is selected which
contains nodes for all of the diseases in the differential and for the observables of
the known findings (the initial data). The mapping rules specified in the previous
section are used to set the probabilities of the state expressions that represent the
known findings to 1.0 and then IDEAL is invoked. A trace of the mappings and
translations that are required for this form of hypothesis discrimination is shown in
Figure 38. From the selected influence diagram, FREECALL derives that hyperventila-
tion is by far the most likely diagnosis. Note that in step 7, the expressions in terms
of IDEAL’s representational meta-model are translated directly into Lisp function

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT

257

System’s action

Comment

(6)
P(state_expression(chest_pain, yes)) = 1.0
P(state_expression(age, 25-29)) = 1.0

mapping

7) Lisp translation
(setf (prob-of '((#n(chest-pain)
#c(yes chest-pain))))

1)

8) Lisp translation
P(state_expression(angina_pectoris, present)) = 0.03
P(state_expression(infarction, present)) = 0.04
P(state_expression(hyperventilation, present)) = 0.27

©) mapping
quantitative_probability(hyperventilation, 0.27)
quantitative_probability(angina_pectoris, 0.03)
quantitative_probability(infarction, 0.04)

The findings and the hypothesized
diseases are mapped onto state
expressions in the influence dia-
gram. The probabilities of the
state expressions that represent
findings are fixed to 1.0.

Then, the probability assignments
are translated into Lisp function
calls that set the values of struc-
tures in the internal representa-
tions of IDEAL.

Next, the influence diagram is
evaluated and the resulting prob-
abilities are translated back into
the representational meta-model
terminology.

Finally, the expressions are tran-
slated back into the application
ontology language and presented
to the user of the system.

FIGURE 38. Trace of mappings and translations for hypothesis discrimination using an IDEAL influence
diagram.

calls. The reason for this is that IDEAL has no declarative knowledge representation.
This is another reason why representational meta-models are necessary for
knowledge-based integration.

The traces in Figure 37 and Figure 38 illustrate how statements in the application
ontology can be translated into specific representation formalisms for executing an
inference method. The mappings and translations ensure that the results are
meaningful in terms of the application ontology.

6.5. DISCUSSION

Although the term “knowledge level”, was used occasionally, this section addresses
a “‘symbol level” issue: how to integrate knowledge representation formalisms, or
more specifically: what do expressions in one formalism mean in another formalism.
This is just one aspect of the larger issue of having multiple problem solvers, or
agents, cooperate to solve a problem. We have—intentionally—ignored control
issues. This scoping decision was made because we believe that the problem of
integrating representation formalisms can be resolved independently from the
control problem. This has the advantage that such a solution can be used within a
wide range of control architectures. For example, in the scenario above the decision
to invoke IDEAL could be taken in a data-driven way, as in blackboard systems, or in
a goal-driven way, as in task-oriented architectures.

The main message of is that in cases where it is necessary to use multiple
representation formalisms, the application ontology can be used to integrate these

258 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

formalisms in such a way that the strengths of the different formalisms can be
exploited maximally.

As already mentioned, the work presented here is closely related to the work on
Ontolingua (Gruber, 1993). cue uses the Ontolingua language both for the
application ontology and the representational meta-models. Besides a language for
specifying ontologies, Ontolingua is also a computer program that translates the
ontologies into the representation formalisms of a number of problem solvers. In
Ontolingua, the translation of ontologies to representation formalism does not
require additional knowledge. The hypothesis that underlies the Ontolingua
program is that it is possible to specify once and for all how expressions in the
knowledge-level language are to be represented in the target representations.
Therefore, the integration as realized through Ontolingua is essentially hybrid: when
something is represented in a particular way in one representation it is predeter-
mined how that knowledge will be represented in another representation. In
contrast, in knowledge-based integration the translation is viewed as a knowledge
intensive activity, which must be performed by the knowledge engineer. To facilitate
this activity, the translation process is divided in a knowledge intensive part, the
mapping operation, and an automatic part, the translation into the representations.

We have not been very specific about the exact nature of the mapping relation. As
in hybrid integration, the mappings may be partial: they connect the representa-
tional meta-models only with those parts of the application ontology that specify the
knowledge needed to perform the particular sub-task assigned to the problem
solver. In general, we can formulate one hard constraint and one soft constraint on
the mappings. The hard constraint is that the mappings must be bidirectional: it
must be possible to go from the application ontology expression to the representa-
tional meta-model expression and it must be possible to go back from the
representational meta-model expression to the application ontology expression. If
this is not possible, the problem solvers lose the ability to communicate. The soft
constraint is that the mappings are to remain simple. As was mentioned in Section
6.3, the complexity of the mapping relation is inversely related to the suitability of
the selected problem solver.

In Section 6.3 it was mentioned that there are two types of mappings; static
mappings, which are used during application development, and dynamic mappings,
which are used during problem solving. In the examples so far all the mappings were
dynamic mappings. Section 7 will give some examples of the use of static mappings
during KBS development.

7. Treating acute radiation syndrome: a case study

In this section we illustrate the use of explicit ontologies to develop a system that
supports the treatment of acute radiation syndrome (ARS): a collection of injuries
caused by exposure to high dosages of irradiation. ARS is a rare disorder; world
wide there are about 900 known cases. The expertise for treating ARS is scarce and,
because of the increased safety of nuclear power plants, it is decreasing. When such
expertise is needed, however, in cases of nuclear accidents or nuclear attacks, it is
likely to be needed immediately, and on a large scale.

For this reason, researchers at the University of Ulm, which is one of the centres

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 259

of expertise for managing acute radiation syndrome, have decided to develop a
knowledge-based decision-support system (Kindler, Densow & Fliedner, 1993). A
prototype for such a system was implemented using M-KAT (Lanzola & Stafanelli,
1992). This section describes a reimplementation of the system, using the cUE tools.

7.1. SYNOPSIS OF THE ARS DOMAIN

A large dose of radiation causes depletion of cells, particularly in tissues where the
cell population is normally renewed by continuous cell division and maturation.
Organ systems that are affected by radiation include the haemopoietic system, the
reproductive organs, the gastrointestinal tract, the skin, and the central nervous
system. The stem cells of the bone marrow, which are responsible for the production
of blood cells, are particularly susceptible to the harmful effects of radiation. One
type of blood cell, the leucocytes (white blood cells), play a fundamental role in the
immune system. One task of the stem cells is to ensure that the number of
leucocytes is kept at a certain level. There are two main types of leucocytes;
granulocytes, which are produced in the bone marrow, and lymphocytes, which are
produced in the lymphogeneous organs, including the lymph glands and the thymus.

The main aim of the treatment of ARS is to control the development of
immunodeficiency. Immunodeficiency develops when the number of surviving stem
cells after irradiation is too low to produce the necessary number of granulocytes,
and, to a lesser extent, lymphocytes. In order to prevent the development of
immunodeficiency, which can be lethal, a bone marrow transplantation (BMT) must
be considered. However, BMT might have severe side effects, such as graft-versus-
host disease (GVHD). In addition, the injuries to other organ systems might be so
severe that the patient would not survive anyway, in which case a bone marrow
transplantation should be avoided. When a considerable number of stem cells
survives the radiation exposure, growth factor therapy may be considered as an
alternative. In this therapy, the patient is treated with growth inducers, proteins that
stimulate the growth and reproduction of stem cells.

A first target of ARS treatment is to establish the severeness of the radiation
injury, expressed in terms of the estimated damage to four organ systems: the
haemopoietic system (of which the stem cells of the bone marrow are a part), the
skin, the gastrointestinal tract and the central nervous system. As a result of the
exposure to radiation, these systems develop time-dependent patterns of signs and
symptoms. These patterns must be interpreted to assess the severity of the lesions to
each of the four systems. The lesions to each of the systems are expressed in terms
of severity gradients—labels for qualitatively different severities. Based on these
gradings appropriate therapeutic action can be undertaken.

7.2. MODELLING THE TASK

The aim of ARS management is symptomatic treatment—the radiation itself is
irreversible. The medical expert must make a decision as to whether a particular
action must be undertaken to control processes that occur in the patient. To make
such a decision, the medical expert attempts to establish the severity of each of the
four lesions that might be the result of the radiation. In the task model this situation

260 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

QUITE -- Inference and Task Model Edi

(Jool v) (Task Model v) (inference ¥) (Knowdedge Role v) (Control v) {Role Mapping v) (Ontology Mapping v) & ¢

wode | _(OGLT
ﬁ Ranking‘: Ranking»_‘

st

Abduction "'--.1 Abduction

9 inducton Deduction Thefapeutic Proten olyct Dedcti
ARS-Grading :.:': Select—ARS:—Treatment

Abstraction Abstraction |
‘»" ...»'

Request-data Request-data

FIGURE 39. The task model for the ARS application.

is modelled by means of a diagnostic STModel, grading the severity of the
syndrome, and a therapeutic STModel, selecting the appropriate action.

The system receives its input from a standardized medical record which has been
developed for the structured documentation of ARS cases (Baranov, Densow,
Fliedner & Kindler, 1994). This record contains the data that might be relevant for
ARS treatment. Since all the relevant data are entered before the KBS is invoked,
the system is not required to deduce expectancies and to request new data. Thus,
only the abstraction step and the abduction step of the diagnostic cycle have to be
performed by the system. For the same reason, the system only performs abstraction
and abduction in the therapy planning sub-task.

Figure 39 shows a first version of the task model, constructed with ouiTE. The
knowledge engineer has created a diagnosis generic-task instance (ARS-grading)
and a therapy-planning generic-task instance (Select-ARS-treatment). These are
connected by a control link which indicates that grading precedes treatment
selection. For the moment, this is all that can be specified in the task model. The
specification of the role-to-role mappings requires a better understanding of the
nature of the domain knowledge. At this stage of the modelling process, the task
model only provides a rough description of the reasoning process. This model is
sufficient to initiate construction of the application ontology.

7.3. BUILDING THE APPLICATION ONTOLOGY

The camEs-11 project has developed a library of ontological theories that can be used
to develop application ontologies. This library is indexed by medical sub-domains
and reasoning methods. Ontological modelling therefore starts by giving a rough
indication of the medical sub-domain and the possible reasoning methods.
Treatment of acute radiation syndrome involves at least four medical sub-fields:

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 261

Guidelines for deciding on for which concepts to look:

Guideline A.1: Determine the concepts that play the primary roles in the reasoning process.
The primary roles are the roles that always recur in the STModels for a particular generic
task, independently of the particular methods that are used. For the diagnostic part of the
task model these are diagnostic hypotheses, patient findings and data, and for the
therapeutic part therapeutic hypotheses, therapeutic problems and data.

Guideline A.2: Determine the ontological feature of the concepts that are used to make the
basic inferences in the reasoning process. These are abstraction, abduction, ranking,
deduction, and induction. It is usually better to search first for the concepts that play the
primary roles (guideline A.l) because the terminology for these concepts is more
standardized than the terminology for the concepts used for inferencing.

FIGURE 40. Guidelines for deciding on the order in which the library should be searched for concepts.

haemotology, dermatology, neurology and gastroenterology. Currently, the library
contains no extensions that are specific to these sub-fields. Therefore, the domain-
specificity indexes cannot be used directly to find the appropriate concepts.t It is
also not possible to decide at this moment which method-specific extensions are
needed; the suitability of methods often depends on the ontological structure of the
knowledge in the application domain.

For using the library in this situation, a number of guidelines have been
developed. A first set of guidelines, presented in Figure 40, can be used to decide on
the order in which a knowledge engineer should search for concepts in the library. A
second set of guidelines is intended for deciding on how to look for a particular
concept in the library. These guidelines are presented in Figure 41. A third set of
guidelines, presented in Figure 42, can be used for deciding on whether a particular
concept is suitable for the present purpose.

The next sections will describe how these guidelines were used in the ontological
modelling process for each of the two generic task instances. The results of this
process are summarized in Figure 45.

7.3.1. Ontology for ARS-grading

The order in which the ontology for ARS-grading is constructed is based on
guidelines A.1 and A.2. First we select or construct the concepts that play the
knowledge roles, and then we deal with the concepts that are used for making the
inferences.

Diagnostic hypotheses. As we have seen in the domain description in Section 7.1,
the hypotheses role is mapped onto alternative gradings of the four syndromes that
form ARS: the haemopoietic syndrome, the gastrointestinal syndrome, the skin
syndrome and the central-nervous-system syndrome. We first concentrate on
modelling syndromes, and then on their gradings.

Following guideline B.1, the library is searched for a concept with the name
“syndrome”’. This concept is found in the theory syndrome, which is selected from

+ We use the term concept in the most general sense: classes, relations and functions are all concepts.

262 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Guidelines for deciding on how to look for a concept:

Guideline B.1: Ask the domain expert to suggest a name of the concept that is used for the
particular role in the domain and search the library for a concept with a similar name. If the
search succeeds, go to guideline B.2 Otherwise go to guideline B.5. The idea here is that if
the appropriate concept is somewhere in the library, it can be found by terminology
matching. This is more likely to succeed for concepts that are used for knowledge roles than
for concepts that are used for inferences, because the terminology for the former is more
standardized.

Guideline B.2: Check if the definition found is suitable for the current purpose. If the concept
is appropriate, include it in the application ontology. Otherwise, go to guideline B.3. When a
concept with the right name is found, this does not guarantee that the concept definition is
appropriate, so this needs to be checked.

Guideline B.3: Find out if the concept can be specialized to a suitable sub-concept. If this is
possible, add the specialized concept to the application ontology. Otherwise, go to guideline
B.4. When a library concept is inappropriate because it is too general, it can be made
appropriate by adding specific details. This is done by introducing an application specific
sub-concept of the library concept.

Guideline B.4: If the concept found is not suitable and it can also not be specialized to a
suitable sub-concept, find out if it can be modified to become suitable. If this is possible, copy
the concept to an application-specific part of the application ontology, modify it and rename
it to avoid name conflicts. Otherwise, go to guideline B.5. 1f the concept found by
terminology matching is not appropriate, it can still be useful. During the discussion with
the domain expert it becomes clear which aspects of the concepts are appropriate and
which are inappropriate. This information can be used to define a more suitable version of
the concept in the application ontology.

Guideline B.5: If no suitable concept can be found or constructed using guidelines B.1 to B.4,
try to find a very general concept in the core library and try to determine in discussion with
the domain expert whether this concept can be specialized or modified to arrive at an
appropriate concept. When a general concept is selected, it is almost always necessary to
specialize it.

FIGURE 41. Guidelines for deciding on how to search in the library for specific concepts.

Guidelines for deciding on the suitability of a particular concept

In general, a concept is suitable if it makes the distinctions that are necessary for the present

purpose, and no other distinctions. This can be operationalized by means of the following

guidelines:

Guideline C.1: Decide whether the concept is sufficiently general to cover the piece of
knowledge that will be modelled using the concept. If a concept is not sufficiently general,
knowledge elicitation will become problematic because some pieces of knowledge that are
used in the reasoning process cannot be modelled.

Guideline C.2: Decide whether the concept is sufficiently specific to only cover the pieces of
knowledge that will be modelled using the concept. If a concept is not sufficiently specific, it
is not possible to define restrictive mappings between the application ontology and the task
model: too many concepts will be allowed to play too many roles.

Guideline C.3: Decide whether the name of the concept is a meaningful term in the application
domain. If the name of the concept is not sufficiently domain specific, it cannot support
knowledge acquisition in domain-specific terminology.

FIGURE 42. Guidelines for deciding whether a particular concept is appropriate for the present purpose.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 263

the library. According to guideline B.2 it must now be checked as to whether it is
suitable for the current purpose. The theory syndrome defines syndromes as
collections of findings which cooccur but for which there is no known direct causal
connection. Syndromes are modelled as a sub-class of disorder. According to this
definition, ARS is the only real syndrome in the domain; the component syndromes
of ARS are processes about which the causal mechanisms are reasonably well
understood. Thus, for the ‘“‘syndromes” that constitute ARS the definition is
inappropriate.

Following guidelines B.3 and B.4, it is investigated whether the definition of
syndrome can be specialized or modified to make it suitable. It is not possible to
specialize the concept because a part of the definition of syndrome does not hold for
the lesions. Specialization can only be used to add attributes to a definition, not to
remove attributes. In principle, the concept could be modified to make it
appropriate. However, it is decided not to do this because this would involve
removing the only aspect of syndrome that distinguishes it from its superconcept
disorder.

The problem is that for the lesions that constitute ARS the term “‘syndrome” is a
misnomer. As prescribed by guideline B.5, it is therefore decided to introduce a new
specialization of disorder which is called ars-organ-system-lesion. This
concept is added to the theory ars-application, a theory added to the application
ontology for storing application-specific definitions.

Modelling different gradings of args-organ-system-lesion can be done in two
ways: (i) by defining that the possible gradings are sub-types of the lesion, or (ii) by
modelling the gradings as expressions about the lesion. Examples of both types of
modelling can be found in the core part of the library. An example of the first
approach is in the theory disease. In this theory, the relation disease-subtype is
defined, which can be used to model that particular diseases are specializations of
other diseases (cf. the examples in Section 5). In the current application, this could
be realized by defining a relation lesion-subtype between instances of ars-
organ-system-lesion. This solution is shown in Figure 43(a).

However, the different possible gradings of a lesion to one particular organ system
are mutually exclusive: a patient can only have one grading for a particular lesion.

(@) ars-organ-sytem-lesion —@—» ars-lesion-subtype 4—@—ars—organ—sytem—lesion
- | —

(ars-1esion-subtype haenppoi eti c-syndrone haenppoi eti c syndrone-grade 1)

anti-lesion-grading expression
(a) ars-organ-system-lesion (thing j (operatorj (thing J
|

(ars-ars-1esion-gradi ng haenopoi eti c-syndronme = 3)

FIGURE 43. Two alternative ways to model lesion gradings. The rectangular boxes represent relations and
the rounded boxes represent classes. The numbered arrows represent that the nth parameter of the
relation pointed at is constrained to be an instance of the lass pointed from.

264 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

Characteristics like this are important for knowledge elicitation and for computa-
tional design and should therefore be represented in the application ontology.
Modelling the gradings this way would therefore require the addition of a number of
very specific constraints to the lesion-subtype relation. Although this kind of
customization is not unusual, it is often worthwhile in such situations to look for
library definitions that better capture the relevant aspects of a concept.

Another general medical concept in the library is finding.f Findings are defined
as expressions about patient parameters. Modelling ars-lesion-grading as a
specialization of finding would solve the problem mentioned above, because for
finding it is already defined that the different findings about one observable are
mutually exclusive. There is one complication to make ars-lesion-grading a
specialization of finding, ars-organ-system-lesion must be made a specializa-
tion of patient-parameter. Because ars-organ-system-lesion was already
modelled as a disorder, finding is not suitable because it is too specific (guideline
C.1). Following guideline B.5 the library is searched for a more general concept:
finding is a specialization of expression, which is defined in the theory
expression. ars-lesion-grading is therefore defined as an expression for
which the first parameter must be an ars-organ-system-lesion.

To summarize the modelling decisions above: the only real syndrome in the
domain is ARS. This syndrome consists of four gradings of disorder which are
modelled as ars-lesion-gradings. These gradings play the role of hypotheses in
the diagnostic reasoning process. The lesion gradings have as first parameter an
ars-organ-system-lesion, which is a specialization of disorder.

Patient findings. For patient findings, the concept finding is used as a first guess for
a suitable ontological concept. However, this concept is not entirely appropriate
because it is too generic (guideline C.2). In the ARS domain, the patient findings are
a specific kind of findings with qualitative value sets. As explained in Section 5 and
6, both knowledge acquisition and computational design are facilitated by being as
specific as possible in the application ontology. Following guideline B.3 it is
therefore decided to define a specialization of finding in the theory ars-application,
named ars-lesion-indication. An ars-lesion-indication is a finding where
the observable must be an ars-lesion-indicator. In turn, these lesion indicators
are modelled as a sub-class of patient-parameter in ars-application. Further, it is
defined that the value of the ars-lesion-indication must be an ars-
indicator-value.

Diagnostic data. The KBS receives its inputs in the form of a computerized record.
This record contains many different kinds of data whose only shared characteristic is
that they contain information about the patient. Using guideline B.1, the library is
searched for a concept named ‘“‘datum”. Such a concept is not present in the current
library. Thus, using guideline B.5 we look for a general concept. Again, the concept
finding is selected from the library. According to guideline C.2 finding is not

1 Note that the term finding is used for both a particular knowledge role in the STModel and for an
ontological concept. These are different things, but the term “finding” is used for both in medicine.
Although this is a continuous source of confusion, we have decided to respect this tradition. For clarity,
we will use the term ‘““finding” when referring to the ontological concept and the term ‘“‘patient finding”
when referring to the inference role.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 265

(observabIeJ finding ars-datum, time-stamp ------ + [time-descriptor
P L ¥ i Tl
”/,,

1 v
1y i
\

>+ time-interval,end «-"
\)

ars-datum

> time-interval,start 4=~

FIGURE 44. ars-datunm is represented as a specialization of finding where the first argument must be an

observable. Every datum has an associated time-stamp, which may be a time-interval or a

time-point. The texts ars-datum. time-stamp, time-interval.start and time-interval.end
represent functions. The dashed arrows represent the domains and ranges of the functions.

suitable because it is too general: also instantiations of ars-lesion-indication
are findings. Thus, the concept needs to be specialized. Therefore, the concept
ars-datum is created and stored in ars-application. When specializing a concept, it
must be decided which aspects are shared by the pieces of knowledge that must be
covered by the specialization.

One aspect that distinguishes raw data from findings in general is that data are
directly observable. This can be modelled by specifying that the first parameter of
ars-datum must be an observable, a sub-class of patient-parameter defined in
the theory observable.

Another important aspect of data in this domain is their temporal attributes.
Currently, the library contains only one simple theory of time which is selected. This
theory defines the concepts time-point and time-interval, but it does not define
temporal relations such as “before” and ‘‘after”. For determining the appropriate
treatment for ARS the time points of data with respect to the time point of the
radiation accident are important, but the application will not monitor the patients,
so no complex reasoning about time is required. Finally, the knowledge engineer
defines in ars-application that every datum is associated with a time stamp, which
may be a time point or a time interval. ars-datum and the related concepts are
shown in Figure 44.

To illustrate how data are modelled, consider the part of the medical record which
is shown in Table 3. This part of the record is used by doctors to describe erythema
in the patient.

TaABLE 3
The structure of the record field for erythema

Location Yes No Unknown Begin End Maximum Degree

Head and neck X 16.06.1958 22.06.1958 18.06.1958 2
Upper part of body

Arms

Lower part of body

Legs

Feet

Oropharyngeal

266 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

In terms of the application ontology, the data in the fields of the record are
modelled as tuples such as the following.f

(ars-datum head-and-neck-erythema=2)
(ars-datum.time-stamp (ars-datum head-and-neck-erythema=2)
(time-interval 16.06.1958 22.06.1958))

The name of the observable is constructed by concatenating the term ‘“‘erythema”
and the term that represents the location of the erythema. The degree-field of the
erythema record is represented by the datum-value. Also the epistemic modality of
the datum is expressed by means of the datum-value: if the value is a degree or “‘no”
it is known, otherwise it is unknown. The “maximum” field of the erythema record,
which stores the date at which the erythema is at the maximum, is ignored because it
is not used in the clinical reasoning process. The begin and end fields are modelled
by means of the ars-datum. time-stamp attribute.

Diagnostic abduction. After having modelled the concepts that play the primary
roles in the diagnostic process, we now turn to the knowledge required to make the
inferences (following guideline A.2). In ARS diagnosis, abduction of the hypotheses
is a straightforward process—the possible values of the lesion indicators have been
chosen in such a way that they can easily be related to the organ-system-lesion
gradings. These associations can be modelled by means of direct relations between
the lesion indications and the gradings of the organ-system lesions.

The knowledge about the presence of direct associations can be used for exploring
the library with the method-specificity index. Using this index, the knowledge
engineer retrieves the manifestation-of relation from the library, which was also
used in some examples in earlier sections. However, this relation is not entirely
appropriate because it relates findings to diseases, whereas we are looking for a
relation that relates findings to lesion gradings, which are modelled as expressions.
Guideline B.3—which suggests specializing the generic concept—is not applicable,
because there is a type mismatch between the second parameter of
manifestation-of (the class disease), and the relation ars-lesion-grading.
Following guideline B.4, manifestation-of is therefore copied to ars-application
and modified to have an ars-lesion-indication as its first argument and a
ars-lesion-grading as its second argument. The modified relation is called
ars-manifestation-of.

In the library version of manifestation-of, the tuples of of the relation
are qualified with evoking-strength and frequency attributes. These attributes
can be used to characterize the correlation between the diseases and their
manifest findings. To determine whether these attributes are useful for ars-
manifestation-of, the expert is asked if, given a particular finding, some lesion-
indications occur more often than others. This turns out not to be the case in the
ARS domain—when a lesion has a particular grading all the indications are present
and, if not all the indications are present, the evidence is insufficient to make the
corresponding diagnosis. This information is recorded in the documentation string
that QuOTE associates with the concept.

1 For readability, in CUE the complex terms in meta-level expressions are implicitly quoted and labelled
by their ontological type.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 267

Diagnostic abstraction. Different kinds of abstraction are used in the ARS domain.
On the one hand, there are simple quantitative abstractions that map raw data onto
qualitative assessments of the same parameter. On the other hand, there are
abstractions that use complex mathematical formulae to compute the value of a
lesion indicator from a number of raw data. Because the knowledge used for the
abstractions is of a mathematical nature and can be communicated adequately using
conventional mathematical notations, it is decided not to model the detailed
characteristics of the knowledge used for the abstraction inference in the ontology.
That is, we do not model concepts such as sine and cosine which are used in the
formulae. Because it is important to know which observable data are used to
compute the lesion indications, the relation ars-abstracted-from is defined in
ars-application. This relation can be used to specify which knowledge is needed for
the abstractions without specifying how the abstractions are computed. The
formulae that describe how the abstractions are computed are only specified in the
documentation slots that are associated with every knowledge piece in CUE.

7.3.2. Ontology for select-ARS-treatment

Therapeutic hypotheses. In therapy planning, the most obvious candiates for the
hypotheses role are therapies. Using guideline B.1, the concept therapy is found in
the library theory therapy. Because the definition appears suitable for the current
applications, this theory is included in the application ontology.

Therapeutic problems. Therapeutic problems are the prime targets of therapy
planning. Obviously, in the ARS domain these are in the lesion gradings. However,
other information is also needed to decide on the appropriate therapeutic action.
For example, there may be conditions in the patient that prohibit the application of
a particular therapy. Because there may be different types of conditions that affect
the choice of therapy, it is not possible to be very precise about their nature in the
application ontology. Using guideline B.5, it is decided to model therapeutic
problems using the general concept finding. Although guideline B.5 advises on
making a specialization of the general concept, this is not done yet, because it is not
clear in what way the specialization could be more specific than finding itself.

Therapeutic data. As was the case with diagnostic data, the data that are used to
derive the therapeutic problems are coming from the computerized record.
Therefore, these data are also modelled using the concept ars-datum.

Therapeutic abduction. In the theory therapy, the relation has-therapy is defined
as a relation between disorders and therapies. Therefore, this relation is used as a
first guess for an appropriate abductive relation.

However, in the ARS application the therapies are not related to disorders but to
lesion gradings, which are modelled as a sub-type of findings. This is the same
situation that occurred with the manifestation-of relation for diagnostic abduc-
tion. According to guideline B.4, the concept must be copied to ars-application,
modified and renamed. The renamed concept is called ars-has-therapy.

For modelling the factors that are important for deciding whether a particular
therapy is the right therapy for a disorder, therapy provides the relations

268 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

has-indicator and has-contra-indicator. These are defined as relations
between tuples of has-therapy and findings. However, because the application
ontology uses ars-has-therapy instead of has-therapy, has-indicator and
has-contra-indicator must also be modified and copied to ars-application. The
modified concepts are named ars-has-indicator and ars-has-contra-
indicator.

Therapeutic abstraction. There are many different kinds of therapeutic abstraction
with varying degrees of complexity. Thus, the same arguments that were used for
modelling the diagnostic abstractions in broad terms, are also applicable for
therapeutic abstraction. For this reason, the ars-abstracted-from relation is used
again to describe the relation between data and therapeutic problems.

Figure 45 shows a large part of the application ontology for the ARS application,
using QUOTE’s graphical representation. The figure also illustrates which parts of the
ontology are library concepts, specializations of library concepts or modifications of
library concepts and which concepts are new.

7.4. EXTENDING THE LIBRARY

As described in Section 3, the concepts that were newly defined for the ARS
application can be used to extend cug’s ontology library. To do this, they must be
scored on the domain-specificity index and the method-specificity index. In cases
where the present domain and the used methods are not in the domain and method
hierarchies, these must also be added. Table 4 shows how the newly defined
concepts were scored on the domain- and method-specificity attributes.

Domain specificity. In Section 7.3 it was mentioned that the current domain—ARS
management—is related to four medical sub-domains: haemotology, dermatology,
neurology and gastroenterology, but that there are as yet no entries for these
sub-domains in the library. In this situation, there are two options. We could add the
sub-domains to the domain hierarchy and make ARS management a specialization
of each of them. This strategy is appropriate when there are new concepts in the
application ontology that are specific to these subdomains. However, inspection of
the concepts in ars-application shows that this is not the case. The other option is
to make ARS management a direct specialization of the domains from which it uses
concepts. As was explained in the previous section, most of the newly defined
concepts are specializations or modifications of core library concepts. The other
newly defined concepts (ars-abstracted-from and ars-indicator-value) were
defined from scratch. For this reason it is decided to make ARS management a
direct specialization of ‘“medicine”, the root of the domain hierarchy.

Now it must be decided whether the newly defined concepts are specific for ARS
management or whether they are generic for the medical domain. For the concepts
that are specializations or modifications of core library concepts it is evident that
they are specific to ARS management. Therefore this domain becomes their domain
specificity value. Also ars-indicator-value gets ARS treatment as its domain-
specificity value. This concept is only intended for modelling the set of possible
values for ars-lesion-indicator. Because the two concepts are closely related,
they should have the same values on the domain- and method-specificity attributes.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 269

part-of O /\:c:omponen%t_®_>c connected-to
,_,{syndrome]:gﬁls-aggregation»tl}f
- - disorder.location < -{ di }{
body-part|« < -| disorder pu—
/N - ars-organ-system-lesion

e i
clinical I

A 1_<: | personal !
(_‘ﬁ [|_ laboratory
% automatic-space > | [
/ | =!]
4 - Iy one-of
= one-of o
human-body organ-system finding-type

ORRE

a) : !
v patlent-parameter‘ expression ‘ v finding-type
T - | S—

-~

T 1
ars-has-indicator
|

ars-datum.time-stamp
—

time-descriptor
ey

TV ars-has-therapy
time-interval time-point ______V¥___,
e \—»/
“ N

|
| very-severe

i
!

/
S s I
| Atime-interval.end .’ | severe !
!
i

~ e |
“Atime-interval.start -~ ! micl)gerate
—_— mid
Legend
Ontolingua class /@/v Type of nth parameter
of relation pointed at
. . Ut 4

abstracted-from Ontolingua relation Subclass

e — |

finding type Ontolingua class _,__——" Type of parameter and

7777777777 ‘ - value of function

1 clinical |

' personal | Ontolingua class _one-of 7 Enumerated class pointed

I_ laboratory . from has instances pointed at.

. Specialized Modified Newly
o ey ey [dbany [deine
P concept concept concept

FIGURE 45. The ARS ontology.

The concept ars-abstracted-from was used for modelling the situation where the
abstractions are made using diverse (mathematical) procedures which are not
directly related to the expertise required for problem solving. Because this is a
situation which is often found in medicine, it is decided to rename this concept as
abstracted-from and assign the value “medicine” to it for the domain-specificity
attribute.

Method specificity. In the ARS application two types of methods were used:
“abduction by direct associations” and ‘‘abstraction by invoking mathematical
procedures”. Both methods are represented in the method hierarchy. To score the

270

G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

TABLE 4

The domain- and method-specificity values of the concepts that were newly
defined in the ARS application. Abduction by D.A. stands for abduction by
direct associations, and Abstraction by M.P. stands for abstraction by

mathematical procedures

Concept

Domain specificity

Method specificity

ars-datum
ars-datum.time-stamp
ars-lesion-indication
ars-indicator-value
ars-has-therapy
ars-has-indicator
ars-has-contra-indicator
ars-manifestation-of
abstracted-from
ars-lesion-grading
ars-lesion-indicator
ars-organ-system-lesion

ARS Management
ARS Management
ARS Management
ARS Management
ARS Management
ARS Management
ARS Management
ARS Management
Medicine

ARS Management
ARS Management
ARS Management

Medical method
Medical method
Medical method
Medical method
Abduction by D.A.
Abduction by D.A.
Abduction by D.A.
Abduction by D.A.
Abstraction by M.P.
Medical method
Medical method
Medical method

concepts on this attribute, the following guideline is used. When a concept plays a
primary role in the reasoning process (e.g. hypothesis, datum or patient finding in
diagnosis), it gets the method-specificity value ‘“medical method”, which is the root
of the method hierarchy. If the concept is used for an inference, the method
specificity value of the concept is similar to the method specificity value of the
concept that it is a specialization or modification of, except when the specialization
or the modification was introduced for enabling the use of a more specialized
method. In the latter case, the specialized method is used as method-specificity
value.

7.5. MAPPING TASK MODEL AND ONTOLOGY

Because application ontology construction was initiated by determining the on-
tological features of the concepts that play the primary roles in the reasoning
process, the mapping between the roles in the STModels and the ontology is
straightforward. As illustrated in Figure 46, QuITE has specialized editors for defining
the mappings between the task model components and the concepts in the
application ontology. The mappings are summarized in Table 5 and Table 6. The
tables also indicate how the ontological concepts were included in the application
ontology: (i) directly from the library (library), (ii) by specializing a library concept
(specialized), (ii) by making a modified copy of a library concept (modified) or (iv)
defined from scratch (new).

In Section 7.2, the two generic-task instances were connected by means of a
control link. When the ontology mappings have been defined, it is also possible to
specify the role-to-role mappings. The purpose of these role-to-role mappings is to
specify how the knowledge roles of the different generic-task instances in the task
model are related. If there is a role-to-role mapping between two knowledge roles,

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT

QUITE - - Inference and Task Model Editos

(Toot v) (TaskModel v) (Inference ¥) (Knowledge Role) (Control ¥) (Role Mapping v) (Ontatogy Mapping) ®

271

Mode [I[K1m,

0

Mapping

=

Abauction

ARS-érading

Abstraction

Data J Data

Request-dtata

ééques(—aata

FIGURE 46. Ontology mappings and role-to-role mappings in the ARS task model. The figure shows that
the diagnostic hypotheses are mapped onto the ontological type ars-lesion-indication and that the
therapeutic abstraction inference is mapped onto the relation ars-abstracted-from. Further, the
figure shows role-to-role mappings between diagnostic hypotheses and therapeutic problems and between

diagnostic therapeutic data.

a piece of knowledge that plays the role that the role-to-role mapping points from
automatically also plays the role that the mapping points to. As can be seen in
Figure 46, there are two role-to-role mappings in the ARS task model: diagnostic
data are mapped onto therapeutic data and diagnostic hypotheses are mapped onto
therapeutic problems. The first of these mappings is essential for the reasoning
process. It explicates that the hypothesized diagnoses are therapeutic problems,

TABLE 5
Ontology mappings between the diagnostics STModel of the
task model and the application ontology. The table also shows
how the ontological concepts were included in the application
ontology

Diagnostic role Ontological concept How included

Data ars-datum Specialized
Patient findings ars-lesion-indication Modified
Hypotheses ars-lesion-grading Specialized
Abstraction ars-abstracted-from New
Abduction ars-manifestation-of Modified
Ranking — —
Deduction — —

Induction — —

272 G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

TABLE 6
Ontology mappings between the therapeutic STModel of the task model
and the application ontology. The table also shows how the ontological
concepts were included in the application ontology

Therapeutic role Ontological concept How included
Data ars-datum Specialized
Therapeutic problems finding Library
Hypotheses therapy Library
Abstraction ars-abstracted-from New
Abduction ars-has-therapy Modified

ars-has-indicator Modified

ars-has-contra-indicator Modified
Ranking — —
Deduction - -
Induction - -

thereby connecting the two generic task instances. The other role-to-role mapping is
for convenience. It explicates that the data that are used for ARS grading may also
be used for planning a therapy. For the current application, this has no impact since
both the diagnostic data and the therapeutic data are retrieved from the same
database. However, such mappings are important when data acquisition is a
laborious task.

7.6. ACQUIRING DOMAIN KNOWLEDGE

7.6.1. Generating the elicitation agenda

For the acquisition of the actual domain knowledge QUAKE is invoked. When the
tool is started, its first task is to generate an initial elicitation agenda. For generating
this agenda it must be determined which of the concepts in the application ontology
need to be instantiated in the knowledge base, and which are only used for adding
higher-level structure to the application ontology.

This decision can be made manually or automatically in QUAKE. When performed
manually, the tool presents all the classes, relations and functions and invites the
user to specify which of these concepts will have instances or tuples in the
knowledge base. In automatic mode, QUAKE uses the mappings between the task
model and the application ontology to decide which classes and relations need to be
instantiated. The underlying idea is that only the concepts mentioned in those
mappings are used in the actual reasoning process. Therefore, these are the only
ones that can affect the behaviour of the KBS. For the ARS application, the initial
agenda is generated automatically.

7.6.2. Defining the knowledge elicitation strategy
When it has been decided which knowledge must be elicited, the next step is to
decide in which order the knowledge must be elicited. In QuUOTE this is specified by
means of a knowledge elicitation strategy.

In Section 5, two general principles were formulated for specifying knowledge

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 273

elicitation strategies. Firstly, it was observed that there are usually basic objects in an
application domain. For medical domains these are typically disorders, and in
engineering domains components. Secondly, it was observed that the elicitation
strategy is usually based on some kind of graph traversal: already elicited knowledge
is used to prompt for related knowledge. From these principles and the application
ontology in the ARS domain the following elicitation strategy was derived.

(1) Elicit the diagnostic hypotheses (ars-lesion-gradings).

(2) For each of the elicited hypotheses, use the main abductive relation to elicit the
abstract findings that would trigger that hypothesis. In this case, this is the
relation ars-manifestation-of. Note that the abductive knowledge and the
patient findings (1esion-indications) are elicited in one step.

(3) For each of the abstract findings, elicit the knowledge used to make the
abstractions (the ars-abstracted-from tuples and the instance of ars-
datum).

(4) Elicit for each of the diagnostic hypotheses the associated therapies, using the
basic therapeutic abduction relation (ars-has-therapy).

(5) Elicit the findings that are indicators and contra-indicators for using a particular
therapy for a lesion grading.

(6) Elicit for each of the findings that are indicators or contra-indicators for the
therapies the data that they are abstracted from.

Note that in this strategy a number of ordering decisions have been taken which
are not derived from the principles mentioned above. For example, the principles do
not suggest that the knowledge used for diagnosis should be elicited before the
knowledge used in therapy planning. In other words, it is not possible to derive a
unique best strategy from the principles. There are a number of sensible strategies
possible. From these, one has been chosen arbitrarily. Figure 47 shows how this
strategy was formulated in QUAKE’s knowledge-elicitation-strategy language.

7.6.3. Eliciting the application knowledge

Given the application ontology and the knowledge elicitation strategy, elicitation is a
straightforward activity. QUAKE prompts the domain expert with a series of questions
of the type “Enter a possible grading of the haemopoietic lesion”. Figure 48 shows a
transcript of the part of the scenario where the system elicits the indicators and
contra-indicators of therapies.

7.7. BUILDING THE DESIGN MODEL

When the knowledge model has been completed, it must be transformed into an
executable system. In our approach, the design process consists of three steps: (i)
implementing the problem solving method, (ii) selecting problem solvers and (iii)
translating the knowledge. This section will concentrate mainly on the first two of
these steps. When the problem solvers are selected and the mappings between the
application ontology and the representational meta models have been specified, the
translation step can be done automatically.

274 G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

(define-ka-strategy main ()
; ; Elicit the organ system lesions
(elicit-all ?lesion (ars-organ-system-lesion ?lesion)
(elicit-all ?grading (ars-lesion-grading ?lesion=?grading)))
; ; For each of the elicited hypotheses, use the abductive relation
; ; toelicit the findings that would trigger that hypothesis.
(for-each $1g (ars-lesion-grading $1g)
(elicit-all $11 (manifestation-of (ars-lesion-indication $11)
(ars-lesion-grading $1g))))
; ; For each of the abstract findings, elicit the knowledge that is
; ; used to make the abstractions
(for-each $1i (ars-lesion-indication $11i)
(elicit-all $datum (ars-abstracted-from (ars-lesion-indication $11)
(ars-datum Sdatum))))
; ; Elicit for each of the diagnostic hypotheses the associated
; ; therapies, using the basic therapeutic abduction relation
(for-each $1g (ars-lesion-grading $1g)
(elicit-all ?t (ars-has-therapy (ars-lesion-grading $1g)
(therapy ?t))))
; 7 Elicit the findings that are indicators and contra-indicators for
; ; using a particular therapy for a lesion grading.
(let (@findings)
(for-each $Saht (ars-has-therapy $aht)
(elicit-all sfinding (ars-has-indicator $aht $finding)
(push $finding @findings))
(elicit-all $Ainding (ars-has-contra-indicator $aht $finding)
(push $finding @findings)))
; ; Finally, elicit the data from which the findings are abstracted.
(for-each $finding (member-of $finding @findings)
(elicit-all Sdatum (ars-abstracted-from (finding $finding)
(ars-datum $datum))))))

FIGURE 47. The knowledge elicitation strategy used for the ARS application. The language used for
defining strategies distinguishes three types of variables: (i) instance variables (?varnames), which unify
with class instances, (ii) tuple variables ($varname), which unify with tuples of the indicated types and
(iii) set variables (@varname) which can be used for the temporary storage of elicited instances and
tuples. The basic constructs in the language are elicit-all and for-each. Both have as their first
parameter a variable, and as their second parameter an expression that constrains the instances and tuples
with which the variable can unify. The (optional) remaining arguments must be operations that are to be
performed on each of the instances or tuples that are unified with the variable. The difference between
elicit-all and for-each is that the former obtains the objects that are unified with the variable by
asking the QUAKE user, whereas the latter searches for objects that unify with the variable in QUAKE’s
knowledge repository. Further, the ARS strategy uses the constructs push, which includes-an object in a
set, and let, for (lexical) variable scoping. Besides these constructs, the language also provides simple
constructs for conditional branching, supports user-defined procedures and allows recursion.

7.7.1. Implementing the problem-solving method

The problem-solving method has been implemented by means of meta rules which
specify the high-level control of the reasoning process. This involves both sequenc-
ing of the inferences within an instantiated task model and switching between these
models.

At the highest level, it must be specified that diagnosis is performed before
therapy planning. This is the most common situation. Only in time-critical situations
it might occur that the two processes are interleaved. However, it is not intended
that the ARS system be embedded in a real-time environment. Further, the amount

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 275

At a certain moment in the scenario, the system is eliciting therapies for the various lesion-
gradings:

(ars-has-therapy (HPS=4) (therapy))

Enter therapy: autologous-BMT

The user enters that autologous-BMT is a possible therapy for grading 4 of HPS (haemopoetic
syndrome). The system continues by asking for possible therapies for every lesion-grading. It
then starts asking for the indicators and contra-indicators of these therapies.
(ars-has-contra-indicator (ars-has-therapy (HPS=4) autologous-BMT) {(finding))
Enter Finding: stem-cells-preserved = no

(ars-has-contra-indicator (ars-has-therapy (HPS=4) autologous-BMT)

(finding))

Enter Finding:

identical-twin-available = no

FIGURE 48. A transcript of a part of the knowledge elicitation session for the ARS application.

of knowledge in the knowledge model is limited and well structured, so it is not
expected that the system will have to traverse huge search spaces. The following
meta rules specify when the two generic task instances may be invoked. It is
assumed that when control is passed to the task invocation module, the presence of
hypotheses in the hypotheses space indicates whether the task has been completed.

IF Hypotheses-space of ARS-Grading = empty
THEN invoke-task-instance ARS-grading

IF Hypotheses-space of ARS-Grading = NOT empty AND
Hypotheses-space of Select-ARS-Treatment = empty
THEN invoke-task-instance Select-ARS-Treatment

For each of the generic task instances, the local control regimes must also be
specified. The suitability of a particular control regime depends on the goal that is
associated with the task. For ARS-grading this is “grading the disease”. Computa-
tionally, this is an easy kind of diagnosis, because it allows us to make the single
fault assumption: according to the application ontology a lesion can only have one
true grading. Because of the single fault assumption and because there is a finite
number of possible gradings, the search space is finite. Furthermore, in this
particular case the search space is very small. The attractive computational
characteristic allow for a straightforward control regime. First the data are
obtained, then all the possible abstractions are made, and then the hypotheses are
generated. The following meta rules implement this strategy for ARS-grading.

IF Observable-Data-Space = empty
THEN Invoke-inference Request-Data

IF Observable-Data-Space = NOT empty AND
Patient-Findings Space = Empty
THEN Invoke-inference Abstraction

IF Hypotheses-space = empty AND
Patient-Findings Space = NOT empty
THEN Invoke-inference Abduction

276 G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

7.7.2. Selecting problem solvers

As argued in Section 6, the problem solvers that implement the inferences should be
both epistemologically and computationally adequate. Considering the limited
amount of domain knowledge, it is not likely that computational complexity will be
an important issue in this case. Therefore, the discussion will focus on epistemologi-
cal adequacy. A problem solver is epistemologically adequate if the distinctions
between different kinds of knowledge in the domain are preserved in the data
structures used by the problem solver. In Section 6 this idea was operationalized by
means of mappings between the application ontology and representational meta
models of the problem solvers. When the mappings are simple, the problem solver is
epistemologically adequate.

Diagnostic abduction. Diagnostic abduction is performed by traversing tuples of the
relation ars-manifestation-of. As can be seen in Figure 45, the abductive
inferences are straightforward: the findings are directly associated with the hypoth-
eses that they trigger and no uncertainty is involved. Such associational reasoning
can easily be performed by a forward-chaining production-rule interpreter. There-
fore, the representational meta model of a simple rule interpreter is selected from
CUE’s problem solver library. Figure 49 shows this model using QUOTE’s graphical
representation.

The representational meta model specifies that a rule consists of three sets of
attribute expressions: conditions, counter-conditions and actions. Attribute expres-
sions are the symbol-level equivalent of findings in the application ontology. They
consist of an attribute, an operator and an attribute-value. The representational
meta model makes an explicit distinction between conditions and counter-
conditions. A rule may fire when all of its conditions and none of its counter-
conditions are true. There are two reasons for making this distinction. Firstly,
without this distinction, modelling of attribute expressions would be more compli-
cated, since there would be a need for ‘‘negative’ attribute expressions. Secondly, as
will see later, conditions and counter-conditions are often mapped onto different
ontological concepts. The semantics of the representational meta model are that a
rule may fire when all of its conditions are satisfied and when none of its
counter-conditions are satisfied.

N
N

» has-condition --+| condition }.

has counter r D R4 0 .
> ul S . e -list —(>
rule condition co\unter condmjon ,expressmn |ISJt contains
‘A has-action --+| action |

expression

PogiohncN
o) o) (o)

FIGURE 49. The representational meta-model of a production-rule interpreter, represented using QUOTE’s
graphical language.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 277

(ars-manifestation-of (ars-lesion-indication ?1i=?v)
(ars-lesion-grading ?1g=2g))
>
(and (rule ?rule)
has-condition ?rule ?condition)
contains ?condition (attribute-expression ?1i patient ?v))
has-action ?rule ?action)
contains ?action (attribute-expression ?1g patient 2g)))

FIGURE 50. A simple mapping from the ars-manifestation-of relation onto the representational

meta-model of the production rule system. The mappings are specified by means of mapping rules. On

both sides of a mapping rule are expressions in CUE’s logical notation. The expressions may contain

variables. When the mappings rules are applied, every expression that can be unified with the left-hand
side of the mapping rule can be rewritten as the right-hand side.

There are different ways to map the relevant parts of the application ontology
onto the representational meta model. The main ontological concept for the
mapping is the ars-manifestation-of relation. A straightforward way of mapping
this relation onto the representational meta model is to generate a rule for every
tuple of the relation. The mappings could then be specified as shown in Figure 50.

One complication that must be handled is that the second argument of finding (of
which ars-lesion-indication and ars-lesion-grading are sub-types) may be
either <, =<, =, > or >=, whereas in the attribute expressions in the
representational meta model it can only be specified that an object has a particular
value for an attribute. Thus, only the = operator may be used. Further, there is no
explicit representation of the object of the attributes (the patient) in the application
ontology. In the mappings in Figure 50 this is handled by enforcing that only findings
with the = operator may be mapped and by using the constant patient as a
dummy object in the attribute expressions in production rules. Inspection of the
application knowledge shows that the restriction to the = operator does not cause
problems.

A problem with the mapping in Figure 50 is that it generates a large number of
hypotheses. As soon as one of the manifestations of a particular grading has been
established, the hypothesis will be generated. In the ARS domain a more
conservative abductive strategy is preferred: a lesion grading should only be
hypothesized if all of its manifestations are present. This can be realized by
specifying the mapping rules in such a way that all the manifestations are grouped in
the condition part of a single rule.

Note that the representational meta model does not allow disjunctive conditions.
Although allowing disjunction does not affect the representational power of the
formalism—it is equivalent to the introduction of extra rules—it may affect the
mapping relations. For example, if disjunctions are allowed, it is always possible to
generate one and only one rule for every possible action. If disjunction is not
allowed, this is only possible in cases where every condition is a necessary condition,
and if there are no subsets of the set of conditions that are sufficient for the action.
In terms of the application ontology, this means that a particular lesion grading can
only be the true grading if all of its associated manifestations are present. As
described in Section 7.3, this requirement is met in the ARS domain. (It was for this
reason that the attributes frequency and evoking-strength were left out of the

278 G. VAN HEIJST, A. TH. SCHREIBER AND B. J. WIELINGA

(ars-lesion-grading ?1g=2qg)
—>
(and (rule ?rule)
(has-action ?rule ?action)
(contains ?action (attribute-expression ?1g patient ?g)))

(ars-manifestation-of (ars-lesion-indication ?11i=2?v)
(ars-lesion-grading ?1g=72g))

(rule ?rule)

(has-action ?rule ?action)

(contains ?action (attribute-expression ?1g patient ?g))
(has-condition ?rule ?condition))

(contains ?condition (attribute-expression ?1i patient ?v)))

(> (and

FIGURE 51. The mapping rules that are used for diagnostic abduction in the ARS application.

application ontology.) The mapping is realized by means of the rules shown in
Figure 51.

The first mapping rule in Figure 51 states that for every lesion grading in the
knowledge model there is a rule in the design model, where the action part of the
rule asserts a particular lesion-grading. The second mapping expresses that for every
tuple of the ars-manifestation-of relation which has the particular lesion-
grading as its second argument, the rule that is based on that grading has a condition
that corresponds to the first argument of the tuple.

Diagnostic abstraction. In the application ontology, the abstractions are modelled by
means of ars-abstracted-from relations between findings and lesion indications.
In the design model, we must specify the procedures that compute the abstractions
and build a wrapper around these procedures to ensure that they can be invoked in
the same way as ‘‘real” problem solvers. As mentioned, the complexity of the
abstractions in the ARS domain ranges from simple table lookups to complex
computational procedures. We will concentrate here on one abstraction of each
type.

An example of a simple qualitative abstraction is the derivation of the lesion-
indicator vomiting-severity from the data vomiting-time and accident-time.
The value of this indicator must be one of five time periods, which represent the
time period in hours between the exposure to radiation and the moment of
vomiting. The Lisp function shown in Figure 52 is used to compute the vomiting
severity.

(defun compute-vomiting-severity (accident-time vomiting-time)
(let ((period (-vomiting-time accident-time)))
(cond ((<period 9.2)
"(00.2))
((<period 0.5)
"(0.2 0.5))
((<period2.0)
"(0.52.0))
((<period 6.0)
"(2.06.0))
(£ '(6.0: infinity)))))

FIGURE 52. The Lisp function that computes the vomiting severity abstraction.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 279

A complex kind of abstraction is the derivation of the severity of the granulocyte
decrease. This lesion indicator, which is an indicator of the severity of the lesion to
the haemopoietic system, is abstracted from a measurement of the granulocytes
concentration and the measurement time relative to the date of the radiation
exposure. The severity of the decrease is expressed by a number between 1, meaning
not severe, and 5, meaning very severe. The value of the granulocyte decrease is
computed by comparing the measured granulocyte concentration with time-
dependent threshold values. The computation of the threshold values is based on a
quantitative model of the development of the granulocytes concentration, which can
be expressed by means of the function g:

a a

)= e T MLy 4+
g(t) —a+b ¢ o a—>b

e x+a-e -y

The model is based on four parameters: x, the number of maturing granulocytes
in the home marrow; y, the number of granulocytes in the blood; a, the maturation
time of granulocytes and b, the loss rate of granulocytes. The severity of the
haemopoietic lesions can be modelled in terms of values for the four parameters in
the model. To generate the functions that discriminate between the five levels of
severity of the haemopoietic lesion, the parameter values shown in Table 7 are used.
(These values are based on empirical results.)

The Lisp function that computes the granulocyte-decrease abstraction is shown in
Figure 53.

To embed the Lisp function in the KBS they must be wrapped in an object that
can be invoked as a problem solver. In the current application this is realized by
wrapping the abstraction functions into production rules. The conditions of these
production rules are used to bind the parameters of the Lisp functions to particular
values, and the actions are used to write the function result to the appropriate space
of the blackboard.

Diagnostic data entry. In the ARS application, the diagnostic data are derived from
computerized medical records. In Section 7.3 it was explained that the diagnostic
data are modelled by means of ars-datum, a specialization of finding. However,
the data are not represented in this format in the medical record.

In order to enable the ARS application to make use of the data in the database, a
transformation must be defined between the ars-datum concept and the database

TABLE 7
Parameter values for the threshold
functions to discriminate between
different values of the granulocyte-
decrease abstraction

Degree X y a b
1-2 101 5 1 2.4
2-3 120 5 0475 24
3-4 105 5 0166 24
4-5 100 5 0.062 1.185

280 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

efun compute-granulocyte-decrease (concentration time
(def t 1 te-d (trati time)
(flet ((threshold-function (xy ab)

concentration (threshold-function 1005 0.062 2.4))
))))

*(/a(—ba))
(exp (* —1 a time))
X)
*(/a(—ab))
(exp (* —1 b time))
X)
(*a
(exp (* —1 b time))
v))))
(cond ((< concentration (threshold-function 10151 2.4))
5)
((< concentration (threshold-function 120 5 0.475 2.4))
4)
((< concentration (threshold-function 1055 0.1662.4))
3)
(<
(t1

FIGURE 53. The Lisp function that computes the granulocyte decrease abstraction.

schema. As with problem solvers, this is done in two steps: first, make a mapping
between the ontology and a representational meta model of the database, and then
use a translation program to translate between the representational meta model and
the actual database representation.

For the present purpose, a simple database representational meta model is used: a
database consists of sections, and each of these sections consists of a number of
records. In turn, records consist of a number of fields. Different sections of the
database may have different kinds of records, but, within a section, all records must
have the same type of fields. Figure 54 shows the mappings between the
representational meta model and the application ontology for the erythema part of
the database (see Table 3).

The mapping between the database records and the application ontology has a
different nature from the mappings between the ontology and the representational
meta models of the problem solvers described earlier. In contrast with the earlier
mappings, the mapping shown in Figure 54 is specific for one particular kind of
ars-datum, namely data about erythema. For each of the different kinds of data
used in the application another mapping must be defined. This is necessary because
the ARS database uses a variety of record structures.

(has-record erythema-section
?erythema-location ?yes no ?unknown ?begin ?end ?maximum ?degree)
=
(ars-datum ?erythema-location=no)

(has-record erythema-section
?erythema-location yes ?no ?unknown ?begin ?end ?maximum ?degree)
—>
(and (ars-datum ?erythema-location=?degree)
(ars-datum.time-stamp (ars-datum ?erythema-location=?degree)
(time-interval ?begin ?end)))

FIGURE 54. The mapping rules used for diagnostic data entry.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 281

(ars-has-therapy (lesion-grading ?11=?v) ?t)
—>
(and (rule ?rule)
(has-action ?rule ?action)
(contains ?action (attribute-expression therapy patient ?t))
(has-condition ?rule ?condition)
(contains ?condition (attribute-expression ?11 patient ?v)))

(ars-has-indicator (ars-has-therapy (lesion-grading ?11=2g) ?t)
(finding ?20b=2v))
=

(= (and

(rule(and ?rule)

(has-action ?rule ?action)

(contains ?action (attribute-expression therapy patient ?t))
(has-condition ?rule ?condition)

(contains ?condition (attribute-expression ?11 patient 2g))
(contains ?condition (attribute-expression ?ob patient ?v)))

(ars-has-contra-indicator (ars-has-therapy (lesion-grading ?11=7?g) ?t)
(finding ?o0b=2v))
>

(= (and (rule ?rule)
(has-action ?rule ?action)
(contains ?action (attribute-expression therapy patient ?t))
(has-condition ?rule ?condition)
(contains ?condition (attribute-expression ?11 patient ?g))
(has-counter-condition ?rule ?counter-condition))

(contains ?counter-condition (attribute-expression ?ob patient ?v)))

FIGURE 55. The mapping rules used for therapeutic abduction in the ARS application.

Therapeutic abduction. For the therapeutic abduction inference, three relations are
used: ars-has-therapy, ars-has-indicator and ars-has-contra-indicator.
ars-has-therapy directly connects the therapeutic problems to the therapies. This
suggests that, as for diagnostic abduction, the production rule interpreter might be
suitable. However, for therapy planning the situation is more complicated because
we must also deal with the indicators and the contra-indicators.

The indicators are conditions that must hold for the therapy to be appropriate. It
is clear that these can be realized computationally as additional conditions in the
production rules. The contra-indicators can be realized as counter-conditions in the
production rules. Figure 55 shows the mapping rules that implement this
operationalization.

Therapeutic abstraction and data entry. We can be brief about the problem solvers
that are selected for therapeutic abstraction and therapeutic data entry. Both
inferences make the same ontological commitments as the corresponding steps in
the diagnostic sub-task, and are therefore implemented in a similar way.

Table 8 summarizes which problem solvers were selected to implement the
inferences in the ARS task model.

7.7.3. Translating the knowledge

Once the mappings between the ontology and the representational meta models
have been specified, translating the knowledge to the particular formalisms is largely
an automatic process. As was mentioned in Section 6, the representational meta

282 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

TaBLE 8
Problem solvers used in the ARS application

Inference Problem solver
Diagnostic request data ARS Database
Diagnostic abstraction Lisp functions
Diagnostic abduction production rules
Therapeutic request data ARS Database
Therapeutic abstraction Lisp functions
Therapeutic abduction production rules

models are associated with procedures that translate back and forth between the
representational meta models and the internal representations of the problem
solvers. The mappings between the application ontology and the representational
meta models can therefore be considered as a specification of how the knowledge in
the knowledge model should be represented in the design model. For example, the
knowledge pieces which were elicited in Figure 48 are translated according to the
mapping rules shown in Figure 55 into the following attribute expression in terms of
the representational meta model:

(rule rule34)
(has-action rule34 action34)
(contains action34 (attribute-expression therapy patient
autologous-BMT))
(has-counter-condition rule34 counter-condition34)
(contains counter-condition34
(attribute-expression identical-twin-available patient no))
(contains counter-condition34)
(attribute-expression stem-cells-preserved patient no))

These attribute expressions are then translated automatically into production rules
in the syntax of the particular production rule interpreter:

IF NOT identical-twin-available patient no AND
NOT stem-cells-preserved patient no
THEN therapy patient autologous-BMT

7.8. QUAARS IN ACTION

To illustrate how the final system solves problems in the ARS domain, we now
present an execution trace where the system diagnoses the haemopoietic syndrome.
In the trace, the system retrieves eight pieces of data from the database and uses
these to abstract the severity of the vomiting reaction, the severity of the diarrhoea
reaction and the severity of the granulocyte decrease. Based on these findings, the
system derives that the haemopoietic syndrome has grading 4.

> (quaars)

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 283

—————— Invoking Inference REQUEST-DATA
—————— Retrieving data from database
Retrieved: (ars-datum radiation-exposure=yes)

Retrieved: (ars-datum.time-stamp

(ars-datum radiation-exposure=yes)

(time-point (1965/04/28/23.11)))
Retrieved: (ars-datum vomiting=yes)
Retrieved: (ars-datum.time-stamp

(ars-datum vomiting=yes)

(time-point (1965/04/28/23.52)))
Retrieved: (ars-datum diarrhea=yes)
Retrieved: (ars-datum.time-stamp

(ars-datum diarrhea=yes)

(time-point (1965/04/28/23.40)))
Retrieved: (ars-datum granulocyte-count=3.5)
Retrieved: (ars-datum.time-stamp

(

ars-datum granulocyte-count=3.5)
(time-point (1965/05/02/12.30)))
—————— Invoking Inference ABSTRACTION
—————— Mapping inputs from DATA space to Representational
Meta Model of ABSTRACTION-WRAPPER

Mapped: (ars-datum radiation-exposure=yes) :—>
(attribute-expression radiation-exposure patient yes)

Mapped: (ars-datum.time-stamp
(ars-datum radiation-exposure=yes)
(time-point (1965/04/28/23.11))) :—
(attribute-expression time radiation-exposure

(1965/04/28/23.11))

Mapped: (ars-datum vomiting=yes) :—
attribute-expression vomiting patient yes)

Mapped: (ars-datum.time-stamp

(
(
(
(ars-datum vomiting=yes)
(time-point (1965/04/28/23.52))) :—
(attribute-expression time vomiting (1965/04/28/23.52))
Mapped: (ars-datum diarrhea=yes) :—
(attribute-expression diarrhea patient yes)
Mapped: (ars-datum.time-stamp
(ars-datum diarrhea=yes)
(time-point (1965/04/28/23.40))) :—
(attribute-expression time diarrhea (1965/04/28/23.40))
(
(
(
(
(
(

Mapped: (ars-datum granulocyte-count=3.5) :—
attribute-expression granulocyte-count patient 3.5)
Mapped: (ars-datum.time-stamp

ars-datum granulocyte-count=3.5)
time-point (1965/05/02/12.30))) —
attribute-expression time granulocyte-count
(1965/05/02/12.30))

284 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

—————— Translating inputs to representation of ABSTRACTION-WRAPPER

Finished

—————— Invoking Problem solver ABSTRACTION-WRAPPER

Finished

—————— Translating outputs of ABSTRACTION-WRAPPER to Representational

Meta Model

Finished

—————— Mapping outputs from Representational Meta Model of

ABSTRACTION-WRAPPER to PATIENT-FINDINGS

Mapped: (attribute-expression vomiting patient severe) :—
ars-lesion-indication vomiting=severe)

Mapped: (attribute-expression diarrhea patient severe) :—
Mapped: (attribute-expressiongranulocyte-decrease patient severe) :—

(
(
(ars-lesion-indication diarrhea=severe)
(
(

ars-lesion-indication granulocyte-decrease=severe)
—————— Invoking Inference ABDUCTION
—————— Mapping inputs from PATIENT-FINDINGS space to Representational
Meta Model of Q-CHAIN

Mapped: (ars-lesion-indication vomiting=severe) :—
(attribute-expression vomiting patient severe)

Mapped: (ars-lesion-indication diarrhea=severe) :—
(attribute-expression diarrhea patient severe)

Mapped: (ars-lesion-indication granulocyte-decrease=severe) :—
(

attribute-expression granulocyte-decrease patient severe)

—————— Translating inputs to internal representation of Q-CHAIN

Finished

—————— Invoking Problem Solver Q-CHAIN

Finished

—————— Translating outputs of Q-CHAIN to Representational Meta Model

Finished

—————— Mapping outputs from Representational Meta Model of Q-CHAIN to

HYPOTHESES space

Mapped: (attribute-expression HPS patient 4) :—
(ars-lesion-grading HPS=4)

8. Conclusions

An ontology is an explicit, knowledge level specification of a conceptualization. This
paper has described a number of ways in which ontologies can be used in the
knowledge engineering process.

To maximize the leverage of explicit ontologies, an application-specific ontology
should be constructed early in the knowledge engineering process. We have called
such an ontology an application ontology. However, in Section 3 it was argued that
the contents of an application ontology may depend heavily on the task at hand.
Therefore, application ontologies can more easily be constructed when a task model

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 285

is at hand. On the basis of these observations we have proposed the following
organization of the knowledge engineering process.

(1) Construct a task model for the application.

(2) Select and/or construct appropriate ontologies, and if necessary refine these.
(3) Map the application ontology onto the knowledge roles in the task model.

(4) Instantiate the application ontology with domain knowledge.

(5) Select or construct meta rules that implement the task model.

(6) Select problem solvers that implement the inferences in the task model.

(7) Translate the domain knowledge into the representations of the selected
problem solvers.

Ontologies can be constructed by selecting and configuring ontological theories
from a library and by defining ontologies “‘from scratch”. To guide navigation in a
library of reusable ontological theories, the theories should be indexed according to
domain specificity and method specificity. The underlying idea is that some concepts
are more reusable than others, and that the reusability of concepts depends on (i)
how specific these are for particular domains and (ii) how specific these are for
particular problem-solving methods.

An ontology library should be organized in a core part, containing definitions of
the basic concepts in the field, and a peripheral part, containing definitions that are
only needed for specific methods and specific sub-domains. By indicating which
sub-domains and which methods are to be used in an application, the library indexes
can be used to find definitions that are likely to be useful for the application. The
core part is thus specific for a field (e.g. medicine) but generic across all
specializations and tasks within that field.

Often, the library will not contain entries for the sub-domain and for the methods
used by an application. For this situation, a number of guidelines have been
developed for using the library as a source of inspiration. These guidelines were
based on the considerations that (i) only concepts that are referred to by the
task-model (and the concepts that they depend on) are needed for an application
ontology, (ii) similar concepts will often have similar names, and (iii) it is easier to
define new concepts by specifying or modifying existing concepts than to define
concepts from scratch.

When there is no library available, application ontologies must be developed by
the knowledge engineer. For defining an ontological concept, the following
guidelines can be used: (i) a concept should be sufficiently general to cover all the
elements of knowledge that the concept is intended for, (ii) a concept should be
sufficiently specific to cover only those elements of knowledge that the concept is
intended for, and (iii) a concept should have a name that is meaningful in the
application domain.

We have described two ways in which explicit ontologies can be used during
knowledge engineering: for knowledge elicitation and for computational design.
Because ontologies specify which constraints domain knowledge should satisfy, they
can be used to direct the knowledge elicitation process. Further they can be used to
drive an automated knowledge elicitation tool. In Section 5 this was illustrated with
QUAKE, a tool in the cue workbench, which is able to inspect application ontologies
written in Ontolingua. QUAKE uses a knowledge-acquisition oriented interpretation

286 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

of the vocabularly defined in the Frame ontology—a representational ontology
which defines the vocabularly for specifying Ontolingua ontologies—to support
model instantiation by consistency checking, completeness checking, using domain-
specific terminology, intuitive visualization and dialogue structuring.

During computational design application ontologies can be used to determine the
suitability of problem solvers for the particular application. To decide whether a
particular problem solver is suitable, its representational capacity must be compared
with the epistemological distinctions in the domain knowledge. The application
ontology is an explicit representation of these epistemological distinctions.

An important final question raised in this paper concerns the reusability of
ontologies. Handling the interaction problem was identified as a key to reusability.
The interaction problem states that the way in which knowledge is represented is
determined by knowledge use. The interaction problem can be managed by means
of the explicit interaction principle as follows.

Different elements of an ontology are affected in different ways by the nature of the
method that is used by an intelligent agent. By making the nature of the interaction
between the method and the elements of the ontology explicit, it can be determined
under which conditions ontological elements can be reused.

In Section 3 the explicit interaction principle was used to organize an ontology
library. The method-specificity index was used here to make explicit with which
method or group of methods an ontological element could be (re-)used.

Most ontology-related research in AI is done for the purpose of knowledge
sharing. Knowledge sharing means that a knowledge base can act as a knowledge
provider (a server) for other knowledge bases (clients). An influential research
project in this context is the knowledge sharing effort (KSE) described in Neches et
al. (1991). In an analysis of the obstacles that prohibit knowledge sharing between
existing knowledge bases, one of the problems is that servers and clients can make
different ontological commitments. The solution proposed in the KSE project is to
develop a library of standardized ontologies, and to enforce KBS developers to
adhere to these ontological standards. To help KBS developers to comply with the
standards, the Ontolingua language and support software were developed. The
Ontolingua language is the language which is used for encoding the library of
ontologies. This language was also used for ontological modelling in the work
described here. The Ontolingua program consists of a collection of translation
routines that translate ontologies formulated in the Ontolingua language into the
representation formalisms of a number of different problem solvers.

The view on knowledge engineering that underlies the Ontolingua approach is
that knowledge engineers first decide which ontological commitments must be made,
then use the ontology library to make these commitments explicit, and then use their
favourite tool for developing the knowledge base. Roughly speaking, this approach
is similar to the approach to knowledge engineering advocated in this paper,
although in the Ontolingua approach many subtleties of the use of reusable
ontologies for knowledge engineering remain unaddressed. For example, in theory
the builders of the KSE ontology library do not take into account that a
problem-solving method may require particular ontological commitments. That is,
the approach does not provide guidelines for dealing with the interaction problem.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 287

In practice, however, the importance of the interaction problem is certainly
recognized, as can be seen in the Ontolingua theories developed as part of the VT
experiment (Schreiber & Birmingham, 1996). The ontology for this application is
split into two theories: one which models concepts that are specific to elevators (the
domain), and one that is specific to engineering design (the task). This is exactly
what the principles put forward in Section 3 prescribe.

A potential problem with the Ontolingua approach is that it requires that the
knowledge bases are based on the same ontological commitments. Therefore,
knowledge can only be shared between knowledge bases developed with that very
purpose in mind. Unfortunately, the world is filled with knowledge bases and
databases which are not developed according to this philosophy. The information in
these servers cannot be shared. The approach to this problem presented in this
paper was to wrap an external database into an ontological theory which conformed
to the commitments in the application ontology. The wrapper was then connected to
the database by means of access functions.

A more generic solution to this problem is to use more flexible ways of specifying
which ontological commitments are made in a knowledge base. In both the KSE
library and our library, committing to the ontological distinctions defined in a theory
means including that theory. That is, making the concepts in the included theory
directly accessible to the includer. A more flexible way of connecting ontologies is to
allow ontology mappings. The idea here is that knowledge bases have a base
ontology and a number of ontologies that are developed for specific uses of the
knowledge base. These use-specific ontologies are then connected to the knowledge
base by means of mappings between the base ontology and the use-specific
ontologies. The mappings, which specify different viewpoints on the contents of a
knowledge base, can be used to reformulate the ontological commitments in the
knowledge base in such a way that it is possible to share knowledge with another
knowledge base. This approach is currently being investigated in the European
KACTUS project (Schreiber, Wielinga & Jansweijer, 1995).

Parts of this article are based on earlier publications with other co-authors. In particular,
Section 2 is partially based on an article which was co-authored by Giordano Lanzola and
Mario Stefanelli and published in Knowledge Acquisition. Section 3 is based on an article
published in Artificial Intelligence in Medicine and was co-authored by Ameen Abu-Hanna,
who did the analysis of casner, Sabina Falasconi, who developed the core part of the
ontology library and Mario Stefanelli. Section 6 is based on a paper presented at the
European Conference on Artificial Intelligence (ECAI) ‘94 and is co-authored by Wilfried
Post. Hauke Kindler and Dirk Densow provided the domain knowledge for the acute
radiation syndrome application.

We are grateful to Lynda Hardman, Manfred Aben, Peter Terpstra, Anjo Anjewierden,
Jan Wielemaker and Frank van Harmelen for their comments on earlier versions of (parts of)
this article, and we thank Nicolaas Mars, Nigel Shadbolt, Joost Breuker, Robert de Hoog and
Pieter de Vries Robbé for their comments on the thesis on which this article is based.

The research reported in this paper was carried out in the course of the GaAMEs-11 project
and the kacrtus project. These projects are partially funded by the Commission of the
European Communities. The partners in cames-11 are saco (Italy), Foundation of Research
and Technology (Greece), Geneva University Hospital (Switzerland), the University of
Amsterdam (The Netherlands), University College of London (United Kingdom), the
University of Pavia (Italy) and the University of Ulm (Germany). The partners in the kacTUS
project are Integral Solutions Limited (United Kingdom), Labein (Spain), Lloyd’s Register

288 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

(United Kingdom), Statoil (Norway), Cap Programator (Sweden), University of Amsterdam
(The Netherlands), University of Karlsruhe (Germany), Iberdrola (Spain), Delos (Italy),
Fincantieri (Italy) and Sintef (Norway).

This article expresses the opinions of the authors and not necessarily those of the consortia.

References

ABEN, M. (1995). Formal methods in knowledge engineering, Ph.D. Thesis, University of
Amsterdam, Amsterdam, The Netherlands.

ABu-Hanna, A. (1994). Multiple domain models in diagnostic reasoning. Ph.D. Thesis,
University of Amsterdam, Amsterdam, The Netherlands.

ABU-HANNA, A., BENJaMmIns, V. R. & Janswener, W. N. H. (1991). Functional models in
diagnostic reasoning. Proceedings of The Eleventh International Workshop on Expert
Systems and Their Applications, General Conference on Second Generation Expert
Systems, pp.243-256, Avignon, France.

ALBERT, P. & Jacoues, G. (1993). Putting CommonKADS at work using Kads-Tool. In
Kennis-technologie ’93, Amsterdam, The Netherlands.

ALBERTS, L. K. (1993). YMIR: an ontology for engineering design. Ph.D. Thesis, University of
Twente,

ANJEWIERDEN, A., SHADBOLT, N. R. & WIELINGA, B. J. (1992a). Supporting knowledge
acquisition: the Acknowledge project. In Enhancing the Knowledge Engineering
Process—Contributions from ESPRIT, pp.143—-172. Amsterdam: Elsevier Science.

ANJEWIERDEN, A., WIELEMAKER, J. & ToussainT, C. (1992b). Shelley—computer aided
knowledge engineering. Knowledge Acquisition, 4.

Baranov, A., DExsow, D., FLIEDNER, T. M. & KiNDLER, H. (1994). Clinical Pre-Computer
Proforma for the International Computer Database for Radiation Exposure Case
Histories. Heidelberg: Springer.

BenneTT, J. S. (1985). ROGET: a knowledge-based system for acquiring the conceptual
structure of a diagnostic expert system. Journal of Automated Reasoning, 1, 49-74.

Boosk, J. H. (1985). A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man—Machine Studies, 23, 495-525.

Booskg, J. H. & BrabpsHaw, J. M. (1988). Expertise transfer and complex problems: using
AQUINAS as a knowledge acquisition workbench for knowledge-based systems. In J. H.
Boosk. & B. R. Gaings, Ed. Knowledge Acquisition For Knowledge Based Systems, Vol.
2. pp. 39-64. Academic Press.

BracaMmAN, R. J., Fikes, R. E. & LEvEsouE, H. J. (1985). Krypron: A functional approach
to knowledge representation. In R. J. BRacuman. & H. J. LEVEsouE, Eds. Readings in
Knowledge Representation, pp.411-429. Los Altos, CA: Morgan Kaufmann.

BREUKER, J. A. & WIELINGA, B. J. (1989). Model driven knowledge acquisition. In P.
Guipa, & G. Tasso. Topics in the Design of Expert Systems, pp.265-296. Amsterdam,
North-Holland.

BREUKER, J. A., WIELINGA, B. J., vaAN SOMEREN, M., DE HoogG, R., SCHREIBER, A. T., DE
GreEer, P., BREDEWEG, B., WIELEMAKER, J., BiLrauvrt, J. P., Davoobr, M. &
Haywarp, S. A. (1987). Model driven knowledge acquisition: interpretation models.
ESPRIT Project P1098 Deliverable D1 (task Al), University of Amsterdam and STL
Ltd, Amsterdam, The Netherlands.

BurToN, A. M., SHaDBOLT, N. R, RuGG, G. & HEDGECOCK, A. P. (1990). The efficacy of
knowledge elicitation techniques: a comparison across domains and levels of expertise.
Knowledge Acquisition, 2, 167-178.

BYLANDER, T. & CHANDRASEKARAN, B. (1988). Generic tasks in knowledge-based reason-
ing: The right level of abstraction for knowledge acquisition. In B. R. GaInEgs, & J. H.
Boosg, Ed. Knowledge Acquisition for Knowledge Based Systems, Vol. 1, p. 65-77.
London: Academic Press.

CHANDRASEKARAN, B. (1987). Towards a functional architecture for intelligence based on
generic information processing tasks. In Proceedings of the 10th IJCAI, pp.1183-1192,
Milan, Italy.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 289

CLANCEY, W. J. & LETSINGER, R. (1984). NEOMYCIN: reconfiguring a rulebased expert system
for application to teaching. In W. J. CLancEy, & E. H. SHORTLIFFE, Eds. Readings in
Medical Artificial Intelligence: the First Decade, pp.361-381. Reading, MA: Addison-
Wesley.

ConsoLE, L., PorTINALE, L., DUPrRE, D. T. & Torasso, P.(1993). Combining heuristic
reasoning with causal reasoning in diagnostic problem solving. in J. H. Davip, J. P. &
Kriving, & R. Stmmons, Ed. Second Generation Expert Systems, p.46-68 Berlin:
Springer-Verlag.

CoNsoOLE, L. & Torasso, P. (1988). Heuristic and causal reasoning in cHECK. In Proceedings
of the 12th IMACS World Conference on Scientific Computation88, pp.283-286, Paris,
France.

Davis, R. (1979). Interactive transfer of expertise. Artificial Intelligence, 12, 121-157.

Davis, R., SHroBE, H. & Szorovrrs, P. (1993). What is a knowledge representation? Al
Magazine, Spring, 17-33.

DE KLEER, J. H. & WiLLiawms, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence,
32, 97-130.

Duba, R. O., GAscHING, J. G. & Harr, P. E. (1979). Model design in the PROSPECTOR
consultant system for mineral exploration. In D., Michig, Ed. Expert Systems in the
Micro-Electronic Age, pp. 153-1674. Edinburgh University Press.

Eriksson, H., PUERTA, A. R. & MuseNn, M. A. (1994). Generation of knowledge acquisition
tools from domain ontologies. In B. R. GaNes, & M. A. MuseN, Eds. Proceedings of the
8th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, pp.7-1-7-20,
Alberta, Canada.

EsHELMAN, L. (1988). moLE: A knowledge-acquisition tool for cover-and-differentiate
systems. In S., Marcus, Ed. Automating Knowledge Acquisition for Expert Systems,
pp- 37-80. Boston, MA: Kluwer.

Favrascont, S. (1993). Ontological foundations of knowledge based systems in medicine.
Master’s thesis, University of Pavia, Italy. (In Italian.)

Farasconi, S. & SteranerLi, M. (1994). A library of implemented ontologies. In
Proceedings of the ECAI Workshop on Comparison of Implemented Ontologies,
pp- 81-91, Amsterdam, The Netherlands.

Fikes, R. E. & KeHLER, T. (1985). The role of frame based representation in reasoning.
Communications of the ACM, 28, 904-920.

Forp, K. M., BrabpsHaw, J. M., Apams-WEBBER, J. R. & AcNeEw, M. M. (1993).
Knowledge acquisition as a constructive modelling activity. International Journal of
Intelligent Systems, 8, 9-32.

GRUBER, T. R. (1992). Ontolingua: a mechanism to support portable ontologies. Version 3. 0.
Technical report, Knowledge Systems Laboratory, Stanford University, CA, U.S.A.
GRUBER, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5§, 199-220.

GRUBER, T. R. (1994). Towards principles for the design of ontologies used for knowledge
sharing. In N. Guarmwo, & R. PoLri. Eds. Formal Ontology in Conceptual Analysis and
Knowledge Representation. Boston, MA: Kluwer.

GuariNo, N. & Borprin, L. (1993). Ontological requirements for knowledge sharing. Paper
presented at the IJCAI workshop for knowledge sharing and information interchange,
Chambery, France.

KinpLERr, H., DEnsow, D. & FLIEDNER, T. M. (1993). A knowledge-based advisor to deal
with rare diseases. In Proceedings AIME’93 Munich, 3—-6 October, Medical Artificial
Intelligence. Amsterdam: Elsevier Science Publishers.

KirsH, D. (1990). When is information explicitly represented. In P. Hanson, Ed. Vancouver
Studies in Cognitive Science 1, pp. 340-365. Vancouver, BC: University of British
Columbia Press.

KLINKER, G., BHora, C., DALLEMAGNE, G., MArRQUEs, D. & McDermoTtT, J. (1991).
Usable and reusable programming constructs. Knowledge Acquisition, 3, 117-136.

Lanzora, G. & SteranNeLL, M. (1992). A specialized framework for medical knowledge
based systems. Computers and Biomedical Research, 25, 351-365.

290 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

LenaT, D. B. & GuHa, R. V. (1990). Building Large Knowledge-Based Systems. Representa-
tion and Inference in the Cyc Project. Reading, MA. Addison-Wesley.

Levesoug, H. J. & Bracaman, R. J. (1985). A fundamental tradeoff in knowledge
representation and reasoning. In R. J. B. H. J. LEvesouEg, Ed. Readings in Knowledge
Representation, pp. 41-70. San Mateo, CA: Morgan Kaufmann.

LiNDBERG, D. A. B., HumpHREYS, B. L. & McCray, A. T. (1993). The unified medical
language system. Methods of Information in Medicine, 32, 281-291.

MACcGREGOR, R. (1991). The evolving technologyof classification-based knowledge represen-
tation systems. In J. Sowa, Principles of Semantic Networks: Explorations in the
Representation of Knowledge, pp. 385-400. San Mateo, CA: Morgan Kaufmann.

MaJor, N. & ReicHGELT, H. (1990). aLTO: an automated laddering tool. In B. J., WIELINGA,
J. H. BoosEg, B. R. Gaings, A. T. SCHREIBER, & M. vaN SOMEREN, Eds. Current Trends
in Knowledge Acquisition, pp.222-236. Amsterdam: IOS Press.

Marcus, S., Ed. (1988). Automatic Knowledge Acquisition for Expert Systems. Boston, MA:
Kluwer.

Marcus, S. & McDermoTT, J. (1989). Sart: a knowledge acquisition language for
propose-and-revise systems. Artificial Intelligence, 39, 1-38.

McDEerMOTT, J. (1988). Preliminary steps towards a taxonomy of problem-solving methods.
In S. Marcus, Ed. Automating Knowledge Acquisition for Expert Systems, pp.225-255.
Boston, MA: Kluwer.

Mortta, E., Rasan, T., DOMINGUE, J. & EiseNsTaDT, M. (1990). Methodological foundations
of KeaTts, the knowledge engineering assistant. In B. J. WIELINGA, J. H. Boosk, B. R.
Gaines, A. T. SCHREIBER, & M. van SomEereN, Eds. Current Trends in Knowledge
Acquisition, pp. 257-275. Amsterdam: IOS Press.

MuseN, M. A. (1989a). Automated Generation of Model-Based Knowledge-Acquisition Tools.
London: Pitman.

MuseN, M. A. (1989b). Automated support for building and extending expert models.
Machine Learning, 4, 347-376.

MuseN, M. A., Facgan, L. M., ComBs, D. M. & SHORTLIFFE, E. H. (1988). Use of a domain
model to drive an interactive knowledge editing tool. In J. H. Boosg, & B. R., GaINEs,
Eds. Knowledge-Based Systems, Vol. 2: Knowledge Acquisition Tools for Expert Systems,
pp- 257-273. London: Academic Press.

Musen, M. A. & ScHREIBER, A. T. (1995). Architectures for intelligent systems based on
reusable components. Artificial Intelligence in Medicine. Editorial Special Issue.

Necues, R., Fikes, R. E., Finin, T., GruBger, T. R., Pati, R. S., SenaTOr, T. &
SwarTouTt, W. R. (1991). Enabling technology for knowledge sharing. AI Magazine,
Fall, 36-56.

NeweLL, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

Patir, R. S. (1981). Causal Representation of Patient Iliness for Electrolyte and Acid-Base
Diagnosis. Ph.D. Thesis, Laboratory for Computer Science, MIT, U.S.A.

Post, W. M., KosTter, R. W., Zocca, V. & Sramek, M. (1993). Cooperative medical
problem solving. In AIME 93-4th Conference on Artificial Intelligence in Medicine
Europe, Munich, Germany.

PUERTA, A. R., EGAR, J., Tu, S. W. & Musen, M. A. (1992). A multiple-method shell for the
automatic generation of knowledge acquisition tools. Knowledge Acquisition, 4, 171-196.

Ramont, M., STEFANELLI, M., Barosi, G. & Macnant, L. (1992). An epistemological
framework for medical knowledge based systems. IEEE Transactions on Systems, Man
and Cybernetics, 22, 1361-1375.

RecToRr, A. L., Nowran, W. A., Kav, S., GosLg, C. A. & Howkins, T. J. (1993). A
framework for modelling the electronic medical record. Methods of Information in
Medicine, 32, 109-119.

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4.

RUNKEL, J. T. & BirmINGHAM, W. P. (1994). Separation of knowledge: a key to reusability.
In B. R. Games, & M. A. MuseN, Eds. Proceedings of the 8th Banff Knowledge
Acquisition for Knowledge-based Systems Workshop, pp. 36-1-36-19.

ScHREIBER, A. T. (1993). Operationalizing models of expertise. In A. T. SCHREIBER, B. J.

USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 291

WIELINGA, & J. A. BREUKER, Eds. KADS: A Principled Approach to Knowledge-Based
System Development, pp. 119-149. London: Academic Press.

ScHREIBER, A. T. & BirmiNGHAM, W. P. (1996). Editorial: the sisyphus VT initiative.
International Journal on Human Computer Studies, 44, 275-280.

ScHREIBER, A. T., WIELINGA, B. J., Akkermans, J. M., Van pE VELDE, W. &
ANJEWIERDEN, A. (1994). CML: the CommonKADS conceptual modelling language. In
L., SteeLs, A. T. SCHREIBER, & W. VAN DE VELDE, Eds. A Future for Knowledge
Acquisition. Proceedings of the 8th European Knowledge Acquisition Workshop
EKAW’94, pp. 1-25. Berlin: Springer-Verlag.

SCHREIBER, A. T., WIELINGA, B. J. & JansweuER, W. H. J. (1995). The kactus view on the
‘O’ word. In IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,
Montreal, Canada.

SuapBoLT, N. R. & WIELINGA, B. J. (1990). Knowledge based knowledge acquisition: the
next generation of support tools. In B. J., WIELINGA, J. H. Booskg, B. R. GaIngs, A. T.
ScHREIBER, & M. W. Van SoMmEREN, Eds. Current Trends in Knowledge Acquisition,
pp- 313-338. Amsterdam: IOS Press.

Suaw, M. L. G. & Gaines, B. R. (1987). An interactive knowledge elicitation technique
using personal construct technology. In A. L., Kipp, Ed. Knowledge Acquisition for
Expert Systems: A Practical Handbook. New York: Plenum Press.

Suaw, M. L. G. & Games, B. R. (1989). Comparing conceptual structures: consensus,
conflict correspondence and contrast. Knowledge Acquisition, 4, 341-364.

SuortLIFFE, E. H. (1979). Computer-Based Medical Consultations: Mycin. New York:
American-Elsevier.

Simmons, R. (1992). The roles of associational and causal reasoning in problem solving.
Artificial Intelligence, 53, 159-208.

Smmmons, R. (1993). Generate test and debug: a paradigm for combining associational and
causal reasoning. In J. M. Davip, J. P. Kriving, & R. Stmmons, Eds. Second Generation
Expert Systems, pp. 79-92. Berlin: Springer-Verlag.

Srintvas, S. & BRreEesg, J. (1990). Ideal: a software package for analysis of influence
diagrams. In Proceedings of 6th Conference on Uncertainty in AI, Cambridge, MA, U.S.A.

StEELS, L. (1985). Second generation expert systems. FGCS, 1, 213-221.

SteELs, L. (1990). Components of expertise. Al Magazine, 11, 30—49.

StTEELS, L. (1993). The componential framework and its role in reusability. In J. M. Davip, J.
P. KriviNg, & R. Stmmons, Eds. Second Generation Expert Systems, p. 273-298. Berlin:
Springer-Verlag.

Tu, S. W., ErikssoN, H., Gennari, J. H., SHAHAR, Y. & Musen, M. A. (1995).
Ontology-based configuration of problem-solving methods and generation of knowledge
acquisition tools: the application of PROTEGE-1I to protocol-based decision support.
Artificial Intelligence in Medicine, 7, 257-289.

Van Hewust, G., TErRPsTRA, P., WiELINGA, B. J. & Suapsort, N. R. (1992). Using
generalized directive models in knowledge acquisition. In T. WETTER, K. D. ALTHOFF, J.
H. Boosg, B. R. GaiNes, M. LINSTER, & F. ScamarHOFER, Eds. Current Developments
in Knowledge Acquisition: EKAW-92, pp. 112-132, Berlin: Springer-Verlag.

Van MEeLLE, W. (1979). A domain independent production rule system for consultation
programs. In IJCAI-79, pp. 923-925, Tokyo, Japan.

WEerss, S. M. & Kurikowskr, C. A. (1979). EXPERT: a system for developing consultation
modles. In Proceedings of IJCAI, pp. 826—832.

Werss, S. M., KuLikowski, C. A., AMAREL, S. & SAFIR, A. (1984). A model-based method
for computer-aided medical decision making. In W. J. CLancEy, & E. H., SHORTLIFFE,
Eds. Readings in Medical Artificial Intelligence, the First Decade. Reading, MA: Addison
Wesley.

WIELEMAKER, J. & ANJEWIERDEN, A. (1989). Separating user interface and functionality
using a frame based data model. In Proceedings Second Annual Symposium on User
Interface Software and Technology, pp.25-33. Williamsburg, VA: ACM Press.

WIELINGA, B. J. & BREUKER, J. A. (1986). Models of expertise. In Proceedings ECAI-86,
pp. 306-318, Brighton, UK.

292 G. VAN HEIST, A. TH. SCHREIBER AND B. J. WIELINGA

WIELINGA, B. J. & ScHREIBER, A. T. (1993). Reusable and sharable knowledge bases: a
European perspective. In Proceedings International Conference on Building and Sharing
of Very Large-Scaled Knowledge Bases, pp.103-115. Tokyo, Japan: Japan Information
Processing Development Center.

WIELINGA, B. J., SCHREIBER, A. T. & BREUKER, J. A. (1992). KADS: a modelling approach
to knowledge engineering. Knowledge Acquisition, 4 5-53. Reprinted in BucHAaNAN, B.
& WiLkins, D. Ed. (1992). Readings in Knowledge Acquisition and Learning, pp. 92-116.
San Mateo, CA: Morgan Kaufmann.

WIELINGA, B. J., VaNn DE VELDE, W., SCHREIBER, A. T. & AKKERMANS, J. M. (1993).
Towards a unification of knowledge modelling approaches. In J. M. Davip, J. P.
KriviNgE, & R. Stmmons, Eds. Second Generation Expert Systems, pp.299-335. Berlin:
Germany, Springer-Verlag.

Yost, G., KLINKER, G., LINSTER, M., MaRQUES, D. & McDErMOTT, J. (1994). The SBF
framework, 1989-1994: from applications to workplaces. In L. STEELs, W. VAN DER
VELDE, & A. T. ScHREIBER, Eds. Proceedings European Knowledge Acquisition
Workshop EKAW’94. Berlin: Springer Verlag.

