
 Int . J . Human – Computer Studies (1997) 45 , 183 – 292

 Using explicit ontologies in KBS development
 G . VAN H EIJST , * A . T H . S CHREIBER AND B . J . W IELINGA

 Uni y ersity of Amsterdam , Department of Social Science Informatics , Roetersstraat 1 5 ,
 NL - 1 0 1 8 WB , Amsterdam , The Netherlands .
 email : g e r t j a n / s c h r e i b e r / w i e l i n g a ê s w i . p s y . u v a . n l

 This article presents a number of ways in which ontologies—schematic descriptions
 of the contents of domain knowledge—can be constructed and can be used to
 improve the knowledge engineering process . The main message is that early in the
 knowledge engineering process an application-specific ontology should be con-
 structed . To facilitate this , the article presents some principles for organizing a
 library of reusable ontological theories which can be configured into an application
 ontology . This application ontology is then exploited to organize the knowledge
 acquisition process and to support computational design . The process is illustrated
 with a knowledge engineering scenario in the domain of treating acute radiation
 syndrome . ÷ 1997 Academic Press Limited

 1 . Introduction

 During the last decade , comprehensive knowledge-engineering methodologies have
 emerged which provide support for organizing the development process of
 knowledge-based systems . Examples are the Generic Task approach (Chandraseka-
 ran , 1987) , the Role-Limiting Methods approach (McDermott , 1988) , the Com-
 ponents of Expertise approach (Steels , 1990) , the KADS methodology (Wielinga ,
 Schreiber & Breuker , 1992) and the Prote ́ ge ́ framework (Musen , 1989 b) . These
 approaches share the characteristic that they promote the reuse of knowledge
 elements by providing libraries of of f-the-shelf knowledge components . Such
 libraries are necessary to turn knowledge engineering from an ‘‘art’’ into a proper
 engineering discipline . So far , the emphasis has mainly been on problem - sol y ing
 methods —abstract descriptions of the steps that must be taken to perform particular
 tasks .

 Another type of knowledge which has been suggested as a candidate for reuse are
 ontologies —intensional descriptions of the domain knowledge in some field . Many
 researchers feel that access to libraries of reusable ontological components would
 facilitate the knowledge engineering process and several research groups have taken
 up the challenge of developing candidate components . However , the field is still in
 its infancy and many problems are unsolved or even unaddressed . To mention a few :
 how can ontologies be built , compared , integrated , validated , visualized or used?

 In addition , the question needs to be addressed whether a methodology that is
 based on the use of generic problem-solving methods can also be based on the use of
 generic components for ontologies . In other words : can library components be
 specified in such a way that ontologies can be used with dif ferent problem-solving
 methods and vice versa?

 * Present address : Kenniscentrum Ci ß it , Arthut van Schendelstraat 570 , 3500 AN Utrecht , The
 Netherlands .

 183

 1071-5819 / 97 / 2130183 1 110$25 . 00 / 0 / hc960090 ÷ 1997 Academic Press Limited

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 184

 This question touches upon a long-standing debate in AI about whether domain
 knowledge can be represented independently of how it is used in reasoning .
 Clancey’s early work on NEOMYCIN suggested that both domain knowledge and
 problem-solving knowledge can be reused , provided that the problem-solving
 knowledge and domain knowledge are represented separately in the knowledge base
 (Clancey & Letsinger , 1984) . This belief that separation of control knowledge and
 domain knowledge would enhance the reusability of both was also one of the
 assumptions that led to the conception of the KADS four-layer model (Wielinga &
 Breuker , 1986) . However , Bylander and Chandrasekaran (1988) argued against this
 belief by presenting the interaction problem :

 Representing knowledge for the purpose of solving some problem is strongly af fected by
 the nature of the problem and the inference strategy to be applied to the problem
 (Bylander & Chandrasekaran , 1988) .

 The interaction problem states that the ontology of the knowledge in a KBS is
 strongly af fected by the task of the KBS and the methods it uses to perform that
 task . Bylander and Chandrasekaran identified two reasons for the interaction
 problem . Firstly , the application task determines to a large extent which kinds of
 knowledge should be encoded . In general , it is not feasible nor desirable to model
 everything the expert knows . Secondly , the knowledge must be encoded in such a
 way that the inference strategy used can reason ef ficiently .

 In this article we study the general question of how (explicit) ontologies can be
 obtained and used to make the knowledge-engineering process more manageable . In
 this context we address a number of relevant research issues . Firstly , we consider the
 way in which the knowledge-engineering process needs to be organized in order to
 make explicit ontologies useful . In order to use ontologies profitably in knowledge
 engineering , they must be embedded in a methodology . In Section 2 an overview is
 presented of the way in which current knowledge engineering approaches organize
 the KBS development process . The role of ontologies in this process is analysed . A
 second issue concerns the way ontologies are obtained . Basically , there are three
 ways : ontologies can be constructed from scratch , they can be selected from a library
 of of f-the-shelf ontologies , or they can be configured from of f-the-shelf components .
 This issue is addressed in Sections 3 and 7 . Thirdly , we study the various ways in
 which an ontology can be exploited to support the knowledge engineering process
 and to improve the quality of the resulting knowledge based system . (Sections 4 – 6) .
 Finally , the relationship between ontologies and problem-solving methods needs to
 be studied . It is important to get a handle on the interaction problem to maximize
 reuse of both ontologies on problem-solving methods .

 2 . The knowledge engineering process
 To determine how explicit ontologies can be used in knowledge engineering , we
 must have an understanding of how the knowledge engineering process is organized .
 During the last decade , a number of approaches to knowledge engineering were
 proposed that are similar in spirit , although they dif fer in their details and
 terminology . This section presents an overview of the characteristics that are shared
 by these approaches . In the sections that follow we will argue how explicit
 ontologies can be useful within this general paradigm .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 185

 A first characteristic shared by current approaches is that they view knowledge
 engineering as a modelling process , as opposed to the older ‘‘mining’’ view .
 Knowledge engineering is a creative activity which can be supported by providing
 modelling principles . A second characteristic is that the resulting knowledge models
 should be formulated at the knowledge le y el (Newell , 1982) . Knowledge level
 models emphasize the rational behind problem solving in terms of goals , actions and
 knowledge ; they abstract away from how these are implemented in specific
 representation formalisms . The actual implementation of the problem solving
 competence in a knowledge based system is delineated in a second model , the design
 model . In the design model additional decisions are taken which enable a computer
 system to realize the problem solving competence in an ef ficient way . The design
 process can be supported by means of design principles .

 2 . 1 . KNOWLEDGE MODELLING PRINCIPLES

 In an overview of the field , Musen and Schreiber (1995) identify three modelling
 principles that lie at the heart of all recent knowledge engineering approaches .
 These are the role - limiting principle , the knowledge typing principle and the
 reusability principle . Each will be described briefly . In addition , we consider the use
 of skeletal models as a fourth general knowledge engineering principle .

 2 . 1 . 1 . Role - limiting
 Role limiting is a mechanism for organizing knowledge by putting constraints on the
 ways knowledge elements of particular types can be used in reasoning . Wielinga ,
 Van de Velde , Schreiber and Akkermans (1993) formulate the role-limiting
 principle as follows .

 An intelligent agent which is faced with a particular task can be modeled as imposing on
 its knowledge a structure , the parts of which play dif ferent , specialized and restricted
 roles in the totality of the problem-solving process .

 2 . 1 . 2 . Knowledge typing
 The role-limiting principles states that dif ferent knowledge elements play dif ferent
 roles in reasoning . Therefore , knowledge elements must be typed according to their
 role in problem solving . In the literature , at least five dif ferent types of knowledge
 are distinguished .

 $ Tasks correspond to the goals that must be achieved during problem solving .
 $ Problem - sol y ing methods are ways to achieve the goals described in tasks . In

 some knowledge modelling frameworks , problem-solving methods define sub-
 tasks to which other problem-solving methods can be applied . We will call such
 a decomposition a task instance .

 $ Inferences describe the primitive reasoning steps in the problem-solving process .
 Inferences are also called mechanisms . Together , the inferences form a
 functional model which is sometimes called the inference model or inference
 structure .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 186

 Task-goals
 u

 realized by
 h

 Problem solving methods
 u

 generate
 h

 Task instances
 u

 in y oke
 h

 Inferences
 u

 refer to
 h

 Ontologies
 u

 describe
 h

 Domain knowledge

 F IGURE 1 . The dif ferent components of knowledge models .

 $ Ontologies describe the structure and vocabularly of the static domain
 knowledge .

 $ Domain knowledge refers to a collection of statements about the domain .

 Figure 1 shows how the dif ferent knowledge model components are related .

 2 . 1 . 3 . Reusability
 Current approaches to knowledge engineering emphasize the reuse of knowledge
 components across domains and tasks . The availability of libraries of validated and
 well-documented knowledge components not only speeds up the KBS development
 process but it also facilitates maintenance and upgrading . However , there are
 dif ferences between the approaches with respect to the nature and the grain size of
 the components that they consider potentially reusable .

 2 . 1 . 4 . Use of skeletal models
 Knowledge model components are often reused in the form of skeletal models . Such
 models specify one part of a knowledge model (e . g . the problem solving method) .
 The knowledge engineer then has to fill in the other parts to complete the
 knowledge model . As a result of knowledge typing , the already specified parts in the
 skeletal model constrain how the other parts can be modelled . This way , skeletal
 models structure the knowledge modelling process . In the literature one can find
 skeletal models based on problem solving methods (e . g . Marcus , 1988) , inference
 models (e . g . Breuker et al . , 1987) and ontologies (e . g . Musen , Fagan , Combs &
 Shortlif fe 1988) .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 187

Knowledge model
skeleton

Knowledge
model

Design
model

Knowledge
modelling

Modelling principles

Design

Design priciples

 F IGURE 2 . A schematic overview of how modern knowledge engineering approaches view the knowledge
 engineering process .

 Figure 2 shows how the models , the activities and the principles are related .
 Typically , knowledge modelling starts with the selection of a modelling skeleton .
 This can either be a general modelling framework or a partially instantiated
 knowledge model . Then the skeleton is completed . This process is guided by the
 modelling principles . In the design phase , which is briefly described in Section 2 . 3 , a
 KBS is designed which operationalizes the problem solving competence specified in
 the knowledge model .

 2 . 2 . THE MODELLING PROCESS

 In some approaches (e . g . CommonKADS) knowledge engineering starts with
 modelling the context in which a KBS will function . Such an organization model is
 useful for requirements analysis and feasibility studies and its construction typically
 precedes knowledge modelling . For the present purpose , we assume that this has all
 been done and we concentrate on knowledge modelling .

 In the above sections we have briefly described the components of knowledge
 models . We will now shift our focus to the process of devising the knowledge model .
 In most of the current approaches , constructing a knowledge model involves four
 activities as follows .

 (1) Construct a task model for the application .
 (2) Select and configure appropriate ontologies , and if necessary refine these .
 (3) Map the application ontology onto the knowledge roles in the task model .
 (4) Instantiate the application ontology with domain knowledge .

 2 . 2 . 1 . Constructing a task model for the application
 The first activity in KBS construction is task analysis . The purpose of the task
 analysis is to decompose the real-life task into a number of generic tasks and to
 associate these with appropriate problem solving methods . Together , the methods
 and tasks form a task model .

 2 . 2 . 2 . Selecting and configuring an application ontology
 When the task of the target system is recognized as a generic-task instance or a
 sequence of generic-task instances , the next activity involves the construction of an
 application-specific ontology . In general , ontology construction is a dif ficult process
 that requires the expertise of a knowledge engineer or an informed domain expert .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 188

 A library of reusable ontological theories can ease this process . The knowledge
 engineer can select the reusable theories and , if necessary , tune them to meet the
 demands of the application .

 2 . 2 . 3 . Mapping the task model onto the application ontology
 The application ontology defines the relevant concepts in the domain . When
 performing a generic task , instances of particular concept typically fulfill particular
 roles in problem solving . For example , in medical diagnosis , instances of the concept
 disease will often play the role of hypotheses . By defining mappings between the
 roles in the task model and the concepts in the ontology it is made explicit which
 concept instantiations may play which roles . The mapping is specific for tasks and
 domains as is illustrated by the fact that in therapy planning diseases will often play
 the role of data .

 2 . 2 . 4 . Instantiating the application ontology
 While the application ontology defines which concepts are used in the domain , the
 application knowledge describes the actual instances of these concepts . Besides the
 reusability aspect , one of the main arguments for distinguishing between the
 ontology and the application knowledge is that the application knowledge must by
 definition be presented by the medical expert .

 2 . 3 . DESIGN

 The knowledge model is an implementation-independent description of the know-
 ledge and methods needed to perform a task . The design model describes how the
 knowledge model can be operationalized in a knowledge based system . The design
 model specifies both the general architecture of the KBS and the representations
 and algorithms that are used by the KBS to perform its task . When developing the
 design model , the knowledge engineer must take additional decisions to ensure that
 the KBS is able to perform its task ef ficiently .

 The design process is guided by design principles . To a large extent , these
 principles are similar to principles for system design in software engineering , such as
 the use of libraries of reusable software modules . In knowledge engineering , one
 typically finds this kind of reuse in the form of expert-system shells , which contain
 reusable reasoning engines . Besides the software-engineering principles there are
 also principles which are typical for KBS design . An example of such a principle is
 that of structure preser y ing design , which implies that the information content and
 structure of the knowledge model is preserved in the final artifact . This principle is
 derived from the requirement that knowledge based systems must be able to explain
 their lines of reasoning in expert-understandable terminology . Since the vocabularly
 of the experts is laid down in the knowledge model , the KBS can only provide this
 kind of explanations if the information in the knowledge model is also available in
 the design model . Besides explanation , structure preserving design also facilitates
 maintenance and code-reuse (Schreiber , 1993) .

 While current knowledge engineering approaches share many characteristics with
 respect to knowledge modelling , there is less consensus with respect to the KBS
 design process . In some knowledge engineering approaches , the design model is

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 189

 derived automatically from the knowledge model . For example , in the PROTE ́ GE ́ -II

 framework , the knowledge models are automatically translated in CLIPS production
 rules . In other approaches , KBS design is considered to be a task for the knowledge
 engineer (e . g . CommonKADS) . Here , the design process is viewed as a knowledge-
 intensive activity where additional information is added to the knowledge model in
 order to achieve computational adequacy . The pros and cons of these alternatives
 are discussed in Sections 4 and 6 .

 2 . 4 . CONTEXT : THE GAMES-II PROJECT

 Most of the work reported in this article was performed in the context of
 GAMES-II , a research project funded by the European Union . The purpose of this
 project was to develop methods and tools for medical KBS development . The
 approach taken in GAMES-II fits well in the general paradigm described above .
 Because some of the issues discussed in later sections are phrased in GAMES-II-
 specific terminology , we will now describe some aspect of the GAMES-II work in
 more detail .

 Within the GAMES-II project we have only investigated three types of medical
 tasks : diagnosis , therapy planning and patient monitoring . Further , it was assumed
 that these tasks could be modelled by means of a single inference model : the
 STModel (Ramoni , Stefanelli , Barosi & Magnani , 1992) . This model , which is shown
 in Figure 3 , views problem solving as a cyclic process of data abstraction , abductive
 hypotheses generation and subsequent testing of these hypotheses by means of

Ranking

Hypotheses

Induction

Abduction

Astraction

Deduction

Request
new data

Problem
features

Expected/
observes data

 F IGURE 3 . Generic inference model (STModel) used in GAMES-II . The arcs in the figure represent
 inferences , the elipses represent knowledge roles .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 190

Task model
components

Generic
knowledge model

components

STModels
 diagnosis
 therapy planning
 monitoring

Ontological theories
 anatomy
 physiology
 diseases
 –––

Ontology library

Construct task model
forapplication

Select ontologies
and configure

Map knowledge
roles onto appli-
cation ontology

Instantiate
application ontology

Knowledge engineer
or informed expert

Knowledge model
of the application

Task model

inferences:
 abduction
 induction

knowledge roles:
 hypothesis
 datum
 problem feature
 –––

Domain expert

Application ontology

concepts and relations:
 disease
 finding
 observable
 –––

Domain knowledge
tuples representing
domain knowledge

grade I grade II grade III grade IV

GVHD

acute GVHD chronic GVHD

 F IGURE 4 . Activities in the construction of the knowledge model .

 deduction and induction . The arcs in the figure represent inferences ; the ellipses are
 knowledge roles . The order in which the inferences in the task model are executed
 depends on the problem-solving method used .

 To model ontologies , a library of medical ontological theories was developed in
 GAMES-II . This library is described in Section 3 . The library contains definitions of
 often-found medical concepts such as ‘‘physiological process’’ , ‘‘therapy’’ ,
 ‘‘symptom’’ , etc . Together , the generic tasks and the ontological theories form the
 reusable knowledge modelling components provided by the project . Figure 4 shows
 how the GAMES-II-supplied generic knowledge model components support the
 activities in Section 2 . 2 .

 3 . Principles for ontology library construction

 This section presents principles for organizing a library of reusable ontological
 theories in the medical field . The focus is on the internal structure of such a library ,
 how it can be built and how it can be used . The proposed principles are illustrated
 with a library of medical ontologies developed by Sabina Falasconi and described in
 (Falasconi & Stefanelli , 1994) .

 In our view , there are two impediments that hinder the development of libraries
 of reusable ontologies : the hugeness problem and the interaction problem . The

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 191

 hugeness problem concerns the overwhelming amount of knowledge in the world .
 This makes the construction of a library of reusable domain ontologies a daunting
 exercise . The interaction problem , which was quoted in Section 1 , states that domain
 knowledge cannot be represented independently of assumptions of how it will be
 used in reasoning .

 We will put forward a number of hypotheses about the nature of medical domain
 knowledge from which principles are derived for organizing a library in such a way
 that the hugeness problem and the interaction problem remain manageable . In
 short , these principles are that (i) there is a relatively small set of basic concepts that
 are reusable across many medical domains and tasks , (ii) medical sub-domains have
 domain-specific concepts that are often specializations of the basic medical concepts ,
 and (iii) many problem-solving methods require additional concepts that are specific
 for that method .

 The section is organized as follows . In Section 3 . 1 , we present a definition of
 ontology and a classification of dif ferent types of ontologies . Section 3 . 2 describes
 the organizational principles that the library is based on , thereby showing how the
 hugeness problem and the interaction problem can be addressed . Section 3 . 3 shows
 how these principles are used to build an initial library and Section 3 . 4 explains how
 the library can be used during KBS development .

 3 . 1 . ONTOLOGY

 In philosophy , the term ‘‘ontology’’ refers to ‘‘a particular theory about the nature
 of being or the kinds of existence’’ . This broad definition can be interpreted in a
 number of ways , depending on the metaphysical stance that one takes with respect
 to what ‘‘existence’’ is . A number of researchers in knowledge engineering have
 therefore suggested more specific , AI-oriented definitions of ontology . In general ,
 AI definitions avoid referring to reality , but rather use terms as representation and
 conceptualization . An often-cited definition is that of Gruber (1994) :

 An ontology is an explicit specification of a conceptualization . The term is borrowed
 from philosophy , where an ontology is a systematic account of Existence . For AI systems ,
 what ‘‘exists’’ is that which can be represented .

 Although not explicitly stated , this definition suggests that an ontology is a
 meta-level description of a knowledge representation . Thus , the ontology is not part
 of the representation itself . As we shall see in detail in Section 6 , this is an aspect of
 ontologies that will turn out to be important for their application in knowledge
 engineering . Another aspect of ontology that is important for the work reported
 here can be found in a definition formulated by Wielinga and Schreiber (1993) :

 An (AI-) ontology is a theory of what entities can exist in the mind of a knowledgeable
 agent .

 This definition emphasizes that we want to apply the notion of ontology to all

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 192

 knowledgeable agents , including humans . Since dif ferent knowledgeable agents will
 often have dif ferent symbol-level representations , it is convenient to formulate
 ontologies at the knowledge level . This aspect is important for knowledge
 engineering ; in Section 5 it will be argued that ontologies can be used as mediators
 between knowledge as it is understood by a domain expert and knowledge as it is
 represented in a computer system . A third knowledge-engineering oriented defini-
 tion of ontologies is given by Alberts (1993) :

 An ontology for a body of knowledge concerning a particular task or domain , describes a
 taxonomy of concepts for that task or domain that define the semantic interpretation of
 the knowledge .

 In AI , the term ontology is often used as a synonym for the terminology in some
 domain . This definition emphasizes that it is not the terminology itself that
 constitutes the ontology but the semantic interpretation of the terms . Another
 important aspect of this definition is that ontologies can be specific for tasks or for
 domains . That is , both the domain and the task at hand may af fect the ontology .

 The three definitions above are not contradictory , and capture a large proportion
 of the aspects of ontology that are relevant for the work described here . Combining
 the above definitions results in the following definition .

 An ontology is an explicit knowledge-level specification of a conceptualization , i . e . the
 set of distinctions that are meaningful to an agent . The conceptualization—and therefore
 the ontology—may be af fected by the particular domain and the particular task it is
 intended for .

 Ontologies can be classified according to two dimensions : the amount and type of
 structure of the conceptualization and the subject of the conceptualization . With
 respect to the first dimension we distinguish three categories .

 $ Terminological ontologies such as lexicons , specify the terms that are used to
 represent knowledge in the domain of discourse . An example of such an ontology
 in the medical field is the semantic network in UMLS (Unified Medical Language
 System ; Lindberg , Humphreys & McCray , 1993) .

 $ Information ontologies which specify the record structure of databases . Database
 schemata are an example of this class of ontologies . Level 1 of the PEN & PAD
 model (Rector , Nowlan , Kay , Goble & Howkins , 1993) , a framework for
 modelling medical records of patients , is a typical example of such an ontology in
 the medical field . At this level , the model provides a framework for recording the
 basic observations of patients , but it makes no distinction between symptoms ,
 signs , treatments , etc .

 $ Knowledge modelling ontologies specify conceptualizations of the knowledge .
 Compared to information ontologies knowledge modelling ontologies usually have
 a richer internal structure . Further , these ontologies are often tuned to a
 particular use of the knowledge that they describe . Within the context of KBS
 development , knowledge modelling ontologies are the ontologies that we are
 mostly interested in . The level 2 description of the PEN & PAD model is an

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 193

 example of a knowledge modelling ontology in the medical field . At this level , the
 level 1 observations are grouped to describe the decision-making process .

 The other dimension on which ontologies can be dif ferentiated is the subject of
 the conceptualization . Four categories can be distinguished on this dimension : (i)
 application ontologies , (ii) domain ontologies , (iii) generic ontologies and (iv)
 representation ontologies .

 $ Application ontologies contain all the definitions that are needed to model the
 knowledge required for a particular application . Typically , application ontologies
 are a mix of concepts that are taken from domain ontologies and from generic
 ontologies (which are described below) . Moreover , application ontologies may
 contain method- and task-specific extensions . Application ontologies are not
 reusable themselves . They may be obtained by selecting theories from the
 ontology library , which are then fine-tuned for the particular application . We use
 the term application ontology in a similar way as in PROTE ́ GE ́ -II (Tu , Eriksson ,
 Gennari , Sharar & Musen 1995) .

 $ Domain ontologies express conceptualizations that are specific for particular
 domains . As mentioned in Section 2 , current knowledge engineering methodol-
 ogies make an explicit distinction between domain ontologies and domain
 knowledge . Whereas the domain knowledge describes factual situations in a
 certain domain , the domain ontology puts constraints on the structure and
 contents of domain knowledge .

 $ Generic ontologies are similar to domain ontologies , but the concepts that they
 define are considered to be generic across many fields . Typically , generic
 ontologies define concepts like state , event , process , action , component , etc . The
 concepts in domain ontologies are often defined as specializations of concepts in
 generic ontologies . Of course , the borderline between generic ontologies and
 domain ontologies is vague , but the distinction is intuitively meaningful and is
 useful for building libraries .

 $ Representation ontologies explicate the conceptualizations that underly knowledge
 representation formalisms (Davis , Shrobe & Szolovits , 1993) . They are intended
 to be neutral with respect to world entities (Guarino & Boldrin , 1993) . That is ,
 they provide a representational framework without making claims about the
 world . Domain ontologies and generic ontologies are described using the
 primitives provided by representation ontologies . An example in this category is
 the Frame Ontology , which is used in Ontolingua (Gruber , 1993) .

 3 . 2 . ORGANIZATION OF THE LIBRARY

 This section presents structuring principles for organizing an ontology library and
 illustrates these principles using a medical ontology library that was developed as a
 case study in the context of the GAMES-II project . In terms of the categories
 distinguished in the previous section , the library consists of domain ontologies and
 generic ontologies of the knowledge modelling type . The domain ontologies in this
 library are described in (Falasconi , 1993) . Many of the generic ontologies were taken
 from the Ontolingua library developed at Stanford University .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 194

 The classification of ontologies presented in Section 3 . 1 is too coarse-grained to be
 used as an indexing scheme for the library . Therefore , a number of principles were
 formulated that allow a more fine-grained categorization . In short , these principles
 are that (i) there are some general categories of medical knowledge that are
 fundamental to all kinds of medical reasoning , (ii) in many application domains
 there are additional ontological distinctions that are specific for that domain , and
 (iii) the use of specific reasoning methods may require additional method-specific
 ontological distinctions . Based on these principles , the library is partitioned into two
 regions : a core library and a peripheral library . The core part contains definitions of
 the generic concepts and of general medical categories . The peripheral part contains
 definitions of the domain- and method-specific extensions . The division is important
 because the two parts are indexed in dif ferent ways . Section 3 . 2 . 2 describes the core
 library and in Section 3 . 2 . 3 the peripheral parts are explained . Before turning to a
 more elaborate description of these parts , first some general issues in library
 construction are addressed .

 3 . 2 . 1 . Issues in library construction

 Language . Ontologies need to be specified in a language . A number of languages
 have been proposed as candidates (e . g . MODEL—Tu et al . , 1995 ; CML—Schreiber ,
 Wielinga , Akkermans , Van de Velde & Anjewierden , 1994) , but it is not entirely
 clear to date which requirements a language for ontological modelling should satisfy .
 The library presented here is developed with Ontolingua (Gruber , 1993) . An
 Ontolingua ontology consists of a number of definitions , collections of labelled
 sentences that constrain the use of a term . Four kinds of definitions are distingu-
 ished : classes , relations , functions and instances . Definitions can be grouped into
 theories , collections of definitions that are somehow related . Theories can include
 other theories , which means that all the definitions in the included theory are also
 available in the including theory . Thus , the theory is the main modularity construct
 available , and is therefore the principal building block of the library that is described
 below .

 Modularity . A key to successful library organization is modularity . A modular
 organization is one that organizes units in modules so that the cohesion within
 modules is maximal , while the interaction between modules is minimal . In the
 ontology library presented in this section , the units are definitions and the modules
 are theories . There are numerous possible cohesion criteria . Which of these are
 useful in this context depends on the intended use of the library .

 The main intended use of the library is to support the construction of application
 ontologies . Therefore , definitions that are likely to be used in the same application
 ontologies should be put together into one theory . There are two features that
 determine which definitions are needed for an application ontology : (i) the (medical)
 sub - domain that the application should reason about and (ii) the method that the
 application uses to perform a (sub-)task . For example , applications in the domain of
 cardiac diseases use (at least partially) other knowledge than that used by
 applications in the domain of bacterial diseases ; similarly , applications that diagnose
 cancer are likely to use dif ferent knowledge from applications that plan cancer
 therapy .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 195

 Alternati y e definitions . It is important to stress that the library is not intended as the
 ontology of medical knowledge ; the definitions are not claimed to capture the
 essence of knowledge categories in some Platonic sense . Instead , the definitions
 should be viewed as conceptualizations that have been proven useful for solving
 medical problems , either by human experts or by computers . A consequence of this
 pragmatic point of view is that it is sometimes necessary to allow for alternative , or
 even inconsistent , definitions of a concept in the library . For example , an often used
 concept in medical reasoning is ‘‘causality’’ . Since this concept is reusable across
 many applications , it is an obvious candidate for inclusion in the library . However ,
 the history of philosophy shows that is is extremely dif ficult to come up with a
 satisfying definition of causality . When we look at medical reasoning , it seems that a
 number of alternative conceptualizations are being used . For example , in some cases
 both the cause and the ef fect roles of the causes relation are constrained to be
 physiological states , while in other cases they need to be events . The temporal
 aspects of the concept may also vary ; in some cases the relation between cause and
 ef fect is immediate , while in others there may be a delay . Because these alternative
 conceptualizations are useful in medical reasoning , we have chosen to allow multiple
 definitions of the same concept , leaving the decision of which conceptualization is
 appropriate in a particular context to the library user .

 The need for a higher - order language . The requirements of a modular organization
 and multiple concept definitions make it necessary to allow higher-order expressions
 in the ontology specification . The principle of modularity requires that the more
 generic aspects of a concept are defined in a core library theory , while the more
 domain- or method-specific aspects of those concepts are defined in a more
 peripheral theory . Take the previous example , assume that in a core theory causes
 is defined as a binary relation that takes states as arguments :

 causes (k state1 l , k state2 l)

 For some method in some domain , the definition of the causal relation needs to be
 augmented with a notion of time delay . The typical first-order solution to do this
 would be to add a third parameter to causes :

 causes(k state1 l , k state2 l , k delay l)

 It is clear that the introduction of an extra parameter violates the earlier
 mentioned minimal interaction principle , and thus the principle of modularity . The
 addition of the time delay parameter leads to the destruction of the internal
 structure of the generic definition of causes , with the result that all the definitions
 that rely on the definition of causes also need to be updated . To avoid this , the
 domain- and task-specific specializations must be specified by means of higher-order
 expressions , such as the following , where causes-tuple refers to a tuple in the
 extension of the causes relation :

 time-delay(k causes-tuple l , k delay l)

 Unfortunately , allowing higher-orders introduces some well known dif ficulties .
 Firstly , higher-order languages are not decidable , thus it is impossible to have a

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 196

 F IGURE 5 . Theory inclusion graph of the theories defining the basic categories of medical knowledge .
 Each node in the graph represents a theory , with its own set of definitions .

 system that can prove the internal consistency of the ontological theories . Secondly ,
 the use of a higher-order language introduces the risk of self-referential sentences
 and the paradoxes that they give rise to . Since the language will be used for library
 construction , and not for reasoning , we allow the modularity argument to prevail .

 3 . 2 . 2 . Basic categories of medical domain knowledge
 This section describes the core part of the library , which contains definitions that are
 considered reusable across many medical domains and medical tasks . Figure 5 shows
 a part of the theory structure of this section of the library , in the form of a
 theory-inclusion graph . The nodes in the graph represent ontological theories , and
 the edges denote inclusion relations . Each arrow points from an including theory to
 an included theory . If a theory includes another theory , this means that all the
 definitions in the included theory are also available in the including theory .

 Criteria for partitioning definitions . The decisions about the partitioning of defini-
 tions into theories are based on two considerations which we describe further below :
 (i) the definitions are to be centred around some ‘‘natural categories’’ , and (ii) the
 number of theory inclusions must be kept to a minimum .

 Centre definitions around natural categories . The main criterion for partitioning the
 definitions into theories is based on the observation that there are some , but not too
 many , basic categories of medical knowledge . These categories are natural in the
 sense of Rosch (1973) , in that they reflect a social consensus that exists in the

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 197

 medical community . Examples of natural categories in the medical domain are
 concepts such as patient , disease , therapy , etc . These concepts provide a
 coherent body of terminology that allows medical professionals from dif ferent
 specialities to communicate . These categories recur in almost all medical literature ,
 and they often provide starting points for information analyses for software
 development .

 The natural categories are used as anchor points for modularizing the core library .
 For instance , the theory diseases is centred around the concept of disease , which
 is represented as an Ontolingua class . On the instances of this class several relations
 are defined . These definitions , such as disease-etiology and disease-location ,
 are also located in the diseases theory , since they have no meaning independent of
 the meaning of disease . The current organization of the domain theories , as shown
 in Figure 5 , is based on the knowledge categories that are distinguished in a number
 of existing expert systems (e . g . M - KAT ; Lanzola & Stefanelli , 1992 ; and ABEL ; Patil ,
 1981) .

 Minimization of the number of inclusions . An agent that commits to a particular
 theory necessarily also commits to the theories included by that theory . Therefore ,
 organizing the theories in such a way that a theory includes few other theories ,
 reduces the overhead of committing to that theory and allows a more flexible use of
 the library . Therefore , the second criterion used to partition the definitions into
 theories is that the number of inclusion links must be kept to a minimum . A theory
 must include , directly or indirectly , the minimal set of theories that it presumes . For
 example , the concept disease , which is defined in diseases , is a sub-class of
 clinical-process , which is defined in fundamental-medical-concepts . There-
 fore , it is necessary that diseases includes fundamental-medical-concepts .

 As depicted in Figure 5 , two indirect inclusion paths connect clinical-
 environment , defining concepts related to the context in which medical activities
 take place , to diseases . The classes therapy and test are defined in separate
 theories , enabling external agents to commit to one of the theories without
 committing to the other . However , because both theories include diseases , all
 agents committing to one of the two theories must commit to the same definition of
 diseases . For this reason it is important to avoid ontological overcommitment . In the
 core part of the library only general characteristics of the concepts should be
 defined , more specific characteristics should be defined as domain- or method-
 specific extensions in the peripheral areas of the library .

 Contents of the core library . Table 1 contains brief descriptions of some of the
 theories in the core library which is shown in Figure 5 . As an example , Figure 6
 shows the Ontolingua definition of the class observable which is defined in the
 theory findings . The sentence labelled as : axiom-def expresses that observable
 is a sub-class of human-body-state-variable , which is defined in the theory
 fundamental-medical-concepts . The : axiom-constraints sentence defines four
 possible sub-classes of observable . The dif ference between the : axiom-def and
 : axiom-constraints sentences is that the former are considered to be definitional
 while the latter are assertional (for an explanation of the dif ference , see Gruber ,
 1992) . The terms subclass-of and subclass-partition are defined in the Frame
 ontology .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 198

 T ABLE 1
 Characterization of some theories in the core library as shown in Figure 5 and

 described in (Falasconi & Stefanelli , 1994)

 Theory Characterization of contents

 generic-concepts Defines basic notions such as system , process ,
 action from an ‘‘engineering’’ point of view . For
 example , a system is conceptualized as a collection of
 interconnected components characterized by states
 and processes .

 fundamental-medical-concepts Contains definitions of basic notions useful for medical
 knowledge representation , such as human-body and
 medical-agent . The definitions in this theory
 specialize notions defined in generic concepts . For
 example , human-body is a sub-class of the class
 system , i . e . it is conceptualized as a class of complex
 entities describable through states and concerned with
 physiological or pathological (e . g . clinical) processes .

 anatomy
 physiology

 Define ontological categories such as anatomical-
 part , physiological-process and organ that are
 generally used in medical contexts . The definitions are
 mostly based on the work of Patil (1981) .

 findings
 drugs
 surgeries

 Define and classify respectively observable findings ,
 conceptualized as values on state variables that
 indicate the clinical state of a patient , drugs and
 surgical interventions . They are useful for mapping
 knowledge modelling ontologies onto ‘‘information
 ontologies’’ underlying the patient medical-record
 structure .

 clinical-state-abstractions Defines concepts for representing clinical states in
 compact ways , for instance , to synthesize a set of
 patient findings . This theory defines , for example ,

 (i) qualitative-clinical-state-abstraction
 expressed using symbolic values such as ‘‘low’’ or
 ‘‘high’’ , and

 (ii) quantitative-clinical-state-abstraction
 expressed using numerical values (e . g . a measure such
 as the body surface computed from body weight and
 height) .

 diseases Defines a disease as a clinical process whose evolution
 can be described through finding or clinical
 abstraction-values over time , and tries to define
 taxonomies , used commonly in medical practice ,
 based on diseases characteristics such as time
 evolution characteristics (e . g . ‘‘acute’’ , ‘‘chronic’’) ,
 etiology and location .

 The principle behind the core definitions is that these should be minimal . For
 example , stating that an observable is associated with a quantitative value set (the
 possible values of the observable are numbers) would be an ontological overcom-
 mitment , as this is not likely to hold for every application . Therefore , such a
 qualification should be defined as an extension .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 199

 (define-class OBSERVABLE (?observable)
 ‘‘An observable is a state-variable whose values can — contextually — indicate

 pathological or physiological states which can be observed . They can be
 classified according to the way they are obtained . ’’
 : AXIOM-DEF (subclass-of observable human-body-state-variable)
 : AXIOM-CONSTRAINTS (subclass-partition observable

 (set-of sign
 laboratory-observable
 special-investigation)))

 F IGURE 6 . The Ontolingua definition of the notion of ‘‘observable’’ . Ontolingua definitions consist of the
 name of the defined concept , a number of instance variables , and sets of labelled sentences . The sentence
 labelled as : axiom-def defines that observable is a sub-class of human-body-state-variable , which
 is defined in fundamental-medical-concepts . The : axiom-constraints sentence defines four possible

 sub-classes of observable . For details of the Ontolingua language , see Gruber (1993) .

 3 . 2 . 3 . Method - and domain - specific extensions
 The categories described in the previous section are considered basic , in the sense
 that they are more or less standard across medical tasks and medical domains and
 form a generally agreed upon body of terminology in the medical field . We have
 already mentioned that this set of theories , while relatively small , still allows for
 alternative definitions . In the core part of the library , the definitions are very
 general , in the sense that they allow for further specialization according to
 application specific requirements . We will now describe the more application
 dependent parts of the library . Applications may vary on two attributes : (i) the
 domains that they reason about , and (ii) the tasks that they perform and the
 methods that they use .

 Reuse of domain - specific concepts across domains . At first glance , the reuse of
 domain-specific concepts across domains seems a contradiction in terms . However ,
 domain-specificity is not a dichotomy : some concepts are obviously more domain
 specific than are others . For example , the concept of ‘‘fungal skin infection’’ is more
 specific than that of ‘‘dermatological disease’’ , while both are more specific than
 ‘‘disease’’ .

 This observation can be used to organize the library in such a way that more
 reusable concepts are put in other theories than less reusable concepts . To do this ,
 the notion of domain specificity must be operationalized . One candidate for this
 operationalization is the notion of abstraction level : definitions that specify less
 detail are often less domain specific than definitions that specify more detail .
 However , there are some problems with this operationalization . Firstly , the relation
 between more abstract and less abstract definitions is a many to many relation . A
 concept which is specified in detail can have multiple abstractions , depending on the
 point of view that one takes . This makes it dif ficult to specify the inclusion relations
 between theories which contain detailed definitions and theories which contain
 abstract definitions . In principle , a theory containing detailed definitions should
 include all the theories that contain abstract definitions of the same concept .
 However , this would violate the criterion that the number of inclusion relations
 should be kept to a minimum . A second problem with an organization according to
 the level of abstraction is that this dimension does not discriminate between
 concepts on the same level of abstraction . For example , concepts such as ischemia

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 200

 and glaucoma , which are on the same level of abstraction , are likely to be reusable
 under dif ferent circumstances . An organization along the dimension of abstraction
 level would not make this explicit .

 Issues such as the ones mentioned above make it clear that there are many
 unsolved problems with respect to the organization of a library in such a way that
 concepts that are likely to be reused under the same circumstances are stored in the
 same theory . Therefore we have adopted a pragmatic approach . Taking the division
 of medical practice as a starting point , every concept in the peripheral part of the
 library is associated with a domain - specificity value . The domain-specificity attribute
 indicates to what sub-domain , or set of sub-domains , a concept applies . To decide on
 the domain-specificity of concepts , a hierarchy of medical specialities is used . Each
 of the nodes in this hierarchy represents a medical sub-domain that may be used as a
 value for the domain-specificity attribute of a concept . When a concept has a
 particular domain as its domain-specificity value , it is specific for that domain , but it
 is reusable across all its sub-domains .

 The domain hierarchy reflects the existing organizational structure of medical
 practice . Example elements of the hierarchy are disciplines such as immunology ,
 pathology , internal medicine and its specializations , etc . Of course , the organization
 of medical practice varies between countries . Therefore , the structure of the
 peripheral parts the library is to a certain extent situated . This is another motivation
 for distinguishing between a ‘‘universal’’ core library and situated extensions of that
 core . Figure 7 shows a part of the domain hierarchy .

 Reuse of method - specific concepts across methods and tasks . According to the
 interaction problem , the way in which knowledge is represented is necessarily highly
 interwoven with the way that knowledge will be used in reasoning . Therefore , it is
 dif ficult to reuse knowledge that is defined with a particular method in mind for
 another method . Taken literally , the interaction problem precludes the reuse of
 concepts across methods . In this section it will be argued that the interaction
 problem does not hold to the same extent for every concept , and it will be shown
 that the degree of method - specificity of concepts can be used as an index to organize
 the ontology library .

 As mentioned in Section 2 , we have concentrated on three medical tasks :

Medicine

Internal
medicine

Medical
pharmacology

...

Cardiovascular
medine

Heart
diseases

Opthalmology Psycho
pharmacology

Anesthesiology

...

 F IGURE 7 . A part of the domain hierarchy for the medical field . The hierarchy reflects the organization of
 the medical practice .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 201

 diagnosis , therapy planning and patient monitoring . Furthermore , it is assumed that
 these generic tasks can be modelled as instantiations of one inference model : the
 STModel (Figure 3) .

 Each of the inference steps in the STModel can be realized through a number of
 methods , and each of these methods may have specific ontological requirements . For
 example , the abduction of hypotheses from patient findings can be done by
 interpreting direct associations between findings and diseases . This method thus has
 the ontological requirement that such associations exist . The following production
 rule is an illustration of this kind of abduction :

 IF chest-pain 5 present AND
 sustained-pain 5 yes

 THEN myocardial-infarct 5 probable

 In some systems that perform abduction by direct associations , the associations
 are qualified with certainty factors , representing the likelihood that the disease is the
 cause of the findings . This is , for example , the case in MYCIN (Shortlif fe , 1979) . Using
 this method thus introduces another ontological requirement .

 Alternatively , the diseases that may cause a particular finding could be found by
 tracing pathways in causal networks—a method which requires the existence of
 causal connections in the domain . For specific methods , the causal links in such
 networks may need further qualification . For instance , CHECK (Console & Torasso ,
 1993) , a system for abductive diagnosis , makes a distinction between necessary
 causal connections and possible causal connections . Another example of this is
 provided by causal-probabilistic networks , where the causal relations are quantified
 through probability distributions .

 Based on the ontological commitments that they require , the methods employed
 in medical reasoning can be organized in a specialization hierarchy . Descending this
 hierarchy introduces additional ontological commitments . Figure 8 shows a part of
 the method hierarchy for abducting diseases from findings in medical diagnosis . The
 concepts of disease and finding , which are used by all methods for medical
 abduction , are defined in the core library . The manifestation-of relation , which
 models direct associations between findings and diseases , is specific for methods that
 are specializations of ‘‘abduction by direct associations between findings and
 diseases’’ (Method 2 . 1 in Figure 8) . Further specializations of these methods may
 require additional ontological commitments , such as the existence of certainty
 factors or evoking strengths for these direct associations .

 The level of the method hierarchy were an ontological requirement is introduced ,
 is an indicator for the method-specificity of the corresponding concept . In the same
 way that the domain hierarchy is used to associate concepts with domain-specificity
 attributes , the method hierarchy is used to assign a method-specificity values to
 concepts .

 It should be emphasized that the organization of methods according to the
 ontological commitments that they introduce is only one possible way of organizing
 problem solving methods . For the purpose of the ontology library , this organization
 is suitable because the hierarchy will be used for retrieving the definitions that are
 required by the methods . However , we do not claim that we have solved the
 problem of indexing problem-solving methods .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 202

Task Medical diagnosis

Has
inference

Has
inference

Has
inference

Has
inference

1 Abstraction
of findings
from data

2 Abduction of
disease from

findings

3 Ranking
hypothesized

diseases

4 Deduction of
predictions from

hypothesized
diseases

...

2.1 Abduction by
direct associations
between findings

and diseases

2.2Abduction by tracing
causal pathways
between findings

and diseases

2.2.1 Abduction by
traversing causal

links with possible
and necessary

causal connections

2.2.2
Abduction by

bayesian probability
propagation

Implemented-by Implemented-by

Inference
methods

Interences

Has-specialization Has-specialization

 F IGURE 8 . Partial hierarchy of methods used in medical diagnosis .

 3 . 2 . 4 . Structure of the library
 Section 3 . 2 . 2 argued that there are basic categories of medical knowledge that are
 reusable across all medical domains and medical tasks . These categories form the
 core part of the library , and they are organized in theories according to the criteria
 mentioned earlier .

 Two attributes determine the degree of reusability of a concept : the domain-
 specificity and the method-specificity . For the definitions in the core part of the
 library , these attributes are not discriminating , as they are intended to be reusable
 across most medical domains and methods . However , this is not the case for the
 definitions in the extended part . By making the value of concepts on these attributes
 explicit , it is possible to determine to what extent and under which circumstances
 these concepts can be reused . Since concepts that have the same values on both
 attributes are likely to be applicable under the same circumstances , they should be
 stored in one theory . In this way the attributes provide a scheme for modularization .

 For every combination of a node from the domain hierarchy and a node from the
 method hierarchy , there can be a theory in the library . This theory contains the
 definitions that are specific for the method and the domain , but that are reusable
 across the specializations of the method and sub-domains of the domain .

 For instance , the theory ‘‘abduction by tracing causal pathways between findings
 and diseases in the domain of cardiovascular medicine’’ would contain all the
 definitions that are specific for that method in that domain (e . g . artery-obliteration) ,
 but it would not specify that there are probability distributions that describe the
 nature of the causal connection between pathophysiological states , since these are
 specific for one particular specialization of the causal tracing method (see Figure 8) .
 The theory would also not contain a definition of pathophysiological state . Since

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 203

Domain hierarchy Method hierarchy

Medical method

Abduction of
diseases from

findings

Abduction by tracing
causal pathways
between findings

and diseases

Abduction by
direct assosiations
between findings

and diseases

Abduction by
traversing causal

links with possible
and necessary

causal connections

Abduction by
bayesian probability

propagation

Core library
Theory physiology

Physiological
process

Peripheral library
Theory: p-1

Pathophysiological
state

Theory: p-2

Artery
obliteration

Theory: p-3

Coronary
oblteration

Medicine

Internal
medicine

Opthalmology Cardiovascular
medine

Heart
diseases

 F IGURE 9 . The organization of the peripheral parts of the library . The dashed lines show how the theories
 in the peripheral library are indexed on domain specificity and method specificity . The arrows in the two
 hierarchies represent specializations . Thus , cardiovascular medicine is a specialization of internal
 medicine and ‘‘abduction by traversing causal links with possible and necessary causal conditions’’ is a
 specialization of ‘‘abduction by tracing causal pathways between findings and diseases’’ . Concepts are

 stored in the theories with the same values on the domain- and method-specificity attributes .

 this concept is reusable across a wider range of domains than cardiology , it is defined
 in the core library .

 Figure 9 shows the organization of the peripheral part of the library by example .
 The dashed arrows in this figure represent the values on the domain-specificity and
 method-specificity indexes . The arrows in the two hierarchies represent specializa-
 tion relations . Thus , cardiovascular medicine is a specialization of internal medicine
 and ‘‘abduction by traversing causal links with possible and necessary conditions’’ is
 a specialization of ‘‘abduction by tracing causal pathways between findings and
 diseases’’ . Concepts with the same method specificity and the same domain
 specificity are stored in the same theory . Retrieving concepts from the library thus
 amounts to indicating the domain(s) and the method(s) that are relevant for the
 application and then collecting the theories that have the domain(s) and
 method(s)—or their parents in the hierarchy—as indexes .

 3 . 3 . BUILDING THE LIBRARY

 The previous section described the principles of organizing the library of medical
 ontologies . Here , the issue of filling the library is addressed . Because this involves a
 large amount of work , only a prototype library has been developed in our project .
 Rather than aiming at completeness , the project focuses on formulating standardized
 procedures for adding new definitions to the library . The availability of standardized
 procedures will make it easier to augment the library and it will enable the
 development of tools for semi-automatic library maintenance . The currently used
 procedure consists of four steps : (i) take an existing medical AI application , (ii)
 describe the ontology and the inference methods of the system , (iii) score the
 definitions in the ontology on the domain-specificity and method-specificity attrib-
 utes , and (iv) put the definitions in the appropriate library theories . The next
 sections will elaborate and illustrate each of these steps .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 204

 3 . 3 . 1 . Start with an existing application
 The definitions that are most likely to be usable for medical KBS development are
 the definitions that are already employed in existing systems . Therefore , the initial
 library is based on analyses of such systems . We will use CASNET (Weiss , Kulikowski ,
 Amarel & Safir , 1984) as an example . CASNET allows the representation of causal
 associational networks that describe processes of diseases and has been used to build
 an application for diagnosing glaucoma .

 CASNET was chosen as an example for several reasons . Firstly , as a shell it provides
 a framework for developing applications in various medical domains . Therefore it is
 likely that its domain ontology is a good candidate for reuse across domains .
 Secondly , in addition to this general causal network ontology CASNET provides
 idiosyncratic ontological distinctions required by CASNET’S reasoning methods . This
 combination of properties makes CASNET an attractive illustration for developing
 method-specific extensions to the library . To illustrate the idea of domain-specific
 extensions , we have added the concept glaucoma , which was used in the glaucoma
 application developed with CASNET , to CASNET’S ontology .

 3 . 3 . 2 . Model the application
 It is often the case that existing medical KBS do not have explicit descriptions of the
 underlying domain ontologies . In these cases , it is up to the library builders to define
 such an ontology . This is done in three steps : (i) scoring the current application on
 the domain-specificity and method-specificity attributes , (ii) retrieving the concepts
 from the library that could be useful for modelling the ontology of the application
 and (iii) defining the additional concepts necessary for the application’s ontology .

 As described in Section 3 . 2 , the possible values of the domain-specificity and
 method-specificity attributes are specified in the corresponding hierarchies . CASNET is
 a general shell for medical applications , but since we have added the concept
 glaucoma , the system is assigned the value ‘‘opthalmology’’ on the domain-
 specificity attribute . For the method specificity , we concentrate on the abduction
 step . CASNET uses a causal network for abduction , so ‘‘abduction by tracing causal
 pathways’’ is selected as the value for the method-specificity attribute . Actually ,
 CASNET uses a specialization of this method , but as yet this specialization—which we
 will call the CASNET method—is not represented in the method hierarchy .

 When the application is scored on the method-specificity and the domain-
 specificity attributes , the concept definitions that are already available in the library
 can be retrieved . To complete the application ontology , the library builder has to
 define the additional classes , relations and functions required for the application .
 For the purpose of library construction , these newly defined concepts are the
 important ones . Because the method actually used by CASNET is not in the method
 hierarchy , the library builder also has to model the method of the system .

 CASNET ’ s application ontology . Applications build with CASNET have an explicit
 representation of a network , the nodes of which represent pathophysiological states .
 The links in the network represent causal relations between the states . States are
 labelled with a confirmation status , which must be one of confirmed , denied , or
 uncertain . The evidence for the confirmation status of a state comes from patient

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 205

n. Causation
strength

n. Confidence
measure

n. Wl
n. Wf

n. Wl

c.l. Disease

n. Glaucoma p.l. Path

n. Cost

c.l. Observation

c.l. Symptom c.l. History

c.l. object

p.l. object

n.

p.l. Pathophysiological
state

p.l. Start pathophysio-
logical state

n. A priori
frequency n. Threshold

n. Status c.l. Event

c.l. Sign c.l. Lab-test

causes (c.l.)

evidence-for (p.l.)

Legend

object

Concept retrieved from
the library
Concept retrieved from
the peripheral library
Newly defined concept

Relation between A and B
retrieved from core library.

Relation between A and B
retrieved from peripheral library.

Newly defined relation between
concept A and concept B.
A is a specialization of B.

A

A

A

A

B

B

B

B

relation (c.l.)

relation (p.l.)

relation (n.)

End pathophysio-
logical statep.l.

strength (n.)
inverse

weight (n.)
forward

weight (n.)

weight(n.) confidence (n.)
classifies (p.l.)

costs (n.)

threshold by (n.)has frequency (n.)

begins (p.l.) terminates (p.l.)

summarizes (p.l.)

labelled-as (n.)

 F IGURE 10 . The application ontology of CASNET represented as an ontological semantic network .

 observations . A specific state of the network is interpreted in terms of diseases in
 various states of progression .

 Figure 10 presents parts of the reconstructed application ontology of CASNET in the
 form of an ontological semantic network (Abu-Hanna , 1994) . There are three types
 of definitions in the application ontology : (i) definitions retrieved from the core
 library , (ii) definitions retrieved from the peripheral library and (iii) new definitions .
 The concepts retrieved from the peripheral library are specific for the causal tracing
 method , but generic across all the dif ferent specializations of causal tracing . None of
 the concepts that were retrieved from the opthalmology specific extensions were
 used for the application ontology . As mentioned above , the newly defined concept
 glaucoma was added to the application ontology as a sub-type of disease . To decide
 on the method specificity of the newly defined concepts , the CASNET method must be
 modelled for analysing the ontological requirements of the method .
 CASNET ’ s inference methods . The analysis of CASNET’S inference methods is based on
 the STModel . We will describe the methods for abduction and for ranking .

 As mentioned , ‘‘ CASNET abduction’’ is a specialization of ‘‘abduction by tracing
 causal pathways between findings and disease’’ . The method consists of three
 primitive procedures . The first of these uses the evidence links between observations
 and states and their associated confidence measures to compute the confidence
 measure of the state . The second procedure then labels the states with confirmed ,
 denied or undetermined by applying a threshold to the confidence measure of the
 states . Finally , the third procedure classifies paths of labelled states with no denied
 states as diseases .

 The problem-solving method that CASNET uses for the ranking inference [Figure

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 206

calculate
state

confidence

label states
according

to threshold

interpret
labelled
states

weigh
forward
evidence

maximize
evidence

weigh
inverse

evidence

Inferences

Inferences
methods

Method
oriented
ontology

thresholded-by

Abduction hypotheses Inferences

confidence has
frequency

forward
weight

inverse
weight

weight costs

CASNET abduction Ranking by weight to cost ratio

weigh state likelihood
in path

rank according to
weight to cost ratio

Treshold
a priori

frequency Wf W/ Wi
CostConfidence

measure

(a) (a)

 F IGURE 11 . The inference methods used in CASNET for abduction of hypotheses (a) and ranking of
 hypotheses (b) .

 11(b)] consists of two procedures : weighing the evidence for the hypothesized
 diseases and ranking the diseases according to the weights of the evidences . The
 weighing procedure consists of three steps , which use the strengths of the causal
 relations between the states . The total weight of a state is the maximum of the
 forward and the inverse weights . The forward weight of a state summarizes the
 weight of the evidences coming from the causes of that state . The inverse weight
 summarizes the weight of the evidences coming from the ef fects of the state . When
 the status of a state is undetermined , the starting state’s a priori frequency is used
 for the calculation of its forward weight . The procedure that ranks states
 (hypotheses) uses the ratio of the weight of the hypothesis and the costs of testing
 that hypothesis .

 Figure 11 shows the methods that perform the abduction inference [Figure 11(a)]
 and the ranking inference [Figure 11(b)] . The figure also shows some of the
 ontological commitments that are required by the method .

 3 . 3 . 3 . Scoring the definitions
 When the ontology of the application has been specified , the newly defined concepts
 must be indexed and stored in the library . In the case where the core library is
 largely complete , this is not dif ficult . The newly defined concepts are then all method
 or domain specific , and must be stored in the peripheral part of the library . In the
 case where the core library is also incomplete , the indexing is more dif ficult . In that
 case the library builder has to decide whether the definition represents a basic
 category of medical knowledge , or whether it is a method- or domain-specific
 extension . The procedure to follow in this situation is based on the principle that the
 concepts in the core library are intended to be reusable across many tasks and
 domains . If the library builder estimates that this is true for a concept under
 consideration , it is stored in the core library , otherwise it is considered as an
 extension . Of course , the subjective estimates of the library builder are not
 error-proof , but at present this is the only method available . One of the

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 207

 assumptions that underlie this approach to library construction is that there are only
 a small number of truly basic categories of medical knowledge , so that it is likely
 that the current core library is already more or less complete .

 For CASNET , scoring the definitions on the method-specificity attribute amounts to
 deciding whether the concepts that are newly defined in Figure 10 are all specific for
 the inference methods of CASNET and not for their parents in the method hierarchy .
 Again this requires a subjective estimate of the library builder . After inspecting how
 the new concepts relate to CASNET’S methods (see Figure 11) it is decided that the
 newly defined concepts are specific for the methods employed by CASNET , except for
 glaucoma . Because glaucoma does not add method-specific aspects to the definition
 of its super concept , the core library concept disease , it is assigned the value
 ‘‘medical method’’ on the method-specificity attribute . ‘‘Medical method’’ is the root
 of the method hierarchy .

 The concepts must also be scored on the domain-specificity attribute . In the
 general case , this requires medical expertise . For the current application , deciding
 on the domain specificity of concepts is straightforward because CASNET was
 developed as a general shell for medical applications . Therefore , all the concepts—
 except glaucoma —get the value ‘‘Medicine’’ on the domain-specificity attribute ,
 which is the root of the domain hierarchy . glaucoma is assigned the value
 ‘‘glaucoma management’’ .

 In summary , glaucoma is indexed as ‘‘specific for the domain of glaucoma in all
 medical methods’’ . The other newly defined concepts that are used for abduction in
 CASNET (e . g . confidence-measure and threshold) are indexed as specific to
 ‘‘ CASNET abduction in medicine’’ . Figure 12 shows how the newly defined concepts
 are scored on the method-specificity attribute .

 3 . 3 . 3 . Storing the definitions in the library
 When the definitions are scored , they must be stored in the proper parts of the
 library . For the new concepts with the domain-specificity value ‘‘Medicine’’ and the
 method-specificity value ‘‘ CASNET abduction’’ or ‘‘ CASNET ranking’’ , two new theories
 are created in the library : ‘‘ CASNET abduction in medicine’’ and ‘‘ CASNET ranking in
 medicine’’ . For glaucoma , the theory ‘‘glaucoma management in medical methods’’
 is added to the library . Because ‘‘glaucoma’’ was not yet part of the domain
 hierarchy it is added as a specialization of opthalmology . Finally , the methods
 employed by CASNET must be added to the method hierarchy . For example , ‘‘ CASNET

 abduction’’ is added as a specialization of ‘‘abduction by tracing causal pathways
 between findings and diseases’’ .

 3 . 4 . USING THE LIBRARY

 This section explains how the library can be used for constructing a part of the
 application ontology of a KBS . Basically , this amounts to classifying the domain of
 the application in terms of the domain hierarchy and specifying the methods that the
 application will use in terms of the method hierarchy . When a domain or a method
 is not in the hierarchy , the most specific ‘‘super domain’’ or ‘‘super method’’ must be
 used . For example , if one is building an application in the field of cardiovascular

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 208

W l W f

W l

casnet abduction

casnet rankingcasnet ranking

Object

Object

Object
casnet abduction

Object
casnet ranking

Object
glaucoma

Object stored in
core library

Object stored in
existing part of
peripheral library

Object stored in
"casnet abduction
in medicine"

Object stored in
"casnet abduction
in medicine"

Object stored in
theory "glaucoma
management in
medical method"

Legend

relation relation stored in
core library

relation relation stored in
existing part of
peripheral library

relation relation stored in
new part of
peripheral library

objects of type A may
have relation "relation"
with objects of type B

A is a subclass of B

A

B
relation

A

B

Causation
strength

Disease

casnet ranking

glaucoma
Glaucoma Path

End-pathophysio-
logical state

casnet abduction

Confidence
measure casnet ranking

Cost

Obsevation

Start-pathophysio-
logical state

casnet ranking

A priori
frequency

casnet abduction

Threshold

Pathophysiological
state

casnet abduction
Status

Symptom

Sign Lab-test

History

causes
classifies

evidence-for

costs

Event

strength

inverse
weight forward

weight

summarizes

has frequency thresholded by

labelled-as

weight
confidence

begins
terminates

 F IGURE 12 . The application ontology of CASNET . The labels associated with new concepts show the
 method-specificity values of these concepts .

 medicine and the domain hierarchy does not have an entry for this domain , internal
 medicine should be used instead (see Figure 7) .

 When the application is scored on the indexes , the library can be used to collect
 the concepts that are likely to be useful for the application . The peripheral theories
 that are included in the application ontology must satisfy two criteria . First , the
 theories must have a domain-specificity index that is equal to—or subsumes—the
 domain-specificity value of the application . Secondly , the theories must have a
 method-specificity index that is either equal to—or subsumes—the method-
 specificity values of the application . For example , for a system that uses the method
 ‘‘abduction by tracing causal pathways between findings and diseases’’ in the domain
 of cardiovascular medicine , the library would suggest including the theories P-1 and
 P-2 , but not P-3 from Figure 9 .

 For retrieving definitions from the core part of the library , the indexes cannot be
 used . However , concepts defined in the peripheral parts of the library are often
 defined as specializations of core ontology concepts . In this case , the peripheral
 theories and the core library theories are connected by means of inclusion relations .
 When theories include other theories , the included theories are also automatically
 retrieved . In cases where core ontology theories are needed which are not retrieved
 because of the inclusion relations , it is up to the library user to select these theories .

 For a particular application ontology and a particular reasoning step in the

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 209

Method-
speciality

Abduction by
tracing causal

pathways

Method
independnt
definitions

Generic
concepts

Fundamental
medical
concepts

Internal
medicine

Cardiovasular
medicine

Heart
diseases

Domain + method
specific extensionsPathophysiological

state

Disease-path

Core library

State

State

Disease

Observation
sign

labtest

Artery Artery-
obliteration

Coronary-
obliteration

Domain-specificity

Abduction
of diseases

from findings

 F IGURE 13 . A diagram showing some definitions that are suggested for inclusion in the application
 ontology of a system that diagnoses heart diseases . The positions in the diagram reflect the locations of

 the definitions in the library .

 STModel , the reusability characteristics of the definitions can be illustrated in a
 reusability diagram . Figure 13 shows such a diagram for abduction in an application
 that diagnoses heart diseases . The domain-specificity axis of the diagram is
 constructed by starting from the specific domain in the domain hierarchy , and then
 moving upwards through the domain hierarchy . Each of the parent nodes in the
 hierarchy is used as a value on the domain-specificity dimension . The method-
 specificity axis is constructed in a similar way , using the method hierarchy .

 The region at the lower left part of the diagram contains the definitions that are
 retrieved from the core part of the library , which was described in Section 3 . 2 . 2 . The
 definitions that are both method independent and generic are retrieved from the
 theory generic-concepts . For the other definitions in this region , the positions in
 the reusability diagram do not reflect from which theories they originate .

 3 . 5 . SUMMARY

 The starting point of the work presented in this section is the observation that ,
 although the potential merits of libraries of reusable ontologies are widely
 recognized , there are few libraries available today . Ontology libraries could provide
 building blocks for an application ontology , which is a specification of all the
 ontological distinctions that are required to perform a particular task in a particular
 domain . Two reasons were identified to explain the unavailability of such a library :
 the hugeness problem and the interaction problem .

 We have presented an analysis of these problems in the context of medical
 knowledge , and suggests ways to make them manageable . In short , the interaction
 problem is addressed by the introduction of a method-specificity attribute for
 concepts , based on a classification of inference methods . To the hugeness problem

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 210

 there are two aspects : the large number of concepts makes building the library a
 daunting exercise , and it also complicates retrie y ing the appropriate concepts when
 they are needed . Because of the first aspect , we have concentrated on the
 formulation of procedures for augmenting an initial library . The other aspect of the
 hugeness problem is addressed by the introduction of a domain-specificity attribute ,
 similar to the method-specificity attribute . Based on this analysis and an analysis of
 the intended use of the library , three principles have been identified that can be used
 to impose a structure on an ontology library : organizing concepts according to (i)
 natural categories , (ii) inference methods , and (iii) domain division in practice . The
 first of these principles advocates structuring ontologies of medical knowledge
 according to ‘‘topics’’ that often recur in medical practice . These general categories
 are located in the core part of the library . The importance of this organizational
 principle is that it provides anchors for the more specialized concepts in the other
 part of the library , thereby ensuring that concepts that are defined in dif ferent ways
 for dif ferent methods or subdomains , have at least some common ground . The
 second principle says that inference methods should be used as an index for the
 ontological distinctions that they introduce . This facilitates the construction of
 application ontologies because it is easy to find out which domain concepts are
 required for a particular inference method . The third principle suggests that domain
 concepts that are specific to a particular branch in medical practice should be
 indexed by that sub-domain . This facilitates the construction of application
 ontologies because it can be used to suggest concepts that are specific for problem
 solving in that domain , and it also suggests what kinds of external knowledge will be
 available in the runtime environment of the KBS .

 4 . Model-based knowledge acquisition tools

 One important role for ontologies is that they can be used by knowledge acquisition
 (KA) tools to direct the acquisition of domain knowledge . This issue is investigated
 in this section and the next . In this section , we present an overview of the ways in
 which tools can support the knowledge engineering process . In Section 5 , we present
 a number of tools that exploit explicit ontologies to provide some of the types of
 support identified in this section .

 4 . 1 . KNOWLEDGE ACQUISITION AND MODELLING

 One of the recurring themes in the recent knowledge acquisition literature is that
 knowledge acquistion is a modelling activity , as opposed to the older view of
 knowledge acquisition as mining . There are at least two dif ferent interpretations of
 this modelling process . In the first interpretation , which we will call ‘‘KA as
 modelling’’ , modelling is viewed as a bottom-up constructive process where a
 structure is imposed on already elicited knowledge (e . g . Ford , Bradshaw , Adams-
 Webber & Agnew , 1993) . In the second interpretation , called ‘‘model-based KA‘‘ ,
 modelling is viewed as a top-down process where an abstract model is selected or
 constructed which is then instantiated with application-specific knowledge (e . g .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 211

KA as Modelling

1

2

Elicit knowledge

Impose structure on the
elicited knowledge

Model-Based KA

1

2

Select/Construct
skeletal model

Instantiate skeletal
model

 F IGURE 14 . Two alternative interpretations of the modelling process in knowledge acquisition .

 Breuker & Wielinga , 1989) . Figure 14 shows the alternative interpretations of the
 modelling view .

 One could argue that all forms of knowledge acquisition use some abstract model
 of the domain knowledge , although this model might be weak . Therefore , it is better
 to view the two interpretations in Figure 14 as the extremes of a continuum which
 ranges from weak model support to strong model support .

 To gain a better understanding in the possible types of models and the way in
 which they can be used in the knowledge acquisition process , this section makes a
 comparison between a number of well-known knowledge acquisition tools . To
 identify dimensions on which the tools can be compared , Section 4 . 2 presents a
 general framework for describing the knowledge acquisition process according to the
 model-based-KA paradigm . Section 4 . 3 describes how this paradigm evolved .
 Section 4 . 4 then describes how each of the sub-tasks in the paradigm can be
 supported by tools and in Section 4 . 5 a number of well known tools are described
 and compared . Because we are mainly interested in the role of the abstract models ,
 the comparison is biased towards tools that are closer to the model-based-KA edge
 of the continuum .

 4 . 2 . A FRAMEWORK FOR COMPARING TOOLS

 In order to compare existing model-based KA tools , we need a general framework
 in which they can be described . This section proposes such a framework which
 distinguishes four main activities in model-based knowledge acquisition : (i) skeletal
 model construction , (ii) model instantiation , (iii) model compilation and (iv) model

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 212

 refinement . The framework is based on an analysis of the types of support provided
 by existing knowledge acquisition tools .

 The first of these sub-tasks , skeletal model construction , involves the creation or
 selection of an abstract specification of the knowledge that is required to perform a
 particular task in some domain . Such skeletal models may come in dif ferent flavours ,
 and they vary in the amount of detail that they specify . For example , generic tasks
 (Chandrasekaran , 1987) specify both the method that is used to perform a task and
 the way that domain knowledge must be represented . In contrast , KADS
 interpretation models (Wielinga et al . , 1992) specify the method (using control
 knowledge and inference structures) , but they do not specify how the domain
 knowledge must be represented . In the PROTE ́ GE ́ approach (Musen , 1989 a) , both the
 method and the domain-specific classes are specified in the skeletal model . Here ,
 only the instances of the classes and their relations are unspecified .

 Model instantiation , the second activity in knowledge acquisition , involves
 ‘‘filling’’ a skeletal model with domain knowledge to generate a complete knowledge
 base . Many well-known knowledge elicitation tools concentrate on this activity in
 the knowledge acquisition process (Boose , 1985 ; Shaw & Gaines , 1987 ; Marcus ,
 1988 ; Musen et al . , 1988) . For example , SALT concentrates on the elicitation of
 knowledge that is required for the Propose-and-Revise skeletal model . In the model
 instantiation activity the elicited knowledge is often , but not always , represented in a
 non-executable language .

 In the model compilation activity , the instantiated skeletal model is transformed
 into an executable knowledge base . This subtask is only required when the
 instantiated model is formulated in a non-executable language .

 The fourth activity in model-based knowledge acquisition is refinement of the
 executable model . In this activity , the dynamic characteristics of the KBS are
 validated using a number of selected test cases . When the KBS does not solve the
 test cases correctly , or produces invalid explanations , this provides feedback about
 erroneous or missing knowledge in the executable model . In cases where the
 executable model and the instantiated model are dif ferent , this activity requires
 ‘‘uncompilation’’ : the parts of the instantiated model that correspond to the
 erroneous parts of the executable model must be identified .

 Figure 15 shows the four basic activities in model-based knowledge acquisition . It
 should be emphasized that this task breakdown does not imply that the four
 activities are necessarily performed sequentially . As argued by Shadbolt and
 Wielinga (1990) , the KA process is typically a cyclic process .

 The dotted arrow in Figure 15 represents a fifth activity in the paradigm : the use

1 Construct
skeletal model

3 Compile
instantiated

model

Skeletal model
Instantiated

skeletal model
Executable

model

2 Construct
skeletal model

4 Refine
instantiated

model
 F IGURE 15 . The four basic activities in model-based knowledge acquisition .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 213

 of the instantiated model to provide feedback about the validity of the skeletal
 model . Negative feedback can be used for identifying parts of the skeletal model
 that need to be adapted while positive feedback could for example be used for
 deciding to put a model—or parts of a model—in a library . Although , this activity is
 obviously important , there are at present no tools that support this activity .

 The four activities require dif ferent kinds of expertise and dif ferent types of
 support tools . Whereas the model construction activity is inherently dif ficult and
 requires the expertise of a knowledge engineer , the knowledge instantiation activity
 can often be performed by domain experts , after some initial explanation of
 representation and tool usage . The compilation activity requires the expertise of a
 computer programmer , but in many existing KA tools this activity is fully
 automated . The knowledge refinement activity can be performed by domain experts ,
 provided that they understand the control regime of the inference engine
 (Davis , 1979) .

 4 . 3 . EVOLUTION OF THE PARADIGM

 This section gives a historical overview of the developments in automated
 knowledge acquisition , illustrated with references to some well known tools that
 have been described in the literature . The overview is mainly intended to sketch
 trends in the history of knowledge acquisition tools . To emphasize these trends , the
 presentation is not completely chronological .

 4 . 3 . 1 . Ancient times : rule editors
 Knowledge acquisition tools of the first generation were derived from existing expert
 systems . For example , KAS (Duda , Gasching & Hart , 1979) , EMYCIN (van Melle ,
 1979) and EXPERT (Weiss & Kulikowski , 1979) were derived from PROSPECTOR , MYCIN

 and CASNET respectively . Tools of this era assumed that the domain expert or the
 knowledge engineer was able to build an initial knowledge base without extensive
 (tool) assistance . Only after this initial knowledge base was available could the tools
 support the KA process by providing feedback about the origin of erroneous
 solutions . The power of these tools was solely based on the explanation facilities of
 their inference engines , which facilitated the job of locating missing or incorrect
 parts of the knowledge base .

 Thus , of the activities described in Section 4 . 2 , only model refinement was
 extensively supported by these tools . They barely supported model construction ,
 while the support for model instantiation was limited to symbol-level facilities such
 as rule editors . † Tools of this generation could not provide much support for model
 instantiation because of their weak skeletal models . For example , EMYCIN’S skeletal
 model only specified that the reasoning method is backward chaining and that the
 domain knowledge is organized in a context tree , a simple hierarchy of domain
 entities . Because in this early systems the instantiated model was formulated in
 terms of directly executable representation formalisms no compilation activity was
 required .

 A notable exception with respect to the lack of support for model instantiation
 was TEREISIAS (Davis , 1979) . Like other tools of its generation , TEREISIAS did not

 † Some tools of this generation used simple template-based natural language front-ends to hide the
 most deterrent details of the underlying representation formalisms .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 214

 have an explicit model of the types of knowledge that had to be elicited , but during
 the knowledge elicitation process TEREISIAS used already elicited knowledge to
 formulate expectations about what other knowledge might be needed . These
 expectations , which were represented as rule models , served a similar purpose as
 explicit skeletal models . However , because the rule models were not available at the
 beginning of the model instantiation phase , they could only provide support after a
 significant amount of knowledge had already been elicited .

 Another exception is ROGET (Bennett , 1985) . This system was especially designed
 to support the early phases of knowledge engineering . The system helps the domain
 expert to design the conceptual structure of a target consultation system , by
 interacting with the expert . ROGET is able to provide guidance because it has access
 to a library of conceptual structures of existing knowledge-based systems . These
 conceptual structures can be considered as kinds of skeletal models . ROGET was able
 to translate the constructed conceptual models into EMYCIN context trees . ROGET is
 very dif ferent from the other first-generation tools and could best be viewed as an
 early predecessor of the model construction tools of third-generation workbenches .

 4 . 3 . 2 . Mediae y al times : task - and method - specific architectures
 Whereas the first generation of tools merely supported model refinement , the
 second generation of knowledge acquisition tools also supported the model
 instantiation activity . This higher level of support for model instantiation was a
 result of the fact that these tools acquired knowledge in a form that was more
 intuitive to the domain experts than the production rules in the earlier tools . Put
 dif ferently , tools of this generation were capable of knowledge-level communication
 with domain experts . The type of support provided by second-generation tools can
 be classified into three categories .

 A first reason why tools of this generation could better support model instantia-
 tion than their ancestors was because of their more restrictive skeletal models . For
 example , tools as MOLE (Eshelman , 1988) and SALT (Marcus & McDermott , 1989)
 used knowledge of problem-solving methods such as Cover-and-Dif ferentiate and
 Propose-and-Revise to engage in a structured dialogue with the domain expert .
 Because these tools knew what kind of knowledge was required for these methods ,
 they could strongly focus the knowledge elicitation dialogue . Another system in this
 category was OPAL (Musen et al . , 1988) . OPAL did not only make assumptions about
 the method that the KBS was going to perform , but also about the domain that the
 system would reason about : oncology . Because of this , OPAL was able to communi-
 cate with domain experts in domain-specific terminology .

 A second way in which tools of this era bridged the gaps between the ways in
 which humans process knowledge and the ways knowledge is represented in AI
 formalisms was the use of graphical user-interfaces . For instance , the graphical
 user-interface of OPAL allowed the oncologists to enter knowledge in forms that
 resembled the paper forms that they were used to working with . The tool then
 automatically translated these forms into an internal representation which was
 subsequently compiled into production rules .

 A third group of tools of this generation based their support on interviewing
 techniques which originated from psychology . Typical examples of this category are
 tools such as E TS (Boose , 1985) and its successor AQUINAS (Boose & Bradshaw ,

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 215

 1988) , which embody the repertory grid technique and ALTO (Major & Reichgelt ,
 1990) , which is based on the laddering technique .

 With respect to the activities described in Section 4 . 2 , tools of this generation
 provided stronger support for the model instantiation activity than their predeces-
 sors because they used stronger skeletal models . However , these skeletal models
 were hardwired in the tools : it was not possible to edit skeletal models or construct
 new ones . Thus , the model construction activity was not supported . Some of these
 tools acquired the knowledge in a format that was not directly executable . For these
 tools , an explicit compilation activity was required . This compilation was usually
 automatic and could not be controlled by the knowledge engineer . Although some
 of the tools of this generation had a refinement facility similar to those of the earlier
 tools , the emphasis was on getting the knowledge model right the first time .

 4 . 3 . 3 . Modern times : integrated KA workbenches
 Only recently tools have been built that support skeletal model construction . In
 contrast with the systems of the first and the second generation , which are often
 presented as stand-alone programs , these tools are usually embedded in larger
 knowledge engineering environments , called KA workbenches . One of the first
 systems that supported model construction was PROTE ́ GE ́ (Musen , 1989 a) . This tool
 uses an abstract model of a problem-solving method , and allows the knowledge
 engineer to associate the knowledge roles of the method with domain-specific labels .
 Based on these associations , PROTE ́ GE ́ can be used to generate model instantiation
 tools such as OPAL , which interact with experts in domain-specific terminology . A
 limitation of PROTE ́ GE ́ is that it is based on one problem-solving method : episodic
 skeletal-plan refinement . Other systems of this generation allow the construction of
 arbitrary skeletal models from sets of primitive components .

 Most of the existing KA workbenches concentrate on the earlier activities of the
 model-based knowledge acquisition paradigm . Typically , skeletal-model construc-
 tion is supported by libraries of model components which can be selected and
 adapted for an application by means of specialized editors . The model instantiation
 activity is supported by tools that exploit the explicitly represented skeletal model to
 focus the elicitation activity . In most workbenches , the instantiated skeletal model is
 formulated in a non-executable language , so compilation is required . This compila-
 tion may or may not be automatic . In most of the workbenches there is little
 emphasis on the knowledge refinement activity .

 4 . 4 . TYPES OF TOOL SUPPORT

 In Section 4 . 2 a framework was presented for comparing model-based knowledge
 acquisition tools which distinguishes four activities . This section identifies for each of
 these activities ways in which they can be supported or automated by knowledge
 acquisition tools . Section 4 . 5 will use the results of this analysis to make a
 classification of a number of well-known knowledge acquisition tools .

 4 . 4 . 1 . Supporting skeletal - model construction
 As mentioned , dif ferent types of skeletal models have been proposed in the
 literature . Here we will adopt the view that skeletal models consist of a task model
 and an application ontology (this is also the view in CommonKADS and PROTE ́ GE ́ -II) .
 Together , these specify what kind of application knowledge is required to solve

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 216

 problems in the application domain . The most obvious form of support for the
 construction of skeletal models is by means of (graphical) editing facilities .
 Dependent on the expressiveness of the formalism in which the models are
 expressed , such editors can perform several types of consistency checking and
 completeness checking . A second type of support is by providing libraries of
 primitive components and typical configurations of those . Usually , these two types
 of support are combined : libraries provide generic configurations that can be
 fine-tuned for particular applications using specialized editors . The third , most
 ambitious type of support for skeletal model construction is process support . This
 type of support requires a prescriptive theory of how skeletal models should be
 constructed from primitive components . For task models , such a theory is currently
 under development (e . g . Aben , 1995) . However , for application ontologies such a
 theory is not yet available . Section 3 will describe principles that can be viewed as a
 first sketch of such a theory .

 4 . 4 . 2 . Supporting model instantiation
 In general , stronger skeletal models allow better support for model instantiation
 because it can more easily be determined which knowledge is valid and required for
 problem solving . There are five ways in which model instantiation can be supported :
 (i) checking if the entered knowledge is consistent with the skeletal model , (ii)
 checking whether the entered knowledge is all the knowledge that is required
 according to the skeletal model , (iii) using domain specific terminology , (iv) using
 intuitive visualization techniques , and (v) use of a structured dialogue .

 The simplest form of support , consistency checking (e . g . syntax checking , type
 checking) , can also be found in conventional programming tools such as syntax-
 driven editors . However , the other types of support are dependent on the stronger
 skeletal models used in knowledge engineering . For example , there are two types of
 completeness checking : checking whether for all the knowledge types knowledge has
 been elicited and checking whether all the knowledge of a particular type has been
 elicited . To provide this support , the skeletal model should define which knowledge
 types there are in the domain and what the constraints are on the quantity of the
 knowledge pieces for each of these knowledge types . The use of domain-specific
 terminology requires that this terminology is defined . Also , specialized visualization
 techniques are based on strong assumptions about what is to be visualized . For
 example , when it is assumed that the knowledge in the domain consists of objects
 and values of these objects on a number of dimensions , it can be decided to use grids
 for visualizing the knowledge . Dialogue structuring requires—amongst other
 things—the ability to find out what knowledge still needs to be elicited and is
 therefore dependent on the capacity to perform completeness checking , which in
 turn requires a strong skeletal model .

 4 . 4 . 3 . Supporting model compilation
 The model compilation activity is only required when the knowledge is elicited using
 a non-executable language . The advantage of such knowledge-level languages is that
 they facilitate model-instantiation because they are easier to understand for
 non-programmers . Therefore , it is to be expected that for tools that give better
 support for model instantiation the compilation activity is more complex .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 217

 In some tools , the compilation activity is completely automated . Once the skeletal
 model is instantiated , the tool is able to generate an executable knowledge base
 without further assistance . This type of support for compilation may seem the most
 powerful type , but there is a serious drawback . Compilation becomes more dif ficult
 when the source language is more expressive . With current compilation technology ,
 automatic compilation would in many cases yield computationally inef ficient
 executable models .

 Alternatively , tools may engage in an interactive compilation dialogue . Here the
 tool attempts to compile the instantiated model automatically , but whenever the
 compiler does not have suf ficient information to select an appropriate representa-
 tion , it may ask for additional information to resolve the ambiguities .

 In a third group of tools compilation is considered as an activity to be performed
 by the knowledge engineer . Here , the emphasis is on supporting the knowledge
 engineer instead of on replacing the knowledge engineer . Manual compilation can
 be supported by providing libraries of reusable compilation procedures from which
 the knowledge engineer can select the most appropriate one .

 4 . 4 . 4 . Supporting model refinement
 Model refinement , which takes place in the context of a running system , may be
 supported in four ways . Firstly , the tool may provide a tracing facility that shows the
 reasoning steps that lead to the solution that the system arrived at . This type of
 support is also provided by tools that support software engineering . Secondly , tools
 may be able to inspect such traces to answer why and how questions . For such a
 facility , the tool must have a persistent representation of the trace . The explanations
 of first-generation tools were for example based on such persistent traces . A third
 type of support is the ability to answer why not and what if questions . Such a facility
 requires that the tool is capable of hypothetical reasoning . Finally , tools may be able
 to locate the missing or incorrect knowledge pieces in the knowledge base that are
 responsible for the erroneous solution . That is , they are capable of blame
 assignment .

 4 . 5 . KNOWLEDGE ACQUISITION TOOLS

 In this section , a number of existing knowledge acquisition tools are analyzed with
 respect to the types of support that were identified in the previous section . The tools
 that are described were selected because they are prototypical representatives of
 dif ferent classes of tools . The results of the analysis are shown in Figure 16 , Figure
 17 and Figure 18 . For some tools , describing the functionality in terms of the four
 sub-tasks of the model-based KA paradigm required some reinterpretation . How-
 ever , in order to be able to compare dif ferent tools it is necessary to have a common
 framework , and we believe that the framework presented in Section 4 . 2 is
 suf ficiently general to do justice to the particularities of the dif ferent tools . The tools
 are described in a roughly chronological order .

 4 . 5 . 1 . Emycin
 EMYCIN (van Melle , 1979) , a shell based on the domain-independent core of MYCIN , is
 intended as a tool for the development of consultation programs . As already
 mentioned in Section 4 . 3 , EMYCIN has a fixed skeletal model based on the

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 218

 backward-chaining method and the context tree . Because this skeletal model is
 under-constrained , the tool can provide only limited support for model instantiation .
 The knowledge is entered into the system using the ‘‘Abbreviated Rule Language’’ a
 user-friendly interface on top of the production rules that EMYCIN uses for
 representing knowledge . A rule that is entered is checked for syntactic validity , and
 to a limited extent for ‘‘semantic’’ validity : EMYCIN checks whether an entered rule
 does not directly contradict another rule , and whether the entered rule is subsumed
 by another rule . Because the entered knowledge is directly mapped onto production
 rules there is no need for compilation . To support model refinement , EMYCIN has
 tracing facilities and it is able to answer why and how questions .

 4 . 5 . 2 . Kas
 KAS (Duda et al . , 1979) , which is derived from PROSPECTOR , is very similar to EMYCIN

 but has richer facilities for supporting model instantiation . For example , the tool
 protects against errors such as disconnecting parts of the semantic network that KAS

 uses for knowledge representation . Further , the tool keeps a record of unfinished
 elicitation jobs , thereby performing a kind of completeness checking .

 4 . 5 . 3 . Expert
 Compared to the previous tools , EXPERT (Weiss & Kulikowski , 1979) makes stronger
 assumptions about the kinds of knowledge that must be elicited : findings and
 hypotheses . It distinguishes three kinds of rules : finding-to-finding rules , hypothesis-
 to-hypothesis rules and finding-to-hypothesis rules . However , although EXPERT has a
 stronger skeletal model than EMYCIN and KAS , the tool does not use this model for
 supporting model instantiation . In EXPERT , the rules need to be entered using text
 editors . After syntax checking , these rules are then automatically compiled into an
 ef ficient internal representation . For refinement , EXPERT provides similar facilities as
 EMYCIN and KAS .

 4 . 5 . 4 . Mole
 MOLE (Eshelman , 1988) is a knowledge acquisition tool for systems that use the
 Cover-and-Dif ferentiate problem-solving method . The (built-in) skeletal model of
 MOLE is derived from the knowledge requirements for this method . MOLE uses its
 skeletal model to engage in a focused dialogue with the domain expert . During the
 model instantiation phase , MOLE uses static analysis techniques to decide on the
 consistency and completeness of the entered knowledge . Internally , the entered
 knowledge is represented in the form of production rules , so compilation is not
 needed . MOLE has advanced facilities for supporting the model-refinement activity . If
 MOLE makes an incorrect diagnosis in the model refinement phase , the tool tries to
 locate the source of the error and recommends possible remedies . Thus , in addition
 to tracing and explanation , this tool is also capable of blame assignment .

 4 . 5 . 5 . Salt
 SALT (Marcus & McDermott , 1989) can be used to develop expert systems that use
 the Propose-and-Revise problem-solving strategy . The tool has built-in expectations
 about the knowledge requirements of this method to structure the knowledge
 acquisition dialogue . For Propose-and-Revise , there are three types of knowledge :

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 219

 propose knowledge , constraint knowledge and knowledge for fixing constraint
 violations . SALT is capable of consistency checking and completeness checking .
 Initially , the entered knowledge is represented in a dependency network which is
 then automatically compiled into production rules . To support knowledge refine-
 ment , SALT is able to answer how , why , what-if and why-not questions .

 4 . 5 . 6 . Opal
 As already indicated in Section 4 . 3 , the skeletal model of OPAL (Musen et al . , 1988)
 is based on the method that the knowledge-based system will use (episodic
 skeletal-plan refinement) and on the domain about which it will reason (oncology) .
 Because of this strong model , the tool is able to perform extensive consistency and
 completeness checks , to communicate with experts in domain-specific terminology ,
 and to use specialized visualization techniques . OPAL compiles the entered know-
 ledge automatically into production rules . The tool has no knowledge refinement
 facilities .

 4 . 5 . 7 . Aquinas
 AQUINAS (Boose & Bradshaw , 1988) is a system for building classification expert
 systems . Like its predecessor , ETS (Boose , 1985) , the tool is centred around the
 repertory grid technique , which is a psychological technique for eliciting concepts
 and ‘‘personal constructs’’ . These personal constructs are dimensions on which the
 concepts may have values . The elicited concepts and distinctions together form a
 skeletal model that is used to direct the further KA process , which consists of
 assigning values to the concepts on the dimensions . In the knowledge instantiation
 phase , the concepts are organized in hierarchies and assigned values on the
 dimensions . This process is supported by graphical visualization and by dialogue
 structuring . The tool is able to perform simple completeness checks . The elicited
 knowledge can be compiled automatically into various expert system shells (e . g . KEE ,
 EMYCIN , OPS 5 , etc .) . The facilities for supporting knowledge refinement are those of
 the shells into which the knowledge is compiled .

 4 . 5 . 8 . Alto
 ALTO (Major & Reichgelt , 1990) is a tool that implements the laddered-grid
 knowledge-elicitation technique , intended for hierarchy elicitation . The tool expects
 that knowledge can be modelled in terms of tree structures . Based on this
 assumption , the tool visualizes the elicited knowledge in terms of directed graphs ,
 thereby providing the user with an intuitive overview of the elicited knowledge .
 During model instantiation , the tool performs consistency checking and some forms
 of completeness checking . For example , it insists that sibling concepts have at least
 one discriminating attribute . The elicited knowledge is semi-automatically translated
 into CommonSLOOP , an object-oriented representation system . During compila-
 tion , ALTO asks for additional knowledge for resolving ambiguities . ALTO has no
 facilities for supporting knowledge refinement .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 220

 4 . 5 . 9 . Prote ́ ge ́
 PROTE ́ GE ́ (Musen , 1989 b) , which was described briefly in Section 4 . 3 , was probably
 the first tool that recognized skeletal model construction as a distinct activity . The
 tool has a fixed task model , but allows the knowledge engineer to specify the
 ontology . This specification is then used to generate tools similar to OPAL , but for
 dif ferent application domains .

 4 . 5 . 1 0 . Spark - burn - firefighter
 Another tool that supports model construction is SPARK , which belongs to the
 SPARK-BURN-FIREFIGHTER (SBF) environment (Klinker , Dhola , Dallemagne , Marques &
 McDermott , 1991) . SPARK allows the user to indicate which of the tasks in a
 particular industrial environment could be performed by a KBS . To do this , the tool
 employs a general model of the tasks that are performed in some domain . Based on
 this analysis and a theory of what methods are used in particular organizational
 environments , SPARK generates a specification of the method of the KBS , in the form
 of a configuration of mechanisms . This mechanism configuration is then used by
 BURN , the model instantiation tool of the SBF workbench , to elicit the domain
 knowledge that is required by the method . For each mechanism in the library , BURN

 has a specific knowledge acquisition module . It is not entirely clear from the
 literature which kinds of support are provided by BURN . As explained in (Yost ,
 Klinker , Linster , Marques & McDermott , 1994) , the knowledge refinement tool
 FIREFIGHTER was never implemented .

 4 . 5 . 1 1 . Keats
 The KEATS system (Motta , Rajan , Domingue & Eisenstadt , 1990) consists of a
 number of tools that support the various activities in model-based KA . The skeletal
 models in KEATS are coding sheets , templates that define the structure of the skeletal
 model . In Motta et al . (1990) both task-oriented coding schemes and domain-
 oriented coding schemes are mentioned . However , it is not clear from the literature
 whether the system supports the development of such coding schemes . The coding
 schemes can be filled-in to arrive at an instantiated skeletal model . The instantiated
 model is then used to develop an executable knowledge base . For the executable
 model , KEATS uses a hybrid representation language for which it provides a forward-
 and backward-chaining rule interpreter , a nonmonotonic truth maintenance system ,
 a frame-based representation language and a constraint-based language . KEATS has a
 number of facilities for supporting model refinement . For example , the tool has
 graphical visualization tools for inspecting persistent traces of problem-solving
 sessions at dif ferent levels of abstraction .

 4 . 5 . 1 2 . Shelley
 SHELLEY (Anjewierden et al . , 1992b) is a workbench that provides tool support for
 the KADS methodology . The system supports model construction by providing an
 inference structure editor that has access to a library of interpretation models .
 Model instantiation is supported by a number of facilities (e . g . a concept editor , a
 card sort tool , a protocol editor , etc .) . SHELLEY concentrates on the earlier activities
 of the knowledge acquisition process , and it does not produce executable knowledge
 bases . Therefore , model compilation and model refinement are not supported .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 221

 4 . 5 . 1 3 . Kadstool
 KADSTOOL (Albert & Jacques , 1993) is a commercial system based on the same ideas
 that underlie SHELLEY , but it is based on a more recent version of the KADS
 methodology . Besides an inference structure editor , KADSTOOL provides facilities for
 defining domain ontologies . The system has an editor that supports domain
 modelling . Some actions that this editor supports can be considered as ontology
 construction . For example , it is possible to define that domain relations are
 transitive . This knowledge can then be used to decide how domain knowledge must
 be visualized . However , in KADSTOOL ontology construction and model instantiation
 are not clearly separated . Similar to SHELLEY , KADSTOOL is intended as a tool for
 knowledge analysis ; it does not support model compilation or model refinement .

 4 . 5 . 1 4 . Kew
 KEW (Shadbolt & Wielinga , 1990 ; Anjewierden , Shadbolt & Wielinga , 1992 a) ,
 another third-generation KA environment , is a large system that embodies a variety
 of knowledge elicitation and knowledge refinement tools . As in its predecessor
 SHELLEY , the skeletal models that are used in KEW are KADS-based . However , in
 contrast with the original KADS approach , KEW does not merely provide a library of
 such skeletal models , but it uses the theory of ‘‘generalized directive models’’
 (GDMs) for providing active support for the model construction activity (van Heijst ,
 Terpstra , Wielinga & Shadbolt , 1992) . As in SBF and SHELLEY , the skeletal models in
 KEW are task models—there is no explicit notion of ontology . KEW has a number of
 knowledge instantiation tools , which represent the elicited knowledge in private
 representation languages . These private representations can be translated into a
 frame language and into first-order predicate logic . For both languages KEW has
 interpreters and knowledge refinement facilities .

 4 . 5 . 1 5 . Krest
 The KREST workbench (Steels , 1993) is yet another example of a third-generation
 KA environment . In this system , which is based on the componential framework
 (Steels , 1990) , skeletal-model construction consists of two parts : (i) the construction
 of a task structure , which is a task decomposition tree , and (ii) the construction of a
 model dependency diagram , which is a specification of the domain models (or
 ontology) that are needed to perform a particular task . For both constituents KREST

 provides editors . KREST is intended to be used in combination with an application kit
 which is a library of reusable components . In parallel with the task structure for the
 application , a task structure for knowledge acquisition is constructed . Thus , for
 every problem-solving method , an application kit must also have an associated
 knowledge acquisition method or tool . It is not clear from the literature in which
 ways model instantiation is supported . The elicited knowledge is compiled into
 CLOS code . KREST does not support knowledge refinement .

 4 . 5 . 1 6 . Dids
 In the DIDS system (Runkel & Birmingham , 1994) , the emphasis is on separating task
 knowledge and search control knowledge . The skeletal model is formed by a
 description of a problem space , a set of operators (the task model) and a set of
 knowledge structures (the ontology) . Based on this skeletal model , a number of

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 222

 mechanisms for knowledge acquisition are selected , and a knowledge acquisition
 method is specified . The mechanisms for knowledge acquisition use specialized
 visualizations and may have private validation procedures . In the model-compilation
 phase , the knowledge engineer associates problem-solving mechanisms with the
 operators . The mechanisms can be associated with code for compiling to dif ferent
 problem solvers . Because the compilation procedures make assumptions only about
 the mechanisms , and not about the instantiated knowledge , they can be stored for
 reuse once they are developed .

 4 . 5 . 1 7 . Prote ́ ge ́ - II
 Current work on PROTE ́ GE ́ -II (Puerta , Egar , Tu & Musen , 1992) attempts to overcome
 the limitations of PROTE ́ GE ́ . PROTE ́ GE ́ -II is a large environment that embeds a number
 of tools , amongst which a mechanism configuration facility and an ontology editor .
 Mechanisms are primitive building blocks for problem-solving methods . In the
 PROTE ́ GE ́ -II framework , the configuration of mechanisms and the application
 ontology together form the skeletal model . Another tool of the workbench , DASH ,
 uses the ontology to generate a model instantiation tool , which is capable of
 consistency checking and communication in domain-specific terminology . The user
 of DASH (usually a knowledge engineer) is responsible for defining an intuitive
 user-interface and , to some extent , a sensible dialogue structure . Similar to PROTE ́ GE ́ ,
 PROTE ́ GE ́ -II compiles the generated knowledge directly into CLIPS production rules .
 The system does not support knowledge refinement .

 The results of the analysis of the dif ferent tools are summarized in Figure 16 ,
 Figure 17 and Figure 18 . It should be emphasized that tools which have many pluses
 in the tables are not necessarily the ideal tools for knowledge acquisition . Some
 tools support all activities to some extent , while other tools provide extensive
 support for one activity only . For example , although AQUINAS does provide editor
 support for ontology specification according to Figure 16 , the type of things that can
 be specified are restricted to concepts and dimensions . Further , there is always some
 form of subjectivity in analyses as the one presented here . This subjectivity is
 manifest in the tools that were selected , the dimensions that were used for the
 comparison and the way in which the consulted literature was interpreted . However ,
 in spite of these dif ficulties we still think that the tables are a useful starting point for
 comparing tools and investigating which facilities an ideal knowledge acquisition
 tool should provide .

 4 . 6 . SUMMARY

 This section has presented a framework for comparing model-based knowledge
 acquisition tools . The framework distinguishes four activities in the model-based KA
 paradigm : the construction of a skeletal model , the instantiation of that model , the
 compilation of the instantiated model into an executable model and the dynamic
 evaluation of the executable model to provide feedback about the validity of the
 instantiated model . Also a fifth activity was mentioned : the use of the instantiated
 model to provide feedback about the validity of the skeletal model , but since there
 are at present no KA tools that support this activity it was left out of the

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 223

 Skeletal model construction

 Task model Ontology

 Tool Editor Library Process Editor Library Process

 EMYCIN
 KAS
 EXPERT
 MOLE
 SALT
 OPAL
 AQUINAS
 ALTO
 PROTE ́ GE ́
 SBF
 KEATS
 SHELLEY
 KADSTOOL
 KEW
 KREST
 DIDS
 PROTE ́ GE ́ -II

 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 ?
 1
 1
 1
 1
 ?
 1

 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1

 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 2
 2
 2
 1
 2
 2
 2

 o
 2
 2
 2
 2
 2
 o
 o
 1
 2
 ?
 2
 1
 2
 1
 ?
 1

 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 2
 2
 2
 1
 1
 1

 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

 F IGURE 16 . A summary of the means by which the tools described in this section support the model
 construction activity . Editor support means that the tool has editing facilities for specifying the skeletal
 model , library support means that the tool provides access to a library of reusable skeletal models or
 components of skeletal models , and process support means that the tool actively supports the modelling
 process . 1 : the type of support is provided ; o : the type of support is only provided to a limited extent ; - :
 the type of support is not provided ; n . a . : not applicable ; ? : could not be determined from the literature

 whether the type of support is provided .

 framework . For each of the four activities , ways were distinguished in which they
 could be supported by tools . Then , a number of well-known KA tools were
 compared with respect to these types of support .

 An important reason for developing the framework was to gain insight in the
 range of skeletal models that have been used in KA tools and the ef fects of the use
 of these models on the other knowledge acquisition activities . Although it was
 claimed that all knowledge acquisition tools are model based to some extent , the
 model-based-KA perspective has introduced some bias in the selection of dimen-
 sions for comparison . For example , a number of researchers in the KA-as-modelling
 paradigm have emphasized the importance of using multiple experts (e . g . Shaw &
 Gaines , 1989) . Tools developed from this perspective often have advanced features
 for integrating the opinions of dif ferent experts , but this feature was not chosen as a
 dimension for comparison .

 Based on the analysis , the following conclusions can be drawn . Firstly , dif ferent
 types of skeletal models have been used in model-based knowledge acquisition ,
 which contain dif ferent types and dif ferent amounts of information . The skeletal
 models can be classified according to a number of dimensions . There are

 $ tools which use widely applicable but weak skeletal models (e . g . EMYCIN) and tools
 which use very a specific skeletal model which have a limited scope (e . g . MOLE) ;

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 224

 Model instantiation

 Tool
 Consistency

 checking
 Completeness

 checking
 Domain

 terminology
 Intuitive

 visualization
 Dialogue

 structuring

 EMYCIN
 KAS
 EXPERT
 MOLE
 SALT
 OPAL
 AQUINAS
 ALTO
 PROTE ́ GE ́
 SBF
 KEATS
 ICONKAT
 SHELLEY
 KADSTOOL
 KEW
 KREST
 DIDS
 PROTE ́ GE ́ -II

 o
 o
 o
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 2
 o
 2
 1
 1
 1
 1
 1
 1
 2
 ?
 2
 2
 1
 1
 ?
 1
 ?

 2
 2
 2
 2
 2
 1
 1
 2
 1
 2
 1
 2
 2
 2
 2
 ?
 2
 1

 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ?
 1
 1

 2
 2
 2
 1
 1
 2
 o
 2
 2
 1
 2
 2
 2
 2
 2
 ?
 1
 2

 F IGURE 17 . A summary of the means by which the tools support model instantiation . Key as in Figure 16 .

 Model compilation Model refinement

 Tool Automatic
 Semi-

 automatic
 Library
 support Tracing

 How /
 why

 What
 if / why

 not
 Blame-

 assignment

 EMYCIN
 KAS
 EXPERT
 MOLE
 SALT
 OPAL
 AQUINAS
 ALTO
 PROTE ́ GE ́
 SBF
 KEATS
 ICONKAT
 SHELLEY
 KADSTOOL
 KEW
 KREST
 DIDS
 PROTE ́ GE ́ -II

 n . a .
 n . a .
 1

 n . a .
 1
 1
 1
 2
 1
 1
 ?
 1
 2
 2
 o
 1
 2
 1

 n . a .
 n . a .
 2

 n . a .
 2
 2
 2
 1
 2
 2
 ?
 2
 2
 2
 2
 2
 2
 2

 n . a .
 n . a .
 2

 n . a .
 2
 2
 2
 2
 2
 2
 ?
 2
 2
 2
 2
 2
 1
 2

 1
 1
 1
 1
 1
 1

 n . a .
 1
 ?
 1
 1
 1
 2
 2
 1
 1
 1
 1

 1
 1
 1
 1
 1
 ?

 n . a .
 2
 ?
 2
 1
 1
 2
 2
 1
 2
 2
 2

 2
 2
 2
 ?
 1
 ?

 n . a .
 2
 ?
 2
 2

 n . a .
 2
 2
 2
 2
 2
 2

 2
 2
 2
 1
 2
 2

 n . a .
 2
 2
 2
 2

 n . a .
 2
 2
 2
 2
 2
 2

 F IGURE 18 . A summary of the means by which the tools support model compilation and refinement . Key
 as in Figure 16 .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 225

 $ tools which use skeletal models of a knowledge representation formalism (e . g .
 EXPERT) and tools which use knowledge-level skeletal models (e . g . SHELLEY) ;

 $ tools which use fixed , implicit skeletal models (e . g . OPAL) and tools which allow
 user-defined , explicit skeletal models (e . g . PROTE ́ GE ́ -II) ;

 $ tools where the skeletal model is a model of the reasoning processes (e . g . KEW)
 and tools where the skeletal model is elicitation oriented (e . g . AQUINAS) ; and

 $ tools where the skeletal model describes the types of domain knowledge (e . g .
 ALTO) and tools where the model describes the knowledge requirements of the
 problem-solving method (e . g . SALT) .

 In model-based knowledge acquisition , the information in the skeletal model is
 used to support model instantiation , model compilation and model refinement .
 Therefore , it is important to know how the dif ferent types of information that
 skeletal models may contain are related to the types of support that can be provided
 for the other activities . In the next section , this question is addressed for the model
 instantiation activity . The section describes the CUE workbench which uses informa-
 tion specified in one part of the skeletal model—the application ontology—to
 support model instantiation by consistency checking , by completeness checking , by
 using domain-specific terminology , by using specialized visualization and by dialogue
 structuring .

 Section 6 addresses the question of how skeletal models can be used in the model
 compilation activity . It presents an approach where user-defined , knowledge-level
 skeletal models are mapped onto skeletal models of the representation formalisms
 used by problem solvers . These mappings may be considered as extensions to the
 knowledge-level skeletal model for compilation purposes .

 5 . Ontology-based knowledge acquisition in CUE

 The analysis in the previous section of the state of the art with respect to tools that
 support the model-based knowledge acquisition paradigm shows that there is an
 emerging theory of the various activities in this process and of the ways in which
 tools can support these activities . We now present CUE as a KA environment that
 operationalizes this theory . Many of the ideas behind CUE are thus not new , but are
 just an explicit integration of principles that underly existing tools . CUE was
 developed as a testbed for extending this emerging KA process theory , in particular
 in the areas of (i) exploiting a library of ontologies such as the one described in
 Section 3 , and (ii) the exploration of the notion of knowledge - elicitation strategies .
 The library of ontologies acts as a repository of previous knowledge engineering
 experiences , and enables the knowledge engineer to reuse descriptions of the
 structure of domain knowledge that have proven useful in the past . Knowledge-
 elicitation strategies are principles for organizing the knowledge-elicitation dialogue ,
 and present an alternative for existing techniques that either have predefined
 dialogue structures or leave navigation to the user .

 As mentioned in Section 2 we distinguish four activities in knowledge modelling :
 building a task model , building an application ontology , mapping the task model

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 226

 T ABLE 2
 The acti y ities in constructing the knowledge model that are
 distinguished in Section 2 approach , and the CUE tools that

 support these acti y ities

 Modelling activity CUE tool

 Construct task model for application
 Construct application ontology
 Map task model onto application ontology
 Instantiate application ontology

 QUITE

 QUOTE

 QUITE

 QUAKE

 onto the application ontology and instantiating the application ontology (see Figure
 4) . Table 2 shows the CUE tools that support these activities .

 Section 5 . 1 presents a global overview of how the CUE tools are intended to be
 used in the KA process . Section 5 . 2 describes the two tools that support skeletal
 model construction in CUE : QUITE , a task modelling editor and QUOTE , an editor for
 ontologies in Ontolingua . Section 5 . 3 describes QUAKE , a tool that exploits the
 skeletal models developed with QUITE and QUOTE to elicit domain knowledge in a
 focused way . In the context of QUAKE an analysis of possible knowledge-elicitation
 strategies is presented . In Section 5 . 4 , CUE is compared with KEW , PROTE ́ GE ́ -II and
 DIDS , and some strengths and weaknesses of the system are described . This section
 only describes CUE ’ S facilities for supporting model construction and model
 instantiation . Section 6 describes how CUE could support model compilation . The
 current version of CUE does not support model refinement , the fourth activity of the
 model based knowledge acquisition paradigm .

 5 . 1 . STEPS IN KNOWLEDGE MODELLING

 To help understand why the dif ferent tools have their specific functionalities , this
 section presents an analysis of the dif ferent steps in the knowledge modelling
 process in the form of a generic scenario . In principle , each of the steps should be
 supported by a knowledge engineering workbench . The scenario is based on the
 activities mentioned in Table 2 , but some activities are divided into multiple steps
 because dif ferent support facilities are needed .

 (1) Informally describe domain and task of the application . KBS development
 always starts with getting an initial picture of the kind of application that is required .
 This typically requires talking to managers and domain experts , reading some
 publications about the field , etc .
 (2) Identify generic tasks . Based on the informal domain and task description , the
 knowledge engineer then constructs an initial version of a task model . This
 model—a configuration of generic-task instances—is underspecified : it only models
 the high-level structure of the reasoning task that the application should perform .
 Because of the strong assumptions about the structure of generic tasks (the
 STModel) , the task model still gives guidance about the types of domain knowledge
 that are needed .
 (3) Specify which parts of the task must be automated . Usually , only some parts of

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 227

 the reasoning process will be performed by a KBS . This should be specified in the
 task model .
 (4) Construct the application ontology . For constructing the application ontology
 the ontology library is provided . As described in Section 3 , the library is indexed by
 domain and by methods . By specifying the domain and the method , the library can
 be used for retrieving concept definitions that are likely to be useful in the
 application ontology . If there is no entry for the domain in the library , constructing
 the application ontology requires more creativity from the knowledge engineer . †
 (5) Specify the role-to-role mappings . When the application ontology has been
 built , the task model can be completed . This involves specifying which knowledge
 roles are shared between the generic-task instances , by means of role-to-role
 mappings .
 (6) Map task model onto ontology . The connection between the task model and the
 application ontology must be specified . This can be done by defining ontology
 mappings . These mappings specify that particular roles in the task model may only
 be fulfilled by instances of particular ontological concepts . Once the mappings have
 been specified , the skeletal model is completed .
 (7) Create elicitation agenda . Now the application ontology must be instantiated .
 The first step in this process is creating an elicitation agenda—a list of elicitation
 activities that should be performed .
 (8) Specify knowledge-elicitation strategy . After having defined the elicitation
 agenda , a knowledge-elicitation strategy may be specified . This can best be viewed
 as an ordering on the elicitation activities in the agenda .
 (9) Elicit domain knowledge . Finally , the tuples and instances of the relations ,
 functions , and classes in the application ontology should be elicited and saved in a
 knowledge repository .

 In principle , all of the steps in the generic scenario should be supported by CUE

 tools . In the following sections , it will be explained to what extent this is realized in
 the current CUE implementation .

 5 . 2 . SKELETAL MODEL CONSTRUCTION IN CUE

 As mentioned in Section 2 , in our approach the skeletal models consist of a task
 model and an application ontology . For both components , CUE contains a tool that
 supports their construction . QUITE , the task model editor , graphically supports the
 configuration of STModel instances into a task model for the application . QUOTE

 supports construction of application ontologies .

 5 . 2 . 1 . Quite
 In Section 4 it was argued that there are three ways in which tools can support the
 construction of task models : (i) by providing specialized editors , (ii) by providing
 libraries of reusable components , and (iii) by providing support for the modelling
 process .

 In the context GAMES-II , library support is quite easy . Because the task models
 are configurations of the STModels for diagnosis , therapy planning and patient
 monitoring , the task modelling library contains only three models . QUITE users can

 † Section 7 will present a number of guidelines for acting in this situation .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 228

 select instances of these STModels and connect them by means of control links and
 role - to - role mapping . Control links are global indications of the order in which the
 instantiated STModels must be invoked to perform the application task . They are
 intended for supporting knowledge acquisition and do not contain suf ficient
 information to drive problem solving . The nitty gritty of task control is specified in
 the design model . Role-to-role mappings indicate data-flow between STModel
 instances . For example , they could specify that diagnostic hypotheses are mapped
 onto therapeutic problems .

 QUITE users can specify control links and role-to-role mappings by setting the tool
 in the appropriate mode and drawing lines between the objects that need to be
 connected . If the specified links or mappings do not violate syntactical constraints ,
 they are added to the task model . An example of a syntactical constraint is that roles
 should not be mapped onto roles within the same instance of a generic task .

 In many cases , the KBS that is being developed will only automate parts of the
 problem solving process , while other parts remain the responsibility of human
 agents . QUITE supports this by allowing the user to indicate which of the inferences in
 the task model will be performed by the application . The other tools in CUE will only
 attempt to acquire the knowledge required for these parts of the reasoning process .

 The task model is an informal , high-level overview of the medical reasoning
 process which fulfils two functions in the remainder of the knowledge acquisition
 process ; (i) providing guidance for constructing the application ontology , and (ii)
 providing background knowledge for specifying the global control regime when the
 design model is constructed . For the first of these purposes , QUITE allows users to
 specify ontology mappings between STModel components and components of the
 application ontology . The ontology mapping editors are described in Section 5 . 2 . 2 .
 For the second purpose , QUITE has extensive documentation facilities : every
 STModel , knowledge role , inference and mapping in the task model can be
 documented individually . Figure 19 summarizes the functionality provided by QUITE .

 5 . 2 . 2 . Quote
 A second tool of the CUE environment is QUOTE . This tool is intended to support the
 development of application ontologies , either from scratch or by fine-tuning
 ontological theories selected from the ontology library described in Section 3 .
 Further , the tool can be used for the development of ontological theories for the
 library .

 Le y els of support in QUOTE . QUOTE supports the definition of ontologies at three
 levels . The first of these , the ontology level , has to do with the selection of theories
 from a library to build an application ontology . The graphical interface enables users
 to get a quick overview of the contents of an ontological theory , without an analysis
 of the internal details of the definitions .

 The second level of support is the theory level . QUOTE graphically shows the type
 constraints that are specified in the definitions of a theory . Whenever a parameter of
 a relation or a function is not typed , a warning is given . † QUOTE also warns the user

 † In principle , nothing is wrong with untyped parameters . Neither Ontolingua nor QUOTE enforce such
 typing . However , the ontologies defined in QUOTE are intended for driving the knowledge-elicitation
 process , and type constraints on parameters are important for the validation of elicited knowledge .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 229

 Summary of QUITE ’s functionality
 $ Supported activities from Section 5 .1

 —2 . Build an initial task model .
 —3 . Specify which parts of the task must be automated .
 —5 . Specify the role mappings .
 —6 . Map task model onto ontology .

 $ Intended users
 —Knowledge engineers , in cooperation with domain experts .

 $ Support types
 —Editing facilities .
 —Library support .

 $ Input from other tools
 —For the construction of the task model , QUITE requires no input from other tools .
 —For the mapping between the task model and the application ontology , QUITE requires an

 ontology defined in Ontolingua .
 $ Output

 —A task model .
 —A series of ontology mappings .

 $ Theoretical background
 —Task models can be constructed by configuring STModels for the three generic tasks in

 medicine : diagnosis , therapy planning and patient monitoring .

 F IGURE 19 . A synopsis of QUITE’s functionality .

 when definitions refer to classes , relations or functions that are not defined in the
 theory or its included theories ; or when concepts are defined more than once .

 The third level of support has QUOTE provides is at the level of Ontolingua
 definitions . The definition editors facilitate the definition of classes , relations and
 functions by syntax checking , automatic indentation , and by providing direct access
 to relevant parts of the on-line documentation distributed with Ontolingua .
 Therefore , every definition that is created or modified in QUOTE is guaranteed to be
 consistent with the Ontolingua language definition . QUOTE works directly on
 Ontolingua theories . Theories that are created using QUOTE are saved as Ontolingua
 files , and thus can be used directly as input for the Ontolingua translators described
 in (Gruber , 1993) . Furthermore , QUOTE can also be used to edit or visualize
 Ontolingua files that were not created with the tool . For these reasons the tool can
 also be used outside the CUE framework .

 QUOTE ’ s functionality . The functionality of QUOTE will be demonstrated by showing
 how the tool supports the development of a simple application ontology in the
 domain of managing graft-versus-host disease (GVHD) .

 When QUOTE is started , the first window that appears is the theory - inclusion - graph
 y iewer shown in Figure 20 . This facility can be used to select and load theories from
 the library . The loaded theories are automatically added to the application ontology .
 The theory-inclusion-graph viewer visualizes the theories that are part of the
 application ontology and their inclusion relations . As explained in Section 3 , a
 theory includes another theory when the definitions in the former depend on
 definitions in the latter . For example , the theory finding , which contains the
 definition of the concept finding , includes the theory observable , which defines the
 concept observable , because findings are defined as expressions about

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 230

 F IGURE 20 . A visualization of the theory structure of an application ontology in QUOTE . The arrows
 indicate direct inclusion relations . When the user presses the OK button , the theory finding-disease is

 added to the graph .

 observables . All theories that are part of the inclusion graph in Figure 20 are loaded
 from the library of ontological theories .

 In Figure 20 , the user is defining a new theory , finding-disease , in which the
 concepts will be defined that specify how diseases are related to findings in the
 GVHD domain . † Since the definitions of these concepts depend on the definitions of
 findings and of diseases , the theories that contain these definitions are included in
 the new theory .

 When the new theory is created , it is automatically added to the theory inclusion
 graph . The contents of theories can be specified or altered by means of theory
 editors . The user interface of a theory editor consists of two areas (see Figure 21) . ‡
 The upper area contains a number of browsers which show the classes , relations and
 functions that are defined in the theory , and one which shows the theories that are
 imported by the theory . The lower area shows a graphical representation of the
 structure of the theory . The rounded boxes in the lower area of the tool represent
 already defined classes , and the rectangular boxes represent defined relations . The
 texts finding-importance , evoking-strength and frequency represent
 functions .

 QUOTE distinguishes between classes that are only intensionally defined and classes
 for which the instances are enumerated in the definition . We call the latter
 enumerated classes . The dif ference between these two types of classes is important
 because it af fects the knowledge acquisition process : the definition of instances of
 enumerated classes is part of application ontology construction , whereas the
 definition of instances of intentionally defined classes is part of the model
 instantiation activity . Defining an enumerated class is a way to prevent CUE from

 † In reality , finding-disease is also part of the ontology library . We assume here that it must be
 defined by the knowledge engineer to illustrate the functionality of QUOTE .

 ‡ Actually , there are three areas since every CUE tool has a feedback area at the bottom of the tool .
 This area is used to provide the users with feedback about the actions that they initiate .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 231

 F IGURE 21 . QUOTE ’s theory editor visualizing the theory finding-disease . Note that the terms ‘‘disease’’
 and ‘‘finding’’ in the imports browser refer to the theories included by finding-disease . In these theories

 the concepts finding and disease are defined .

 attempting to elicit other instances of that class during the model instantiation
 activity . A typical use of enumerated classes is for defining value sets for attributes .
 For enumerated classes , QUOTE also shows the instances . For example , in Figure 21
 the instances of the enumerated classes importance-rate , strength-value and
 frequency-value are displayed . The arrows in the graph indicate type constraints .
 For instance , the relation manifestation-of shown in the figure is defined to have
 a disease and a finding as its arguments .

 The user can edit the definitions by opening a definition editor on a relation , class
 or function . Definition editors allow modification of the definitions at the Ontolin-
 gua level . For instance , in Figure 22 the user has opened a definition editor for the
 function frequency . Definition editors are text buf fers which provide emacs-like
 editing facilities . The CUE architecture ensures that the graphical representation and
 the underlying Ontolingua definitions are always consistent . This architecture is
 based on a user-interface management system which detects user actions and
 propagates these to the data structures , and which automatically detects changes in
 the data structures and propagates these to the visualizations . A detailed description
 of this architecture can be found in Wielemaker and Anjewierden (1989) and
 Anjewierden et al . (1992 a) .

 In Section 4 three types of support were identified for ontology construction ;
 specialized editing facilities , library support and process support . Only the first two
 of these support types are provided by QUOTE . The specialized editing support is
 based on three types of functionality : syntax checking , type checking and graphical

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 232

 F IGURE 22 . QUOTE ’s theory editor when the user is editing the function frequency . The window labelled
 ‘‘frequency’’ in the lower area of the theory editor is an example of a definition editor .

 visualization . Although these functionalities facilitate the definition of ontologies
 significantly , the support remains passive : the user defines the concept , and the tool
 warns that something might be wrong or missing . The creative aspect of ontology
 construction remains a task for the user . However , the ontology library ensures that
 in many cases application ontology construction is reduced to library selection .
 Figure 23 summarizes the functionality provided by QUOTE .

 Summary of QUOTE ’s functionality
 $ Supported activities from Section 5 .1 .

 —4 . Construct the application ontology by selection , editing and configuration .
 $ Intended users

 —Knowledge engineers , in cooperation with domain experts .
 $ Support types

 —Editing facilities .
 —Library support .

 $ Input from other tools
 — QUOTE does not require input from other tools , but it can be used to visualize or edit

 Ontolingua theories developed outside the CUE environment . QUOTE can best be used
 together with a library of ontological theories , but this is not a requirement .

 $ Output
 —An application ontology , consisting of a number of Ontolingua theories .

 $ Theoretical background
 —The theory that underlies QUOTE is the Ontolingua theory : ontologies consist of

 definitions of classes , relations and functions that are organized in theories . A definition
 consists of a set of labelled sentences .

 F IGURE 23 . A synopsis of QUOTE ’s functionality .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 233

 5 . 2 . 3 . Connecting task model and application ontology
 Once the task model and the application ontology have been developed , they must
 be connected . This can be done using QUITE which has specialized mapping editors
 for supporting this activity . Every role and every inference in the task model can be
 associated with ontology mappings . For knowledge roles , these mappings specify
 which domain concepts may play these roles . For example , it may be specified that
 instances of the ontological class disease may play the role of diagnostic hypotheses .
 For , inferences , the mapping specify the types of domain knowledge that are used to
 perform the inference step . Thus , in the case of inferences , the mappings specify
 how the ontological requirements of the problem-solving methods associated with
 the inferences are satisfied . The screen dump of QUITE in Figure 46 shows two
 mapping editors .

 5 . 3 . MODEL INSTANTIATION IN CUE

 Skeletal models specify which kinds of knowledge are needed for applications , and
 how the knowledge will be used during reasoning . The purpose of QUAKE , CUE ’s
 model instantiation tool , is to interact with the domain expert to collect the domain
 knowledge and store it in a knowledge repository . In Section 4 , five types of support
 were identified for model instantiation : (i) consistency checking , (ii) completeness
 checking , (iii) use of domain specific terminology , (iv) use of intuitive visualization
 and (v) dialogue structuring . This section describes how each of these forms of
 support are provided by CUE .

 QUAKE can be used in two modes of interaction : passive , where the user
 determines the structure of the knowledge elicitation dialogue , and active , where the
 tool acts as an interviewer . Section 5 . 3 . 1 describes how QUAKE can be used in passive
 mode , thereby illustrating how the tool performs consistency checking and how it
 uses domain specific terminology . Section 5 . 3 . 2 describes the active mode , in which
 the tool also checks for completeness and structures the knowledge elicitation
 dialogue . Section 5 . 3 . 3 describes the use of specialized visualization techniques in
 QUAKE . Finally , Section 5 . 3 . 4 explains how QUAKE exploits the application ontology
 to support model instantiation .

 5 . 3 . 1 . QUAKE as a passi y e consistency checker
 QUAKE provides a narrow view on the underlying knowledge base . Only parts
 directly relevant to the current elicitation activity are shown . QUAKE ’s basic user
 interface , shown in Figure 24 , consists of three areas . The upper left area is the
 object window . An object is either an instance of a class or a tuple of a relation . The
 object window is used for displaying information about the object that is the focus of
 the current elicitation activity . The right upper area contains a multi-functional
 browser . Depending on the nature of the elicitation activity , this browser can show
 dif ferent types of objects . The lower area of the tool is the interaction window . In
 this window the user is prompted to assert new knowledge in the knowledge
 repository .

 The use of QUAKE in passive mode will be illustrated with a fragment of a
 knowledge-elicitation scenario for a system that diagnoses GVHD . For this scenario ,
 we use the application ontology described in Section 5 . 2 . 2 . The scenario will also be
 used in Section 5 . 3 . 2 to describe some more advanced features of the tool .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 234

 F IGURE 24 . QUAKE after the domain expert has entered some diseases . The entered diseases are
 visualized in the browser on the right side of the tool . The user is just entering a fifth disease :

 ACUTE-HEPATITIS .

 A knowledge - elicitation scenario . In the example scenario , the domain expert starts
 the knowledge elicitation session by entering diseases . Therefore , the user focuses
 the tool on the class disease , which turns the multi-functional browser into a
 browser for disease instances . The expert enters the names of some diseases that are
 relevant in the application area . The result is shown in Figure 24 .

 Once five diseases have been entered , the user decides to concentrate on one of
 them : GVHD . The disease is selected and visualized in QUAKE ’s object window . In
 the application ontology , no attributes are defined on instances of class disease .
 Therefore , the user decides to ask the tool for the relations that are defined on
 diseases . According to the application ontology , there are three kinds of relations
 defined on instances of the class disease : disease-subtype , † manifestation-of
 and has-treatment . The relations are shown in the browser , which is now used as
 a relation browser . In Figure 25 , the relation disease-subtype is mentioned twice ,
 because GVHD can play two roles in this relation . In the first relation specifier
 GVHD plays the role of the supertype , whereas in the second specifier GVHD
 would be the sub-type .

 The domain expert decides to work first on the manifestations of GVHD , so (s)he
 selects that relation in the browser . The tool responds by showing all the findings
 that are defined as manifestiations of GVHD . However , in this case there are as yet
 no findings associated with GVHD . The domain expert decides to enter the
 presence of a rash as a manifestation of GVHD and selects the corresponding
 pulldown option , which results in the tool showing a template for the
 manifestation-of relation in the interaction window . Because the domain expert
 is working on GVHD , the disease parameter is already instantiated . As illustrated in
 Figure 26 , the user enters the finding ‘‘rash 5 present’’ in the text field . When the

 † Note that the disease-sub-type relation is an object level relation that can hold between instances of
 the ontological class disease . This relation has nothing to do with the sub-class relation which is used in
 Ontolingua .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 235

 F IGURE 25 . QUAKE showing the relations defined on the class of GVHD .

 domain expert is finished QUAKE checks whether the entered expression is
 syntactically correct and consistent with the application ontology . If the new
 expression is correct and does not conflict with previously entered information , it is
 asserted in the QUAKE knowledge base . An example of a possible conflict would be
 that the domain expert had already asserted that rash is an instance of disease .
 Since it is defined in the application ontology that a finding has an observable as
 its first parameter and disease is not specified as a sub-class of observable or vice
 versa , QUAKE would in that case refuse to accept the entered finding .

 F IGURE 26 . QUAKE when the domain expert enters that the presence of rash is a manifestation of GVHD .
 When the user does not know in which form the finding should be entered the tool can be asked to show

 a template of the relation .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 236

 F IGURE 27 . QUAKE when the domain expert enters the evoking strength of the presence of rash for
 GVHD . Because strength-value is an enumerated class , the tool is able to show the allowed values .

 In the scenario , the domain expert continues by asserting that another manifesta-
 tion of GVHD is the presence of fever . After that (s)he decides to specify some
 further qualifications of the first mentioned manifestation . The corresponding tuple
 is selected in the browser and displayed in the upper left window . According to the
 application ontology , manifestation-of relations have two attributes : evoking-
 strength and frequency . † The user first selects the evoking-strength attribute
 and as a result a template for the function appears in the interaction window (Figure
 27) . Because in the application ontology evoking-strength is defined to have a
 strength-value as its value , which is an enumerated class , QUAKE is able to
 generate the list of possible values for the attribute . This list is used to support an
 auto-completion facility (which is also displayed in Figure 27) . This example clearly
 illustrates the importance of the distinction between intensionally defined and
 enumerated classes mentioned in Section 5 . 2 . 2 : in the model instantiation phase it is
 not possible to define instances of enumerated classes .

 The scenario shows that QUAKE uses the application ontology to provide strong
 guidance for the model instantiation process . The tool prevents the user from
 entering expressions that conflict with the definitions in the ontology , and the tool
 interacts with the user in domain oriented terminology : it prompts for diseases and
 findings , and not for method-specific knowledge types , such as hypotheses and data ,
 or for symbol-level constructs such as rules or constraints . Of course , the ability of
 the tool to communicate in domain-specific terminology depends on the domain

 † QUAKE interprets unary functions as attributes .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 237

 specificity of the application ontology . If a knowledge engineer uses only generic
 vocabulary in the definitions , QUAKE is only able to communicate in generic terms .
 The knowledge engineer should take this into account when constructing the
 application ontology .

 QUAKE confronts the user with a limited amount of information at a time . For
 instance , Figure 27 shows only the manifestations of GVHD , and the evoking-
 strength and the frequency for one of these manifestations . The rationale behind this
 approach is that this narrow , focused view on the underlying knowledge base guards
 the domain expert from not seeing the wood for the trees . Experiences with earlier
 KA workbenches showed that domain experts often get confused when large
 amounts of heterogeneous domain facts are displayed at one time .

 5 . 3 . 2 . QUAKE as an acti y e knowledge collector
 Experience with QUAKE as a passive application knowledge editor has revealed some
 shortcomings . Because of QUAKE ’s narrow view on the knowledge base , users quickly
 forget which knowledge has already been asserted and which knowledge still must
 be entered . For example , in the scenario described in the previous section , the user
 first entered five diseases , then (s)he concentrated on one of these , GVHD , and
 asked the tool which relations were defined on this disease . Of the four relations ,
 manifestation-of was selected , and two tuples of this relation were entered . In
 the course of this scenario many tasks were left unfinished . For instance , besides the
 five diseases shown in Figure 24 other diseases need to be entered which also have
 findings as manifestations . Further , the disease hierarchies (the disease-subtype
 tuples) must be specified , etc . In passive mode , QUAKE leaves the navigation in the
 knowledge space defined by the skeletal model completely to the user .

 To overcome this dif ficulty , QUAKE is also equipped with a more active interaction
 style . In active mode , the tool not only waits for the user to take action , but it can
 also take the initiative . The active component of the tool consists of two parts : (i) an
 agenda mechanism , responsible for completeness checking and (ii) an interpreter for
 knowledge - elicitation strategies , responsible for dialogue structuring .
 Agenda mechanism . The purpose of the agenda mechanism is to keep a record of
 which parts of the skeletal model are fully instantiated , partially instantiated , or
 empty . In some cases , QUAKE can decide whether a part of the skeletal model has
 been fully instantiated . For example , one of the assumptions made by QUAKE is that
 attributes must always have values . Therefore , the tool can decide that a particular
 attribute still needs to be specified without intruding upon the user . Furthermore ,
 sometimes the application ontology explicitly defines that a specific number of
 relation tuples or class instances must exist . For instance , it could be defined that
 instances of some type of disease may have at most one therapy . QUAKE ’s agenda
 manager can use such information to decide whether parts of the skeletal model are
 fully instantiated or not .

 Most of the time , however , the decision as to whether a part of the skeletal model
 is fully instantiated must be taken by the domain expert . In the scenario , it was the
 domain expert who had to decide that all the relevant diseases were entered , that all
 the manifestations of all the diseases were specified , etc . In contrast , in active mode
 it is up to QUAKE to keep the agenda up to date . Whenever a user decides to start
 working on another part of the knowledge base and the tool cannot determine by

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 238

 F IGURE 28 . QUAKE ’s agenda mechanism .

 itself that the job that was worked on has been completed , QUOTE asks the user . For
 example , when the user in the scenario in Section 5 . 3 . 1 decided to start working on
 the manifestations of GVHD , the tool in active mode would first have asked
 whether the entered diseases are all the relevant diseases in the application domain .
 The response of the user would then be used to update the agenda . Figure 28 shows
 QUAKE ’s agenda after the five diseases and the two manifestations were entered .

 Knowledge elicitation strategies . The agenda mechanism maintains a list of
 knowledge-elicitation activities that are completed , partially completed , or not yet
 initiated . However , the decision as to the order in which the dif ferent elicitation
 activities are performed is still left to the user . For example , in the scenario in
 Section 5 . 3 . 1 it was the user who decided to start working on the diseases , and it was
 the user who decided to select the manifestation-of relation from the relations
 defined on GVHD . After a while , the decision as to which knowledge-elicitation
 activity should be performed next becomes a complicated task in itself , because the
 number of activities rapidly increases as new knowledge is entered . For example , in
 the above scenario , four activities are added to the agenda for every disease which is
 entered in the knowledge base (elicitation of the manifestations , treatments ,
 sub-types and supertypes of the entered disease) .

 Many knowledge acquisition tools that are specialized in the model instantiation
 activity of the knowledge acquisition process , take a more active role . For example ,
 MOLE (Eshelman , 1988) and SALT (Marcus & McDermott , 1989) instantiate their
 skeletal models using a dialogue where the system takes the initiative . In these
 systems , the tool decides which knowledge should be elicited when . We call the
 structuring principles for such a dialogue a knowledge-elicitation strategy . In other
 words , a knowledge-elicitation strategy is a specification of the order in which the
 domain instances and expressions are to be elicited .

 In the above-mentioned second-generation KA tools , it was possible to hardwire
 the knowledge-elicitation strategies in the program because these tools were based
 on a fixed skeletal model . MOLE for example , begins a knowledge-elicitation session
 by asking the user to list some of the complaints that would indicate that there is a
 problem to be diagnosed . After these are entered , the tool asks for states or events
 that explain these complaints . In turn these states may also need to be explained . In

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 239

 this way MOLE builds , in a breadth-first manner , a network of causally related states
 and events . MOLE derives its power from the strong assumptions that it makes about
 the structure of the causal network that is required for the Cover-and-Dif ferentiate
 problem-solving method .

 It is not possible to use built-in knowledge-elicitation strategies in systems like
 CUE , where the construction of the skeletal model is also considered part of the
 knowledge acquisition process . Because the suitability of a strategy depends heavily
 on the nature of the skeletal model , the strategy can be determined only after the
 skeletal model has been constructed . In the current version of CUE this problem is
 addressed by making the specification of the knowledge-elicitation strategy part of
 the construction of the skeletal model , as is also the case in DIDS (Runkel &
 Birmingham , 1994) and KREST (Steels , 1993) .

 To formulate knowledge-elicitation strategies as part of the skeletal model , a
 simple Lisp-based language has been defined which can be interpreted by QUAKE .
 This language allows the knowledge engineer to express ordering constraints in
 terms of the application ontology . A very simple example of a knowledge-elicitation
 strategy defined in this language is the following .

 (define-ka-strategy main ()
 (elicit-all ?d (disease ?d))
 (for-each ?d (disease ?d)
 (elicit-all $f (manifestation-of (finding $f)

 (disease ?d)))))

 (1)
 (2)

 The first expression tells QUAKE to start eliciting all the diseases in the domain .
 The second specifies that , once the diseases have been elicited , all the manifestations
 for each disease must be elicited . The constructs elicit-all and for-each are the
 main primitives of the language . elicit-all takes a specification and tells QUAKE to
 elicit expressions that are in accordance with that specification . In the body of the
 construct , operations can be specified that must be performed on each of the elicited
 expressions . for-each works similar , but instead of eliciting expressions according
 to the specification , it retrieves expressions that are already stored in QUAKE ’s
 knowledge repository . The language is extended with constructs for sequencing ,
 iteration and simple conditionals and allows recursion . The suitability of the
 language has been tested by using it for specifying the knowledge elicitation
 strategies of MOLE and SALT .

 The use of a language for this purpose allows specification of any knowledge-
 elicitation strategy which can be defined in ontological terms . It is left to the
 knowledge engineer to decide which of these strategies are sensible . This is an
 undesirable situation because it makes the job of the knowledge engineer more
 dif ficult . What is really needed is a KA tool that is able to determine an appropriate
 knowledge-elicitation strategy by itself . Such a tool would need to have knowledge
 of general guidelines for the formulation of knowledge-elicitation strategies . At
 present , such general principles are not available . In the remainder of this section ,
 some candidate principles on which knowledge elicitation strategies can be based are
 discussed .
 Principles for structuring the KA dialogue . To investigate the question as to whether
 which dialogue structuring principles are sensible , we have compared the elicitation

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 240

 strategies employed by a number of existing tools . For one of these tools , MOLE , we
 have already described its elicitation strategy . SALT constructs its knowledge base in
 a similar way . The skeletal model of this tool requires three types of knowledge :
 procedures , constraints and fixes . The knowledge pieces are organized in a
 dependency network with three types of relations : contributes-to , constrains , and
 suggests-revision-of . To instantiate this skeletal model , the tool allows the user to
 start elicitation at any point in the network . SALT then cues the user for appropriate
 links and keeps track of how the elicited knowledge pieces are fitting together and it
 also warns for inconsistencies .

 ALTO (Major & Reichgelt , 1990) is a tool for the elicitation of concept hierarchies ,
 based on the laddering technique . The underlying skeletal model distinguishes two
 types of knowledge : concepts , which are organized in is-a hierarchies , and
 attributes of those concepts . ALTO starts the elicitation process by asking for a seed
 item . From this seed item , the user may move up or down the hierarchy , or to the
 siblings of the seed item . After that , the attributes of the new concept are elicited
 and the process continues with the elicited concept as the new seed item .

 Analysis of the three knowledge-elicitation strategies described above reveals
 some striking similarities . All these tools seem to do some kind of ‘‘graph traversal’’ .
 This is one example of a potentially general principle for formulating knowledge-
 elicitation strategies : use elicited pieces of knowledge to prompt for related pieces of
 knowledge . This principle may be applied in a depth-first manner , a breadth-first
 manner , or a combination of both and it can make use of multiple relations (e . g .
 ‘‘contributes-to’’ and ‘‘constraints’’ in SALT) .

 A second general principle is based on the observation that in many application
 domains , there are ‘‘basic’’ objects . The nature of these objects depends on the
 application task . For example , in diagnostic applications , the basic objects are the
 diagnoses , whereas in design applications , the basic objects are components . This
 observation is for example used in KEW ’s advice and guidance module to organize
 the KA process . When the task of the application is of a diagnostic nature , KEW ’s
 task scheduler suggests starting by eliciting the potential solutions . In cases when the
 number of solutions is infinite , or very large , KEW instead suggests starting by
 eliciting the solution components .

 Contrary to the first principle , the second principle is dependent on the task . The
 ability of QUAKE to implement such strategies depends on the mapping between the
 task model and the application ontology . For example , in the GVHD domain ,
 QUAKE should know that the potential solutions for the diagnostic problem are
 diseases . In general , this heuristic could be formulated as follows . In every
 application , there are basic objects . What these basic objects are depends on the
 nature of the task and on the mapping between the task model and the application
 ontology . Knowledge acquisition should start by eliciting these basic objects .

 In summary , based on an analysis of the strategies used in existing knowledge
 acquisition tools , the following dialogue-structuring principles can be formulated .

 $ Use already elicited knowledge to prompt for related pieces of knowledge (graph
 traversal) .

 $ Center elicitation around ‘‘basic objects’’ . Which objects are basic depends on the
 task type and the mapping between the task model and the application ontology .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 241

 Principles such as these can be used as global constraints that elicitation strategies
 should satisfy . However , they are not suf ficiently restrictive to derive a single best
 elicitation strategy from a task model and an application ontology . Further , the
 optimal strategy could also depend on other , not ontology related considerations
 such as the level of expertise of experts and the level of experience with tools
 (Burton , Shadbolt , Rugg & Hedgecock , 1990) .

 5 . 3 . 3 . Specialized y isualization in QUAKE

 In the sections above it was illustrated how QUAKE checks for consistency and how it
 uses domain specific terminology (Section 5 . 3 . 1) and how it checks for completeness
 and structures the knowledge elicitation dialogue (Section 5 . 3 . 2) . The final way in
 which tools can support model instantiation is by the use of specialized visualiza-
 tions . ALTO , for instance , visualizes the elicited concept hierarchies in the form of
 directed graphs . The tool has this ability because it makes ontological assumptions
 about the structure of the knowledge that needs to be elicited . In ALTO these
 assumptions are hard-wired in the tool . In contrast , QUAKE cannot make such
 ontological assumptions because it must be able to instantiate arbitrary ontologies
 defined with QUOTE .

 In order to use specialized visualizations for particular parts of the knowledge
 base , QUAKE must be able to determine on the fly which visualizations are
 appropriate for which parts of the knowledge base . One way to realize this is to
 explicate the ontological assumptions upon which specialized visualizations are
 based . This makes it possible to decide whether a particular class or relation can be
 displayed using a specialized visualization , based on the definition of that class or
 relation in the application ontology . Currently , the only specialized visualization
 facility provided by QUAKE is a directed graph viewer . This viewer can be used for
 relations that are binary , transitive and anti-symmetric . Whenever QUOTE is able to
 determine that these properties hold for a certain relation , the tuples of this relation
 may be visualized using the directed graph viewer . Figure 29 shows this facility when
 visualizing tuples of the disease-subtype relation .

 F IGURE 29 . QUAKE ’s directed graph viewer , visualizing tuples of the disease-subtype relation .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 242

 Summary of QUAKE ’s functionality
 $ Supported activities from Section 5 .1

 —7 . Create elicitation agenda .
 —8 . Specify knowledge-elicitation strategy .
 —9 . Elicit domain knowledge .

 $ Intended users
 —Domain experts .

 $ Support types
 —Consistency checking .
 —Completeness checking .
 —Use of domain specific terminology .
 —Intuitive visualization .
 —Dialogue structuring defined by knowledge engineer .

 $ Input from other tools
 — QUAKE Requires an application ontology defined with QUOTE .
 —When there is also a mapping between the task model and the application ontology

 QUAKE can use this to generate an initial agenda . Otherwise , the user will have to aid the
 tool .

 $ Output
 —A complicated knowledge model , which can be handed over to a programmer to

 construct the design model .
 $ Theoretical background

 —The theoretical background of QUAKE is basically the theory of model-based knowledge
 acquisition that was set out in Section 4 : focused knowledge elicitation requires a
 restrictive skeletal model . In QUAKE , the skeletal model is made restrictive by
 incorporating the application ontology .

 F IGURE 30 . A synopsis of QUAKE ’s functionality .

 The directed graph viewer can also be used as a simple laddering tool . To do this ,
 the user must select an object in the hierarchy and select the ‘‘Ladder Up’’ or
 ‘‘Ladder Down’’ option (from the Laddering pulldown menu) . The tool then
 searches for the corresponding job in the agenda and starts it up . Figure 30
 summarizes the functionality provided by QUAKE .

 In summary , the CUE tools support the steps distinguished in the generic scenario
 of Section 5 . 1 in the following ways .

 (1) Informally describe domain and task of the application . CIE does not support
 this step .

 (2) Identify generic tasks . In CUE , this step is supported by QUITE . This tool allows
 the user to select generic-task instances and to configure these into a task model
 (by mouse clicking and dragging) .

 (3) Specify which parts of the task must be automated . QUITE allows the user to
 indicate which parts of the task model are to be performed by the KBS .

 (4) Construct the application ontology . QUOTE supports ontology construction by
 selecting ontological theories from a library , configuring the theories into an
 application ontology and refining the definitions in the theories for the particular
 application .

 (5) Specify the role-to-role mappings . QUITE allows the user to specify the mappings
 between already defined roles (by dragging lines between the roles in the
 graphical representation of the task model) .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 243

 (6) Map task model onto ontology . The task model can be mapped onto the
 ontology in QUITE via the use of ontology mapping editors .

 (7) Create elicitation agenda . Before the elicitation activity starts , QUAKE generates
 an initial agenda which is automatically kept up to date during the elicitation
 session .

 (8) Specify knowledge-elicitation strategy . This step is only partially supported .
 QUAKE provides a simple tailored language for specifying knowledge-elicitation
 strategies , but it does not have specialized editors to support the language .

 (9) Elicit domain knowledge . This step is supported by QUAKE . The tool interprets
 the knowledge-elicitation strategy and prompts the user to enter new knowledge
 until the knowledge base is—according to the application ontology—complete .
 QUAKE checks for consistency and is able to select appropriate visualizations for
 parts of the knowledge base .

 5 . 3 . 4 . How it works
 QUAKE ’s ability to support model instantiation is almost entirely based on its capacity
 to inspect Ontolingua definitions . Consistency checking in QUAKE means checking
 whether the entered piece of knowledge is consistent with the corresponding
 Ontolingua definition . Also , completeness checking in QUAKE (determining if a KA
 activity has been completed) is done by examining Ontolingua definitions to see how
 many instances or tuples of a particular class or relation are allowed . Further , to
 decide how knowledge pieces should be visualized , the corresponding definitions are
 inspected . This section describes the components of an Ontolingua definition and
 how QUAKE is able to inspect these .

 Ontolingua definitions . An Ontolingua definition consists of a number of labelled
 sets of sentences that specify how the defined class , relation or function may be
 used . For our purposes , the most important distinction between these sets of
 sentences is that some sets consist of axioms in which the defined term is used , while
 other sets of sentences consist of meta descriptions of the defined terms . In the
 former , which are called first-order sentences in Ontolingua , the truth functional
 properties of the logical connectives are used to constrain under which circumst-
 ances the defined term can be used for formulating valid expressions . The other sets
 of sentences consist of meta descriptions of the defined terms . These expressions are
 called second-order sentences in Ontolingua . A simple example of a sentence of the
 first type is :

 (é (manifestation-of ?finding ?disease) (1)
 (disease ?disease))

 An example of a sentence of the second type is ;

 (nth-domain manifestation-of 2 disease) (2)

 The two sentences both express the fact that the second argument of
 manifestation-of must be a disease . However , while the first sentence expresses
 this fact only implicitly , using material implication , the second states the fact
 explicitly . †

 † The terms implicit and explicit are used in the same way as in (Kirsh , 1990) : something is explicitly
 represented when it can be derived from a knowledge base without the application of inference steps .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 244

Frame
ontology

User-defined
Ontolingua

Canonical
Ontolingua

Loom

Epikit

Other
representation

Canonicalization
Translation

Translation

Translation

 F IGURE 31 . The Ontolingua translation architecture .

 The vocabulary for writing these explicit meta axioms about ontological terms is
 defined in the Frame ontology , a special representational ontology that comes with
 Ontolingua . The Frame ontology is provided to facilitate the translation of
 Ontolingua ontologies into a number of dif ferent representation formalisms , which
 was the main purpose for developing Ontolingua . The idea is that the terms defined
 in the Frame ontology capture cliches for which many (frame-based) problem
 solvers provide specialized inference procedures . The translators are able to inspect
 the meta axioms for deciding how a particular definition should be translated .

 In order to facilitate the job of the Ontolingua translators , the Ontolingua system
 first performs a canonicalization step . In this step , the system attempts to recognize
 first-order cliches and reformulate them in terms of the Frame-ontology axioms . The
 canonicalization pass guarantees that the translation output profits as much as
 possible from the special inference procedures of the target systems . Figure 31 shows
 the Ontolingua translation architecture . A detailed description of this architecture
 can be found in Gruber (1993) .

 QUOTE and Ontolingua . The definition editors that are provided by QUOTE for
 specifying ontology definitions provide emacs-like editing facilities such as paren-
 thesis checking , automatic indentation , etc ., but they are not syntax-driven . Users
 can use both types of sentences mentioned above in their definitions . Once they are
 satisfied with a definition , it is checked for syntax errors , and then handed over to
 the Ontolingua system . Ontolingua canonicalizes the definition entered by the user ,
 and then passes it to a QUOTE -specific translator , which translates the definition into
 QUOTE ’s internal data structures . Then , QUOTE invokes its pretty-printer to produce a
 nicely formatted textual representation of the canonicalized definition in the
 definition editor . Figure 32 summarizes this process .

 A result of this design is that the internal representation—and the visualized
 representation—of QUOTE are always equivalent to canonical Ontolingua , making
 maximal use of the axioms in the Frame-ontology . This is important because the
 other tools in CUE can inspect only the meta-axioms . For example , when QUAKE

 needs to know the type of the second argument to manifestation-of it would
 understand sentence 2 above , but it would not understand sentence 1 . However , the
 architecture ensures that sentence 1 is automatically reformulated as sentence 2 .

 QUAKE and Ontolingua . Just as the Ontolingua translators are able to inspect the
 meta axioms in Ontolingua definitions to decide how a particular term should be
 translated , QUAKE is able to inspect the meta axioms to retrieve information needed

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 245

buffer layout preview

manifestation-of

(define-relation ------ (----)

Internal quote
representation

Internal quote
representation

Internal quote
representation

Internal quote
representation

Canonicalization

Syntax-checking

Pretty-printing Translation

 F IGURE 32 . The interaction between QUOTE and the Ontolingua translation architecture .

 to support knowledge elicitation . For example , in Section 5 . 3 . 3 it was mentioned
 that for visualizing the tuples of a relation as a directed graph , QUAKE requires that
 the relation is binary , transitive and anti-symmetric . Since each of these terms is
 defined in the Frame ontology , QUAKE only needs to inspect the meta axioms of the
 ontology definition of the relation to decide whether these properties hold . In the
 same way , meta axioms about the cardinality of relations can be used to decide
 whether a particular knowledge acquisition job has been completed . For example ,
 when it is defined that the maximum-slot-cardinality of a particular class and a
 particular binary relation is three , QUAKE can decide that the corresponding KA job
 is finished after three tuples of that relation have been elicited .

 QUAKE makes a KA-oriented interpretation of the concepts defined in the Frame
 ontology , in the same way that the target representations that Ontolingua translates
 to make a reasoning-oriented interpretation of these concepts . Of course , not every
 concept in the Frame ontology can be used for all types of model-instantiation
 support provided by QUAKE . Figure 33 , which is based on the description of the
 Frame ontology by Gruber (1993) , summarizes the kinds of information that can be
 derived from the terms defined in the Frame ontology . The information can be used
 for three purposes : consistency checking , completeness checking and visualization .
 The other types of support for model instantiation , domain-specific terminology and
 dialogue structuring , are not directly based on the inspection of the meta axioms in
 the definitions . The use of domain specific terminology comes for free as a result of
 the use of an explicitly defined application ontology , the dialogue structuring
 facilities are partially based on QUAKE ’s capacity for completeness checking .

 5 . 4 . CUE IN PERSPECTIVE

 In this section we have presented three tools that are part of the CUE knowledge
 engineering workbench . CUE falls in the same category of knowledge acquisition
 environments as DIDS and PROTE ́ GE ́ -II , which were described in Section 4 . This section
 highlights some similarities and dif ferences between CUE and these other systems .

 The work must closely related to the work presented here is that on the PROTE ́ GE ́ -II

 system . In particular , the work on DASH (Eriksson , Puerta & Musen , 1994) is in a
 similar spirit . DASH is a tool that can be used to build knowledge elicitation tools
 from application ontologies specified in MODEL , the PROTE ́ GE ́ -II ontology language .
 The relation between QUAKE and DASH is similar to that between an interpreter and

 Type Relation Arguments Cons . Comp . Vis .

 c
 c
 c
 r
 f
 f
 r
 r
 r
 r
 r
 f
 f
 f
 r
 r
 c
 c
 c
 c
 f
 f
 f
 r
 f
 r
 r
 r
 r
 r
 r
 r
 f
 r
 f
 r
 r
 f
 r
 f
 r
 r
 r
 r
 c
 r
 r
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 r

 relation
 function
 class
 instance-of
 all-instances
 one-of
 subclass-of
 superclass-of
 subrelation-of
 direct-instance-of
 direct-subclass-of
 arity
 exact-domain
 exact-range
 total-on
 onto
 n-ary-relation
 unary-relation
 binary-relation
 single-valued
 inverse
 projection
 composition
 composition-of
 compose
 alias
 domain
 domain-of
 range
 range-of
 nth-domain
 has-value
 all-values
 value-type
 value-cardinality
 same-values
 inherited-slot-value
 all-inherited-slot-values
 slot-value-type
 slot-cardinality
 minimum-slot-cardinality
 maximum-slot-cardinality
 single-valued-slot
 same-slot-values
 class-partition
 subclass-partition
 exhaustive-subclass-partition
 asymmetric-relation
 antisymmetric-relation
 antireflexive-relation
 irreflexive-relation
 reflexive-relation
 symmetric-relation
 transitive-relation
 weak-transitive-relation
 one-to-one-relation
 many-to-one-relation
 one-to-many-relation
 many-to-many-relation
 equivalence-relation
 partial-order-relation
 total-order-relation
 documentation

 ?relation
 ?function
 ?class
 ?individual ?class
 ?class : 5 ?set-of-instances
 ê instances : 5 ?class
 ?class ?class
 ?class ?class
 ?relation ?relation
 ?individual ?class
 ?class ?class
 ?relation : 5 ?n
 ?relation : 5 ?relation
 ?relation : 5 ?class
 ?relation ?relation
 ?relation ?range-class
 ?relation
 ?relation
 ?relation
 ?binary-relation
 ?binary-rel : 5 ?binary-rel
 ?relation ?column
 ?rel1 ?rel2 : 5 ?binary-rel
 ?binary-rel ?list-of-rels
 ê binary-rels ?binary-rel
 ?rel1 ?rel2
 ?relation ?class
 ?class ?relation
 ?relation ?class
 ?class ?relation
 ?rel ?integer ?class
 ?inst ?binary-rel ?value
 ?inst ?binary-rel
 ?inst ?binary-rel ?class
 ?inst ?binary-rel : 5 ?n
 ?inst ?rel1 ’rel2
 ?class ?binary-rel ?value
 ?class ?binary-rel : 5 ?values
 ?class ?binary-rel ?class
 ?class ?binary-rel : 5 ?n
 ?class ?binary-rel ?n
 ?class ?binary-rel ?n
 ?class ?binary-rel
 ?class ?rel1 ?rel2
 ?set-of-classes
 ?class ?class-partition
 ?class ?class-partition
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?binary-relation
 ?object ?string

 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 2
 2
 2
 1
 o
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 2
 2
 2
 2
 2
 2
 1
 1
 2
 2
 2
 2
 1
 1
 1
 1
 2
 1
 1
 2
 2
 2
 2
 2
 1
 1
 1
 2
 o
 2
 2
 2

 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 o
 o
 o
 o
 2
 2
 2
 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

 1
 1
 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 1
 2
 2
 2
 1
 o
 2
 2
 2
 2
 2
 o
 o
 2

 F IGURE 33 . A summary of how QUAKE uses terms defined in the Frame ontology , to support consistency
 checking (cons .) , completeness checking (comp .) and specialized visualization (vis .) . 1 : QUAKE uses the
 relation for a type of support ; o : the relation could be used but that the current implementation does not ;
 c : class ; r : relation ; f : function ; : 5 : separates domain parameters from range parameters for functions .

 Parameters starting with ê may be bound to multiple arguments .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 247

 a compiler . Whereas QUAKE interprets application ontologies to communicate in
 domain specific terminology , DASH uses these ontologies to generate other tools that
 communicate in domain specific terminology . DASH -generated tools act as user-
 friendly front-ends for the underlying knowledge base . They are similar to QUAKE in
 passive model in that they do not aim for completeness . That is , they do not actively
 search for missing information . Therefore it is to be expected that users of DASH

 generated tools will face the same problems as those encountered with QUAKE when
 used in passive mode .

 The DIDS system (Runkel & Birmingham , 1994) has a facility for specifying
 knowledge-elicitation strategies . Runkel and Birmingham distinguish two elements
 that drive knowledge elicitation , namely (i) ‘‘mechanisms for knowledge acquisi-
 tion’’ (MeKA) , which define for each knowledge construct in the ontology an
 elicitation , a verification and a generalization procedure , and (ii) a ‘‘knowledge
 acquisition method’’ which defines the sequencing of MeKAs . The MeKA’s are
 knowledge acquisition tools that are specialized for particular types of knowledge .
 This similar to the use of specialized visualizations in CUE . The knowledge-
 acquisition method is similar to knowledge-elicitation strategies in CUE , although
 they are typically more coarse grained .

 The main contribution of the work on CUE is that it provides a theoretical
 foundation for how the dif ferent types of support for knowledge elicitation can be
 achieved by separating ontology and application knowledge . If the ontology is
 available , it can be inspected to check the elicited knowledge for consistency and
 completeness , to communicate with the expert in domain specific terminology and to
 choose suitable visualizations . It was hypothesized that also a fifth type of support
 could be derived from the ontology : dialogue structuring . To experiment with
 dif ferent dialogue structuring principles CUE is equipped with a language for defining
 knowledge elicitation strategies .

 6 . Knowledge-based integration of representation formalisms
 The previous section described how CUE supports model construction and model
 instantiation . This section presents an approach to model compilation where an
 explicit ontology is used to select appropriate representation formalisms and
 reasoning techniques . The approach is based on two principles . Firstly , an attempt is
 made to use existing problem solvers when possible . † Secondly , it is assumed that in
 many cases it will not be possible to find a single problem solver that is appropriate
 for implementing the entire reasoning process .

 The basic idea is that dif ferent parts of the reasoning process can be implemented
 by dif ferent problem solvers . These problem solvers should be selected in such a way
 that they are adequate for the part of the reasoning process for which they are
 responsible . Problem solvers that cooperate to solve a problem must be able to
 communicate . This communication is complicated by the use of existing problem
 solvers which may use dif ferent representation formalisms . To achieve cooperative
 problem solving in this situation requires the specification of what the expressions in
 the formalism of one problem solver mean in the formalisms used by other problem

 † We use the term ‘‘problem solver’’ for a combination of a reasoning technique and a representation
 formalism .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 248

 solvers . That is , the representation formalisms of the problem solvers must be
 integrated . This section presents a possible approach for realizing such an
 integration .

 Section 6 . 1 explains why it is in general not possible to find a problem solver that
 is appropriate for implementing the entire reasoning process which is modelled in
 the knowledge model , thus illustrating the need for using multiple problem solvers
 and representation formalisms . Section 6 . 2 discusses some problems with hybrid
 integration , the way in which representation formalisms are usually integrated .
 Section 6 . 3 presents an alternative way of integrating problem solvers which is called
 knowledge-based integration . Section 6 . 4 . 1 describes a prototype implementation of
 an architecture that supports knowledge-based integration in CUE , and in Section
 6 . 4 . 2 and Section 6 . 4 . 3 the impact of knowledge-based integration on knowledge
 engineering and problem solving is discussed . In Section 6 . 5 the present proposal is
 compared with other recent proposals in the literature .

 6 . 1 . THE NEED FOR MULTIPLE REPRESENTATIONS

 It is widely acknowledged in the artificial intelligence community that there are
 dif ferent types of knowledge . For example , a number of researchers have identified
 dimensions according to which knowledge can be classified [e . g . deep knowledge vs .
 shallow knowledge (Steels , 1985) , causal knowledge vs . heuristic knowledge
 (Console & Torasso , 1988 ; Simmons , 1992) , knowledge of structure and behaviour
 vs . functional knowledge (Abu-Hanna , Benjamins & Jansweijer , 1991)] .

 For reasoning with these dif ferent types of knowledge , a large number of problem
 solvers have been developed which use dif ferent knowledge representation formal-
 isms and have dif ferent inferential capacities . The reason for these dif ferences is that
 problem solvers should be suf ficiently expressive to represent all the relevant
 knowledge in a natural way and have the inferential power to derive all the
 interesting implications of the represented knowledge in an ef ficient way . As argued
 by Levesque and Brachman (1985) these two requirements are antagonistic .
 Therefore every problem solver must make a trade-of f between expressiveness and
 inferential power .

 The problem solvers that have been developed can be characterized by the way
 they trade representational power for inferential power . The restrictions that have
 been put on the expressiveness to keep inferencing in these languages tractable can
 be categorized into three classes as follows .

 $ Firstly , there are representation languages that maintain tractability by putting
 syntactic restrictions on the expressions in the language . For example , many
 production rule interpreters can only handle facts in the form of triples . Another
 example is Prolog , which is based on first-order logic , but does not allow negation
 or disjunction in the conclusions . †

 $ A second group of representation languages derive their inferential power from
 epistemological assumptions about the structure of knowledge . Frame-based
 representations are typical examples of this category ; these systems assume that

 † We are only referring to Prolog as a representation formalism here . Of course , Prolog can be used as
 a programming language for implementing interpreters for other representation languages , which make
 the trade-of f between representational power and inferential power in another way .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 249

 knowledge is typically organized as structured objects that are arranged in
 subsumption hierarchies , and they provide ef ficient reasoning schemes for such
 structures . The main dif ference between this category and the previous one is that
 here inferential power is achieved by adding specific forms of expressiveness ,
 whereas in the previous category inferential power is achieved by reducing the
 expressiveness .

 $ Unlike representation languages in the first two categories , representation
 schemes in the third category explicitly delimit the range of domains for which
 they can be used . Representation languages in this category maintain inferential
 power by making ontological assumptions about the domains and the task that
 they will be used for . A typical example of this approach is GDE (de Kleer &
 Williams , 1987) , a system for model-based diagnosis , which requires that the
 devices that are to be diagnosed can be represented in terms of interconnected
 components .

 Besides computational tractability , a second requirement for knowledge represen-
 tation formalisms for KBSs is epistemological adequacy : a representation formalism
 must be able to reflect all the distinctions that are important for performing a
 particular task in a particular domain , while it should not force the knowledge
 engineer or the domain expert to make additional , irrelevant distinctions . The
 epistemological adequacy of a representation formalism depends on the type of
 knowledge that needs to be represented . For instance , it has often been noticed that
 the production rule formalism is well-suited for representing heuristic , associational
 knowledge , but is ill-suited for causal models (e . g . Simmons , 1993) .

 Since solving real world problems often involves dif ferent types of knowledge , the
 requirements of epistemological and computational adequacy imply that a KBS that
 is to solve these problems must be able to use multiple representations and
 reasoning techniques . The use of multiple problem solvers poses a potential
 problem : how are the dif ferent problem solvers to be integrated? It was mentioned
 that the representation formalisms that the problem solvers use can have a dif ferent
 syntax , can be based on dif ferent epistemological assumptions , and can make
 dif ferent ontological commitments . To make such diverse problem solvers cooperate
 clarification is required as to how expressions in one formalism map onto
 expressions in another formalism . In existing systems that use multiple representa-
 tions , integration is usually realized by predefined syntactical mappings . The next
 section presents some problems with this kind of integration .

 6 . 2 . HYBRID KNOWLEDGE REPRESENTATION

 For dif ferent types of knowledge , the trade-of f between expressive power and
 computational power should be made in a dif ferent way . This observation has
 initiated the development of a number of reasoning systems that use multiple
 representations and multiple inference engines [e . g . KEE (Fikes & Kehler , 1985) ,
 LOOM (MacGregor , 1991) , KRYPTON (Brachman , Fikes & Levesque , 1985) and CYCL

 (Lenat & Guha , 1990)] . In these so-called hybrid architectures the dif ferent
 components are tightly connected : a problem solver can send queries to other
 problem solvers and use their result for its own reasoning .

 In hybrid architectures the problem solvers are typically specialized for particular

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 250

 (d e f f r a m e k identifier l (k type l)
 (k slot-name l k value l)
 . . .)

 .
 u #

 k type l (k identifier l) ∧
 k slot-name l (k identifier l , k value l) ∧
 . . .

 F IGURE 34 . A possible mapping between dif ferent representations in a hybrid system . In this mapping ,
 the type of the frame is mapped onto a unary predicate and the slots of the frames are mapped onto

 binary predicates .

 types of (sub-)problems . In LOOM for example , one reasoning engine , which uses a
 semantic network representation , is responsible for terminological reasoning , while
 another problem solver , which uses a logical representation , is responsible for
 assertional reasoning . Another combination of problem solvers which is often found
 in hybrid architectures is the use of a first-order theorem prover for deductive
 reasoning and a frame-based problem solver for default reasoning .

 In these hybrid systems the integration issue arises . When one of the problem
 solvers wants to invoke another problem solver it must know how to formulate the
 query for the other problem solver . In hybrid architectures this problem is solved by
 specifying mappings between the dif ferent representation formalisms . Of course ,
 these mappings can only be partial : the dif ferences in the expressive power between
 the formalisms is the main reason for having the hybrid architectures . The partial
 mappings specify the interface between the representation formalisms . For example ,
 a partial mapping between a frame-based representation and a logical representation
 could specify that frames are mapped onto unary predicates and slots and slot-values
 onto binary predicates . Figure 34 gives an example of such a mapping for the case of
 frames and predicate logic .

 As can be seen in Figure 34 , the integration is only based on the syntactical
 structure of the dif ferent formalisms : whenever something is represented as a frame
 slot in the frame language , it will be interpreted as a binary predicate in predicate
 logic . In hybrid systems , the integration is realized by mappings between syntactical
 structures . This is necessarily so , because in these systems the mappings are defined
 when the hybrid tool is built . At that moment , the syntactical structures are the only
 invariants available on which the mappings can be based .

 A disadvantage of integration as realized in hybrid systems is that the fixed
 mappings constrain the ways in which the representations can be used . When it is
 decided to represent a particular piece of knowledge in some way in one of the
 representation formalisms , this puts constraints on the ways in which knowledge can
 be represented in the other formalisms . Therefore , it is not always possible to
 exploit the full power of all the constituting formalisms . Further , sometimes the
 hybrid solution is not feasible because there is no obvious way in which the
 syntactical structures of one formalism should be mapped onto the syntactical
 structures of another formalism .

 For these reasons , hybrid representation is not the optimal solution for the
 present purpose : representing instantiated knowledge models of arbitrary expres-
 siveness . The next section presents an alternative , more flexible approach for
 integrating multiple problem solvers .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 251

 6 . 3 . KNOWLEDGE-BASED INTEGRATION

 The problem with hybrid representations is that they integrate formalisms based on
 the syntactical form of the expressions in the constituting languages . Therefore , it is
 not always possible to represent a piece of knowledge in the form that is most
 appropriate for that piece of knowledge in each of the formalisms .

 Instead of a syntactical mapping , it is also possible to integrate formalisms based
 on the content of the knowledge . This is what we call knowledge-based integration .
 Basically , the idea is the following . When a knowledge engineer starts a project , one
 of the first tasks is to construct a knowledge-level model of the domain knowledge
 that is required to perform the application task . This model must be formulated in a
 language that is formal but which may have an unlimited expressiveness , since it will
 not be used for reasoning . One component of this knowledge-level model is the
 application ontology , which makes the underlying structure of the domain know-
 ledge explicit . When the knowledge model is completed , the knowledge engineer
 selects a number of problem solvers for implementing the system . Every problem
 solver has an associated representational meta - model . This is a model that specifies
 what can be represented in a particular formalism , but which abstracts from the
 syntactical details of the representation . The integration of the dif ferent representa-
 tion formalisms of the problem solvers is then realized by specifying mappings
 between the application ontology and the representational meta-models . Figure 35
 shows the dif ference between knowledge-based integration and hybrid integration .

 Application ontology . The application ontology is a specification of the domain
 knowledge that is needed to perform a particular task in a particular domain . The
 following logical sentence is a typical example of an expression that would be part of
 an application ontology in a medical domain . It states that a finding is a tuple that

Representational
meta model 1

(state-variable ?x)

Representational
meta model 2

(and
 (frame ?x)
 (sub ?x disease))

Representational
meta model 1

(state-variable ?x)

Representational
meta model 2

(frame ?x)

Application
ontology

(disease ?x)

Knowledge
level

Symbol
level

Knowledge level integration Hybrid integration

 F IGURE 35 . The dif ference between knowledge-based integration and hybrid integration is that the
 former is based on a knowledge-level application-specific mapping , whereas the latter is based on a

 symbol-level syntactic mapping .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 252

 consists of an observable , an operator and an element of the value set of the
 observable .

 ; X , Y , Z finding (X , Y , Z) 5

 [observable(X) ∧ operator (Y) ∧ Z P value – set (X)]

 Representational models . The representational meta models are abstract descrip-
 tions of the types of expressions that are allowed in a knowledge representation
 formalism . They are formulated in the same language as the application ontology .
 The representational meta-models of problem solvers can vary from coarse-grained
 descriptions of conditions and actions in the case of production rule interpreters to
 fine-grained ontological models of what can be represented in systems like GDE . For
 example , the following expression , which states that a condition consists of a set of
 attribute expressions , could be part of the representational meta-model of a
 production rule interpreter , where the rules have condition parts and action parts .

 ; X ,Y [condition (X) ∧ Y P X] 5 attribute – expression (Y)

 Mapping . The mappings between the application ontology and the representational
 meta-models specify how expressions from the language defined by the application
 ontology can be translated into the representation formalisms and vice versa . This
 serves two goals : (i) it specifies how the knowledge-level model can be implemented
 on a computational architecture in the design phase for the application and (ii) the
 mapping specifies the meaning of the expressions of the representation formalism in
 terms of the application ontology . As there is a mapping for each of the participating
 problem solvers , the application ontology specifies a language that is understood by
 all . Therefore , it can be used for communication between problem solvers .
 Mappings which are only used for the first goal are called static mappings . They are
 only used once , during the construction of the system . Mappings which are used for
 communication between problem solvers , are called dynamic . These mappings are
 used at run time , to translate output from one problem solver into input for another
 problem solver .

 As an example of the mapping between an application ontology and a representa-
 tional meta-model , consider the following mapping rules :

 finding (X , Y , Z) S attribute – expression (k X , Y , Z l)
 [disease (X) ∧ qualitative – probability (X , Y)] S attribute – expression(k X , 5 , Y l)

 Conceptually , these mappings are quite simple . For instance , the first rule expresses
 that findings , as defined in the application ontology , are represented as attribute
 expressions in the production rule formalism . However , in this simple example there
 are some technical complications that the mapping mechanism should account for .
 Whereas finding is a ternary predicate in the application ontology , attribute –
 expression is a unary meta-predicate in the representational meta-model . In the
 example , the mismatch is purely notational : in the representational meta-model
 attribute – expression is defined to hold for three-placed tuples that have an
 operator as their second element . However , the knowledge engineer should be
 aware of conceptual incompatibilities , in which case the selected problem solver is
 not epistemologically adequate .

 The mapping mechanism must be able to perform the mappings in both

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 253

 directions . In the example , this is possible because the qualitative probability
 relation is defined to have a disease as its first argument . Therefore , the type of the
 first element of the attribute expression tuple can be used to decide on the
 corresponding application ontology expression : if it is an observable , the corres-
 ponding expression is a finding , if it is a disease , the corresponding expression is a
 qualitative probability .

 Although the mapping relations will usually be more complicated than the ones
 shown here , they should remain relatively simple . When it is not possible to define
 simple mappings , this could indicate that the expressiveness of the problem solver is
 not suf ficient for expressing the distinctions made in the application ontology . For
 example , if the attribute expressions in the representational meta-model only allow
 the 5 operator while in the findings in the application ontology also the , and .
 operators are used , complicated mapping rules would be required . The complexity
 of the mapping relation can therefore be viewed as an measure for the suitability of
 the problem solver : if the mappings are simpler , the problem solver is more
 appropriate .

 As argued in Section 6 . 1 it is often impossible to find a problem solver that is able
 to represent the full spectrum of knowledge types that is specified in the application
 ontology . In such cases , the task that the application must perform is broken up into
 subtasks , each of which is associated with a problem solver . Problem solvers must be
 selected so that the knowledge that is needed to perform the particular sub-task can
 be adequately represented in the problem solvers’ representation .

 To summarize , the dif ference between hybrid integration and knowledge-based
 integration is that in the former the integration is realized directly , while in the latter
 the integration is realized through an intermediate knowledge-level model : the
 application ontology .

 6 . 4 . APPLYING KNOWLEDGE-BASED INTEGRATION

 Using knowledge-based integration has important consequences for the practice of
 knowledge engineering and thus for the required functionality of AI toolkits . Since
 knowledge-based integration is based on the contents of the application ontology ,
 the integration can only be realized after knowledge acquisition . Therefore , the
 decision on how to integrate the selected problem solvers must be taken by
 knowledge engineers when they develop an application . Knowledge engineering
 methodologies should recognize this activity as an integral part of the knowledge
 engineering process and provide methods and tools to support it . Section 6 . 4 . 1
 describes a prototype of a toolkit that supports knowledge-based integration . In
 Section 6 . 4 . 2 it is illustrated how this system can be used to develop an application
 and Section 6 . 4 . 3 illustrates the impact of knowledge-based integration on the
 problem-solving process .

 6 . 4 . 1 . Knowledge - based integration in CUE

 Section 5 presented CUE ’s knowledge acquisition tools : QUITE , QUOTE and QUAKE . The
 output of these tools is a non-executable knowledge-level description of the domain
 knowledge needed for an application . This section presents CUE ’s facility for
 developing design models . A first prototype of this module has been implemented .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 254

Fig 36

Application
ontology

Representational
meta model 1

Causal probabilistic
network

Representational
meta model 1

Causal probabilistic
network

Mappings

Lisp code Lisp code

 F IGURE 36 . Mappings and translations in knowledge-based integration .

 CUE is an open architecture that allows arbitrary problem solvers to be plugged-in .
 This requires two steps : (i) the representational meta-model of the problem solver
 must be constructed and (ii) it must be specified how this model is related to the
 internal representation of the problem solver . In CUE , the representational meta-
 models are also specified in Ontolingua . † The links between the meta-models and
 the internal representations are realized by problem solver specific translators ,
 written directly in Lisp . An example of the architecture of an application that is
 constructed with CUE is depicted in Figure 36 .

 Whereas the mappings between the application ontology and the representational
 meta-models must be specified for every application , the Lisp code for translation
 between the meta-models and the internal representations of the problem solvers
 needs to be specified only once . When this is done , the problem solvers and the
 associated representational meta-models and translation code can be put into a
 library for reuse . Thus , while the mapping relation must be specified by the
 knowledge engineer , the translation code will be written by the developers of CUE ’s
 problem solver library .

 6 . 4 . 2 . An example
 The use of CUE will be illustrated with some fragments from a scenario which is
 based on an exercise to reconstruct parts of the FREECALL system (Post , Koster ,
 Zocca & Sramek , 1993) in CUE . The exercise was intended to test the idea of
 knowledge-based integration , and not to develop a realistic system . Therefore , some
 of the design decisions may seem odd from an engineering perspective .

 FREECALL is a KBS that supports ambulance dispatchers in their decision whether
 to send an ambulance after an emergency call . In the exercise , we concentrated on
 two sub-tasks of the system : (i) the generation of a set of initial hypotheses , and (ii)
 the assessment of the likelihood of these hypotheses . In the example only the use of
 dynamic mappings will be illustrated . Section 7 will present some examples of static
 mappings .

 † Although Ontolingua is used for both the application ontology and the representational meta-models ,
 we do not entirely agree with the Ontolingua philosophy . Section 6 . 5 discusses the exact relation between
 the present work and the work of Gruber .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 255

 The application ontology of FREECALL contains definitions of findings (as in
 Section 6 . 3) , diseases , and the way they are related . Because of the large number of
 potential hypotheses—a computational consideration—it is decided to use produc-
 tion rules to generate the initial hypotheses set . The mapping between the
 application ontology and the representational meta-model of the production rule
 interpreter is described in Section 6 . 3 . For the second sub-task IDEAL is selected from
 the problem solver library . IDEAL (Srinivas & Breese , 1990) is a system for evaluating
 causal probabilistic networks and influence diagrams . The representational meta-
 model of IDEAL defines the class state – variable and the relation influences . †

 ; X , Y influences (X , Y) 5

 [state – variable (X) ∧ state – variable (Y)]

 The relation state – expression is defined as follows .

 ; X , Y state – expression (X , Y) ↔
 [state – variable (X) ∧ Y P value – set (X)]

 Further , the representational meta-model specifies that every state expression S i

 has a number of associated conditions C 1 , . . . , C n . A condition C j is a set of state
 expressions S 1 , . . . , S n with a state expression S k P C j for every state variable that
 influences the state variable of S i . For every condition C j that is associated with S i

 there is a conditional probability P (S i 3 C j) so that 0 # P (S i 3 C j) # 1 .
 For IDEAL , the mapping between the application ontology and the representational

 meta-model is more complicated than for the production rules . It is decided that
 observables are represented as state variables and findings as state expressions about
 these variables . Diseases are represented as state variables too , with two admissible
 values : present and absent . Alternatively , the diseases could be represented as
 admissible values on a state variable diagnosis , but this would make it impossible
 to hypothesize multiple diseases . Furthermore , it would make it impossible to use
 probabilities as described in the medical literature—an epistemological consideration .

 In the representational meta-model , state expressions are represented as binary
 relations between state variables and values . There is no explicit mentioning of an
 operator , it is assumed that only the equality operator is used . Therefore , IDEAL can
 only be used when the findings only use the equality operator . This is another
 example of an epistemological consideration .

 The following expression is an example of the (dynamic) mapping between
 findings and state expressions . It states that if a particular finding holds , this means
 that the probability of this finding is 1 . 0 .

 finding (X , Y , Z) S P (state – expression (X , Z)) 5 1 . 0

 6 . 4 . 3 . Running a CUE application
 The impact of knowledge-based integration on the problem solving process can be
 illustrated with a session with the above described version of FREECALL . In the
 example , the caller is a man whose 28 year old son complains about lasting chest
 pain . The trace in Figure 37 shows example mappings and translations at the stage

 † We use the logical notation instead of the Ontolingua notation which is used in CUE . The logical
 notation is more concise and probably more familiar .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 256

 System’s action comment

 (1)
 initial-data : finding(chest – pain , 5 , present)
 initial-data : finding(sustained – pain , 5 , yes)
 initial-data : finding(age , 5 , 28)

 The patient data are entered as
 findings , as defined in the applica-
 tion ontology . The label initial-data
 indicates the role of the findings in
 the reasoning process .

 (2) mapping
 attribute – expression (k chest – pain , 5 , present l)
 attribute – expression(k sustained – pain , 5 , yes) l

 Because the hypotheses generation
 sub-task is assigned to the produc-
 tion rule interpreter , the findings
 are rewritten in terms of the rep-
 resentational meta-model of the
 production rule interpreter

 (3) Lisp translation
 IF (and (5 chest-pain present)

 (5 sustained-pain yes))
 THEN (5 angina-pectoris possible)

 and then further translated into the
 private representation of the prod-
 uction rule interpreter , so that it can
 be matched against rules such as the
 one shown here .

 (4) Lisp translation
 attribute – expression(k angina – pectoris , 5 , possible l)
 attribute – expression(k hyperventilation , 5 , possible l)
 attribute – expression(k infarction , 5 , probable l)

 The production rule system gener-
 ates three hypotheses , together with
 a qualitative assessment of their
 likelihood . This output is translated
 back into the representational meta-
 model language .

 (5) mapping
 hypothesis : disease(angina – pectoris)
 qualitative – probability(angina – pectoris , possible)
 hypothesis : disease(hyperventilation)
 qualitative – probability(hyperventilation , possible)
 hypothesis : disease(infarction)
 qualitative – probability(infarction , probable)

 Finally , the output is rewritten in
 terms of the application ontology .
 The generated diseases are assigned
 the role of hypotheses (this is con-
 trol information) . This completes
 the hypotheses generation sub-task
 in the FREECALL system .

 F IGURE 37 . Trace of mappings and translations for hypothesis generation using a production rule
 interpreter .

 where FREECALL generates the initial hypotheses . Note that whereas in step 2 in this
 figure the findings are rewritten as attribute expressions , in step 5 attribute
 expressions are rewritten as qualitative probability assessments .

 The second sub-task in the FREECALL system is a quantitative assessment of the
 probabilities of the disease in the dif ferential—the set of hypotheses generated with
 the production rule interpreter . Hence , an influence diagram is selected which
 contains nodes for all of the diseases in the dif ferential and for the observables of
 the known findings (the initial data) . The mapping rules specified in the previous
 section are used to set the probabilities of the state expressions that represent the
 known findings to 1 . 0 and then IDEAL is invoked . A trace of the mappings and
 translations that are required for this form of hypothesis discrimination is shown in
 Figure 38 . From the selected influence diagram , FREECALL derives that hyperventila-
 tion is by far the most likely diagnosis . Note that in step 7 , the expressions in terms
 of IDEAL ’s representational meta-model are translated directly into Lisp function

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 257

 System’s action Comment

 (6) mapping
 P(state – expression(chest – pain , yes)) 5 1 . 0
 P(state – expression(age , 25 – 29)) 5 1 . 0

 The findings and the hypothesized
 diseases are mapped onto state
 expressions in the influence dia-
 gram . The probabilities of the
 state expressions that represent
 findings are fixed to 1 . 0 .

 (7) Lisp translation
 (setf (prob-of 9 ((4 n(chest-pain)

 4 c(yes chest-pain))))
 1)

 Then , the probability assignments
 are translated into Lisp function
 calls that set the values of struc-
 tures in the internal representa-
 tions of IDEAL .

 (8) Lisp translation
 P(state – expression(angina – pectoris , present)) 5 0 . 03
 P(state – expression(infarction , present)) 5 0 . 04
 P(state – expression(hyperventilation , present)) 5 0 . 27

 Next , the influence diagram is
 evaluated and the resulting prob-
 abilities are translated back into
 the representational meta-model
 terminology .

 (9) mapping
 quantitative – probability(hyperventilation , 0 . 27)
 quantitative – probability(angina – pectoris , 0 . 03)
 quantitative – probability(infarction , 0 . 04)

 Finally , the expressions are tran-
 slated back into the application
 ontology language and presented
 to the user of the system .

 F IGURE 38 . Trace of mappings and translations for hypothesis discrimination using an IDEAL influence
 diagram .

 calls . The reason for this is that IDEAL has no declarative knowledge representation .
 This is another reason why representational meta-models are necessary for
 knowledge-based integration .

 The traces in Figure 37 and Figure 38 illustrate how statements in the application
 ontology can be translated into specific representation formalisms for executing an
 inference method . The mappings and translations ensure that the results are
 meaningful in terms of the application ontology .

 6 . 5 . DISCUSSION

 Although the term ‘‘knowledge level’’ , was used occasionally , this section addresses
 a ‘‘symbol level’’ issue : how to integrate knowledge representation formalisms , or
 more specifically : what do expressions in one formalism mean in another formalism .
 This is just one aspect of the larger issue of having multiple problem solvers , or
 agents , cooperate to solve a problem . We have—intentionally—ignored control
 issues . This scoping decision was made because we believe that the problem of
 integrating representation formalisms can be resolved independently from the
 control problem . This has the advantage that such a solution can be used within a
 wide range of control architectures . For example , in the scenario above the decision
 to invoke IDEAL could be taken in a data-driven way , as in blackboard systems , or in
 a goal-driven way , as in task-oriented architectures .

 The main message of is that in cases where it is necessary to use multiple
 representation formalisms , the application ontology can be used to integrate these

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 258

 formalisms in such a way that the strengths of the dif ferent formalisms can be
 exploited maximally .

 As already mentioned , the work presented here is closely related to the work on
 Ontolingua (Gruber , 1993) . CUE uses the Ontolingua language both for the
 application ontology and the representational meta-models . Besides a language for
 specifying ontologies , Ontolingua is also a computer program that translates the
 ontologies into the representation formalisms of a number of problem solvers . In
 Ontolingua , the translation of ontologies to representation formalism does not
 require additional knowledge . The hypothesis that underlies the Ontolingua
 program is that it is possible to specify once and for all how expressions in the
 knowledge-level language are to be represented in the target representations .
 Therefore , the integration as realized through Ontolingua is essentially hybrid : when
 something is represented in a particular way in one representation it is predeter-
 mined how that knowledge will be represented in another representation . In
 contrast , in knowledge-based integration the translation is viewed as a knowledge
 intensive activity , which must be performed by the knowledge engineer . To facilitate
 this activity , the translation process is divided in a knowledge intensive part , the
 mapping operation , and an automatic part , the translation into the representations .

 We have not been very specific about the exact nature of the mapping relation . As
 in hybrid integration , the mappings may be partial : they connect the representa-
 tional meta-models only with those parts of the application ontology that specify the
 knowledge needed to perform the particular sub-task assigned to the problem
 solver . In general , we can formulate one hard constraint and one soft constraint on
 the mappings . The hard constraint is that the mappings must be bidirectional : it
 must be possible to go from the application ontology expression to the representa-
 tional meta-model expression and it must be possible to go back from the
 representational meta-model expression to the application ontology expression . If
 this is not possible , the problem solvers lose the ability to communicate . The soft
 constraint is that the mappings are to remain simple . As was mentioned in Section
 6 . 3 , the complexity of the mapping relation is inversely related to the suitability of
 the selected problem solver .

 In Section 6 . 3 it was mentioned that there are two types of mappings ; static
 mappings , which are used during application development , and dynamic mappings ,
 which are used during problem solving . In the examples so far all the mappings were
 dynamic mappings . Section 7 will give some examples of the use of static mappings
 during KBS development .

 7 . Treating acute radiation syndrome : a case study

 In this section we illustrate the use of explicit ontologies to develop a system that
 supports the treatment of acute radiation syndrome (ARS) : a collection of injuries
 caused by exposure to high dosages of irradiation . ARS is a rare disorder ; world
 wide there are about 900 known cases . The expertise for treating ARS is scarce and ,
 because of the increased safety of nuclear power plants , it is decreasing . When such
 expertise is needed , however , in cases of nuclear accidents or nuclear attacks , it is
 likely to be needed immediately , and on a large scale .

 For this reason , researchers at the University of Ulm , which is one of the centres

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 259

 of expertise for managing acute radiation syndrome , have decided to develop a
 knowledge-based decision-support system (Kindler , Densow & Fliedner , 1993) . A
 prototype for such a system was implemented using M-KAT (Lanzola & Stafanelli ,
 1992) . This section describes a reimplementation of the system , using the CUE tools .

 7 . 1 . SYNOPSIS OF THE ARS DOMAIN

 A large dose of radiation causes depletion of cells , particularly in tissues where the
 cell population is normally renewed by continuous cell division and maturation .
 Organ systems that are af fected by radiation include the haemopoietic system , the
 reproductive organs , the gastrointestinal tract , the skin , and the central nervous
 system . The stem cells of the bone marrow , which are responsible for the production
 of blood cells , are particularly susceptible to the harmful ef fects of radiation . One
 type of blood cell , the leucocytes (white blood cells) , play a fundamental role in the
 immune system . One task of the stem cells is to ensure that the number of
 leucocytes is kept at a certain level . There are two main types of leucocytes ;
 granulocytes , which are produced in the bone marrow , and lymphocytes , which are
 produced in the lymphogeneous organs , including the lymph glands and the thymus .

 The main aim of the treatment of ARS is to control the development of
 immunodeficiency . Immunodeficiency develops when the number of surviving stem
 cells after irradiation is too low to produce the necessary number of granulocytes ,
 and , to a lesser extent , lymphocytes . In order to prevent the development of
 immunodeficiency , which can be lethal , a bone marrow transplantation (BMT) must
 be considered . However , BMT might have severe side ef fects , such as graft-versus-
 host disease (GVHD) . In addition , the injuries to other organ systems might be so
 severe that the patient would not survive anyway , in which case a bone marrow
 transplantation should be avoided . When a considerable number of stem cells
 survives the radiation exposure , growth factor therapy may be considered as an
 alternative . In this therapy , the patient is treated with growth inducers , proteins that
 stimulate the growth and reproduction of stem cells .

 A first target of ARS treatment is to establish the severeness of the radiation
 injury , expressed in terms of the estimated damage to four organ systems : the
 haemopoietic system (of which the stem cells of the bone marrow are a part) , the
 skin , the gastrointestinal tract and the central nervous system . As a result of the
 exposure to radiation , these systems develop time-dependent patterns of signs and
 symptoms . These patterns must be interpreted to assess the severity of the lesions to
 each of the four systems . The lesions to each of the systems are expressed in terms
 of severity gradients—labels for qualitatively dif ferent severities . Based on these
 gradings appropriate therapeutic action can be undertaken .

 7 . 2 . MODELLING THE TASK

 The aim of ARS management is symptomatic treatment—the radiation itself is
 irreversible . The medical expert must make a decision as to whether a particular
 action must be undertaken to control processes that occur in the patient . To make
 such a decision , the medical expert attempts to establish the severity of each of the
 four lesions that might be the result of the radiation . In the task model this situation

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 260

 F IGURE 39 . The task model for the ARS application .

 is modelled by means of a diagnostic STModel , grading the severity of the
 syndrome , and a therapeutic STModel , selecting the appropriate action .

 The system receives its input from a standardized medical record which has been
 developed for the structured documentation of ARS cases (Baranov , Densow ,
 Fliedner & Kindler , 1994) . This record contains the data that might be relevant for
 ARS treatment . Since all the relevant data are entered before the KBS is invoked ,
 the system is not required to deduce expectancies and to request new data . Thus ,
 only the abstraction step and the abduction step of the diagnostic cycle have to be
 performed by the system . For the same reason , the system only performs abstraction
 and abduction in the therapy planning sub-task .

 Figure 39 shows a first version of the task model , constructed with QUITE . The
 knowledge engineer has created a diagnosis generic-task instance (ARS-grading)
 and a therapy-planning generic-task instance (Select-ARS-treatment) . These are
 connected by a control link which indicates that grading precedes treatment
 selection . For the moment , this is all that can be specified in the task model . The
 specification of the role-to-role mappings requires a better understanding of the
 nature of the domain knowledge . At this stage of the modelling process , the task
 model only provides a rough description of the reasoning process . This model is
 suf ficient to initiate construction of the application ontology .

 7 . 3 . BUILDING THE APPLICATION ONTOLOGY

 The GAMES-II project has developed a library of ontological theories that can be used
 to develop application ontologies . This library is indexed by medical sub-domains
 and reasoning methods . Ontological modelling therefore starts by giving a rough
 indication of the medical sub-domain and the possible reasoning methods .

 Treatment of acute radiation syndrome involves at least four medical sub-fields :

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 261

 Guidelines for deciding on for which concepts to look :
 Guideline A .1 : Determine the concepts that play the primary roles in the reasoning process .

 The primary roles are the roles that always recur in the STModels for a particular generic
 task , independently of the particular methods that are used . For the diagnostic part of the
 task model these are diagnostic hypotheses , patient findings and data , and for the
 therapeutic part therapeutic hypotheses , therapeutic problems and data .

 Guideline A .2 : Determine the ontological feature of the concepts that are used to make the
 basic inferences in the reasoning process . These are abstraction , abduction , ranking ,
 deduction , and induction . It is usually better to search first for the concepts that play the
 primary roles (guideline A . 1) because the terminology for these concepts is more
 standardized than the terminology for the concepts used for inferencing .

 F IGURE 40 . Guidelines for deciding on the order in which the library should be searched for concepts .

 haemotology , dermatology , neurology and gastroenterology . Currently , the library
 contains no extensions that are specific to these sub-fields . Therefore , the domain-
 specificity indexes cannot be used directly to find the appropriate concepts . † It is
 also not possible to decide at this moment which method-specific extensions are
 needed ; the suitability of methods often depends on the ontological structure of the
 knowledge in the application domain .

 For using the library in this situation , a number of guidelines have been
 developed . A first set of guidelines , presented in Figure 40 , can be used to decide on
 the order in which a knowledge engineer should search for concepts in the library . A
 second set of guidelines is intended for deciding on how to look for a particular
 concept in the library . These guidelines are presented in Figure 41 . A third set of
 guidelines , presented in Figure 42 , can be used for deciding on whether a particular
 concept is suitable for the present purpose .

 The next sections will describe how these guidelines were used in the ontological
 modelling process for each of the two generic task instances . The results of this
 process are summarized in Figure 45 .

 7 . 3 . 1 . Ontology for ARS - grading
 The order in which the ontology for ARS-grading is constructed is based on
 guidelines A . 1 and A . 2 . First we select or construct the concepts that play the
 knowledge roles , and then we deal with the concepts that are used for making the
 inferences .

 Diagnostic hypotheses . As we have seen in the domain description in Section 7 . 1 ,
 the hypotheses role is mapped onto alternative gradings of the four syndromes that
 form ARS : the haemopoietic syndrome , the gastrointestinal syndrome , the skin
 syndrome and the central-nervous-system syndrome . We first concentrate on
 modelling syndromes , and then on their gradings .

 Following guideline B . 1 , the library is searched for a concept with the name
 ‘‘syndrome’’ . This concept is found in the theory syndrome , which is selected from

 † We use the term concept in the most general sense : classes , relations and functions are all concepts .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 262

 Guidelines for deciding on how to look for a concept :
 Guideline B .1 : Ask the domain expert to suggest a name of the concept that is used for the

 particular role in the domain and search the library for a concept with a similar name . If the
 search succeeds , go to guideline B . 2 Otherwise go to guideline B . 5 . The idea here is that if
 the appropriate concept is somewhere in the library , it can be found by terminology
 matching . This is more likely to succeed for concepts that are used for knowledge roles than
 for concepts that are used for inferences , because the terminology for the former is more
 standardized .

 Guideline B .2 : Check if the definition found is suitable for the current purpose . If the concept
 is appropriate , include it in the application ontology . Otherwise , go to guideline B . 3 . When a
 concept with the right name is found , this does not guarantee that the concept definition is
 appropriate , so this needs to be checked .

 Guideline B .3 : Find out if the concept can be specialized to a suitable sub - concept . If this is
 possible , add the specialized concept to the application ontology . Otherwise , go to guideline
 B . 4 . When a library concept is inappropriate because it is too general , it can be made
 appropriate by adding specific details . This is done by introducing an application specific
 sub-concept of the library concept .

 Guideline B .4 : If the concept found is not suitable and it can also not be specialized to a
 suitable sub - concept , find out if it can be modified to become suitable . If this is possible , copy
 the concept to an application - specific part of the application ontology , modify it and rename
 it to a y oid name conflicts . Otherwise , go to guideline B . 5 . If the concept found by
 terminology matching is not appropriate , it can still be useful . During the discussion with
 the domain expert it becomes clear which aspects of the concepts are appropriate and
 which are inappropriate . This information can be used to define a more suitable version of
 the concept in the application ontology .

 Guideline B .5 : If no suitable concept can be found or constructed using guidelines B . 1 to B . 4 ,
 try to find a y ery general concept in the core library and try to determine in discussion with
 the domain expert whether this concept can be specialized or modified to arri y e at an
 appropriate concept . When a general concept is selected , it is almost always necessary to
 specialize it .

 F IGURE 41 . Guidelines for deciding on how to search in the library for specific concepts .

 Guidelines for deciding on the suitability of a particular concept
 In general , a concept is suitable if it makes the distinctions that are necessary for the present
 purpose , and no other distinctions . This can be operationalized by means of the following
 guidelines :
 Guideline C .1 : Decide whether the concept is suf ficiently general to co y er the piece of

 knowledge that will be modelled using the concept . If a concept is not suf ficiently general ,
 knowledge elicitation will become problematic because some pieces of knowledge that are
 used in the reasoning process cannot be modelled .

 Guideline C .2 : Decide whether the concept is suf ficiently specific to only co y er the pieces of
 knowledge that will be modelled using the concept . If a concept is not suf ficiently specific , it
 is not possible to define restrictive mappings between the application ontology and the task
 model : too many concepts will be allowed to play too many roles .

 Guideline C .3 : Decide whether the name of the concept is a meaningful term in the application
 domain . If the name of the concept is not suf ficiently domain specific , it cannot support
 knowledge acquisition in domain-specific terminology .

 F IGURE 42 . Guidelines for deciding whether a particular concept is appropriate for the present purpose .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 263

 the library . According to guideline B . 2 it must now be checked as to whether it is
 suitable for the current purpose . The theory syndrome defines syndromes as
 collections of findings which cooccur but for which there is no known direct causal
 connection . Syndromes are modelled as a sub-class of disorder . According to this
 definition , ARS is the only real syndrome in the domain ; the component syndromes
 of ARS are processes about which the causal mechanisms are reasonably well
 understood . Thus , for the ‘‘syndromes’’ that constitute ARS the definition is
 inappropriate .

 Following guidelines B . 3 and B . 4 , it is investigated whether the definition of
 syndrome can be specialized or modified to make it suitable . It is not possible to
 specialize the concept because a part of the definition of syndrome does not hold for
 the lesions . Specialization can only be used to add attributes to a definition , not to
 remove attributes . In principle , the concept could be modified to make it
 appropriate . However , it is decided not to do this because this would involve
 removing the only aspect of syndrome that distinguishes it from its superconcept
 disorder .

 The problem is that for the lesions that constitute ARS the term ‘‘syndrome’’ is a
 misnomer . As prescribed by guideline B . 5 , it is therefore decided to introduce a new
 specialization of disorder which is called ars-organ-system-lesion . This
 concept is added to the theory ars-application , a theory added to the application
 ontology for storing application-specific definitions .

 Modelling dif ferent gradings of args-organ-system-lesion can be done in two
 ways : (i) by defining that the possible gradings are sub-types of the lesion , or (ii) by
 modelling the gradings as expressions about the lesion . Examples of both types of
 modelling can be found in the core part of the library . An example of the first
 approach is in the theory disease . In this theory , the relation disease-subtype is
 defined , which can be used to model that particular diseases are specializations of
 other diseases (cf . the examples in Section 5) . In the current application , this could
 be realized by defining a relation lesion-subtype between instances of ars-
 organ-system-lesion . This solution is shown in Figure 43(a) .

 However , the dif ferent possible gradings of a lesion to one particular organ system
 are mutually exclusive : a patient can only have one grading for a particular lesion .

ars-organ-sytem-lesion ars-lesion-subtype ars-organ-sytem-lesion1 2(a)

(ars-lesion-subtype haemopoietic-syndrome haemopoietic syndrome-grade 1)

operator

expression

1

thingthing

2 3

ars-organ-system-lesion

anti-lesion-grading

1

(ars-ars-lesion-grading haemopoietic-syndrome = 3)

(a)

 F IGURE 43 . Two alternative ways to model lesion gradings . The rectangular boxes represent relations and
 the rounded boxes represent classes . The numbered arrows represent that the n th parameter of the

 relation pointed at is constrained to be an instance of the lass pointed from .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 264

 Characteristics like this are important for knowledge elicitation and for computa-
 tional design and should therefore be represented in the application ontology .
 Modelling the gradings this way would therefore require the addition of a number of
 very specific constraints to the lesion-subtype relation . Although this kind of
 customization is not unusual , it is often worthwhile in such situations to look for
 library definitions that better capture the relevant aspects of a concept .

 Another general medical concept in the library is finding . † Findings are defined
 as expressions about patient parameters . Modelling ars-lesion-grading as a
 specialization of finding would solve the problem mentioned above , because for
 finding it is already defined that the dif ferent findings about one observable are
 mutually exclusive . There is one complication to make ars-lesion-grading a
 specialization of finding , ars-organ-system-lesion must be made a specializa-
 tion of patient-parameter . Because ars-organ-system-lesion was already
 modelled as a disorder , finding is not suitable because it is too specific (guideline
 C . 1) . Following guideline B . 5 the library is searched for a more general concept :
 finding is a specialization of expression , which is defined in the theory
 expression . ars-lesion-grading is therefore defined as an expression for
 which the first parameter must be an ars-organ-system-lesion .

 To summarize the modelling decisions above : the only real syndrome in the
 domain is ARS . This syndrome consists of four gradings of disorder which are
 modelled as ars-lesion-gradings . These gradings play the role of hypotheses in
 the diagnostic reasoning process . The lesion gradings have as first parameter an
 ars-organ-system-lesion , which is a specialization of disorder .

 Patient findings . For patient findings , the concept finding is used as a first guess for
 a suitable ontological concept . However , this concept is not entirely appropriate
 because it is too generic (guideline C . 2) . In the ARS domain , the patient findings are
 a specific kind of findings with qualitative value sets . As explained in Section 5 and
 6 , both knowledge acquisition and computational design are facilitated by being as
 specific as possible in the application ontology . Following guideline B . 3 it is
 therefore decided to define a specialization of finding in the theory ars-application ,
 named ars-lesion-indication . An ars-lesion-indication is a finding where
 the observable must be an ars-lesion-indicator . In turn , these lesion indicators
 are modelled as a sub-class of patient-parameter in ars-application . Further , it is
 defined that the value of the ars-lesion-indication must be an ars-
 indicator-value .

 Diagnostic data . The KBS receives its inputs in the form of a computerized record .
 This record contains many dif ferent kinds of data whose only shared characteristic is
 that they contain information about the patient . Using guideline B . 1 , the library is
 searched for a concept named ‘‘datum’’ . Such a concept is not present in the current
 library . Thus , using guideline B . 5 we look for a general concept . Again , the concept
 finding is selected from the library . According to guideline C . 2 finding is not

 † Note that the term finding is used for both a particular knowledge role in the STModel and for an
 ontological concept . These are dif ferent things , but the term ‘‘finding’’ is used for both in medicine .
 Although this is a continuous source of confusion , we have decided to respect this tradition . For clarity ,
 we will use the term ‘‘finding’’ when referring to the ontological concept and the term ‘‘patient finding’’
 when referring to the inference role .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 265

Fig 44

observable time-descriptor

time-interval

finding

ars-datum

ars-datum, time-stamp

time-point

time-interval,end

time-interval,start

1

 F IGURE 44 . ars-datum is represented as a specialization of finding where the first argument must be an
 observable . Every datum has an associated time-stamp , which may be a time-interval or a
 time-point . The texts ars-datum . time-stamp , time-interval . start and time-interval . end

 represent functions . The dashed arrows represent the domains and ranges of the functions .

 suitable because it is too general : also instantiations of ars-lesion-indication
 are findings . Thus , the concept needs to be specialized . Therefore , the concept
 ars-datum is created and stored in ars-application . When specializing a concept , it
 must be decided which aspects are shared by the pieces of knowledge that must be
 covered by the specialization .

 One aspect that distinguishes raw data from findings in general is that data are
 directly observable . This can be modelled by specifying that the first parameter of
 ars-datum must be an observable , a sub-class of patient-parameter defined in
 the theory observable .

 Another important aspect of data in this domain is their temporal attributes .
 Currently , the library contains only one simple theory of time which is selected . This
 theory defines the concepts time-point and time-interval , but it does not define
 temporal relations such as ‘‘before’’ and ‘‘after’’ . For determining the appropriate
 treatment for ARS the time points of data with respect to the time point of the
 radiation accident are important , but the application will not monitor the patients ,
 so no complex reasoning about time is required . Finally , the knowledge engineer
 defines in ars-application that every datum is associated with a time stamp , which
 may be a time point or a time interval . ars-datum and the related concepts are
 shown in Figure 44 .

 To illustrate how data are modelled , consider the part of the medical record which
 is shown in Table 3 . This part of the record is used by doctors to describe erythema
 in the patient .

 T ABLE 3
 The structure of the record field for erythema

 Location Yes No Unknown Begin End Maximum Degree

 Head and neck
 Upper part of body
 Arms
 Lower part of body
 Legs
 Feet
 Oropharyngeal

 3 16 . 06 . 1958 22 . 06 . 1958 18 . 06 . 1958 2

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 266

 In terms of the application ontology , the data in the fields of the record are
 modelled as tuples such as the following . †

 (ars-datum head-and-neck-erythema 5 2)
 (ars-datum . time-stamp (ars-datum head-and-neck-erythema 5 2)
 (time-interval 16 . 06 . 1958 22 . 06 . 1958))

 The name of the observable is constructed by concatenating the term ‘‘erythema’’
 and the term that represents the location of the erythema . The degree-field of the
 erythema record is represented by the datum-value . Also the epistemic modality of
 the datum is expressed by means of the datum-value : if the value is a degree or ‘‘no’’
 it is known , otherwise it is unknown . The ‘‘maximum’’ field of the erythema record ,
 which stores the date at which the erythema is at the maximum , is ignored because it
 is not used in the clinical reasoning process . The begin and end fields are modelled
 by means of the ars-datum . time-stamp attribute .

 Diagnostic abduction . After having modelled the concepts that play the primary
 roles in the diagnostic process , we now turn to the knowledge required to make the
 inferences (following guideline A . 2) . In ARS diagnosis , abduction of the hypotheses
 is a straightforward process—the possible values of the lesion indicators have been
 chosen in such a way that they can easily be related to the organ-system-lesion
 gradings . These associations can be modelled by means of direct relations between
 the lesion indications and the gradings of the organ-system lesions .

 The knowledge about the presence of direct associations can be used for exploring
 the library with the method-specificity index . Using this index , the knowledge
 engineer retrieves the manifestation-of relation from the library , which was also
 used in some examples in earlier sections . However , this relation is not entirely
 appropriate because it relates findings to diseases , whereas we are looking for a
 relation that relates findings to lesion gradings , which are modelled as expressions .
 Guideline B . 3—which suggests specializing the generic concept—is not applicable ,
 because there is a type mismatch between the second parameter of
 manifestation-of (the class disease) , and the relation ars-lesion-grading .
 Following guideline B . 4 , manifestation-of is therefore copied to ars-application
 and modified to have an ars-lesion-indication as its first argument and a
 ars-lesion-grading as its second argument . The modified relation is called
 ars-manifestation-of .

 In the library version of manifestation-of , the tuples of of the relation
 are qualified with evoking-strength and frequency attributes . These attributes
 can be used to characterize the correlation between the diseases and their
 manifest findings . To determine whether these attributes are useful for ars-
 manifestation-of , the expert is asked if , given a particular finding , some lesion-
 indications occur more often than others . This turns out not to be the case in the
 ARS domain—when a lesion has a particular grading all the indications are present
 and , if not all the indications are present , the evidence is insuf ficient to make the
 corresponding diagnosis . This information is recorded in the documentation string
 that QUOTE associates with the concept .

 † For readability , in CUE the complex terms in meta-level expressions are implicitly quoted and labelled
 by their ontological type .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 267

 Diagnostic abstraction . Dif ferent kinds of abstraction are used in the ARS domain .
 On the one hand , there are simple quantitative abstractions that map raw data onto
 qualitative assessments of the same parameter . On the other hand , there are
 abstractions that use complex mathematical formulae to compute the value of a
 lesion indicator from a number of raw data . Because the knowledge used for the
 abstractions is of a mathematical nature and can be communicated adequately using
 conventional mathematical notations , it is decided not to model the detailed
 characteristics of the knowledge used for the abstraction inference in the ontology .
 That is , we do not model concepts such as sine and cosine which are used in the
 formulae . Because it is important to know which observable data are used to
 compute the lesion indications , the relation ars-abstracted-from is defined in
 ars-application . This relation can be used to specify which knowledge is needed for
 the abstractions without specifying how the abstractions are computed . The
 formulae that describe how the abstractions are computed are only specified in the
 documentation slots that are associated with every knowledge piece in CUE .

 7 . 3 . 2 . Ontology for select - ARS - treatment

 Therapeutic hypotheses . In therapy planning , the most obvious candiates for the
 hypotheses role are therapies . Using guideline B . 1 , the concept therapy is found in
 the library theory therapy . Because the definition appears suitable for the current
 applications , this theory is included in the application ontology .

 Therapeutic problems . Therapeutic problems are the prime targets of therapy
 planning . Obviously , in the ARS domain these are in the lesion gradings . However ,
 other information is also needed to decide on the appropriate therapeutic action .
 For example , there may be conditions in the patient that prohibit the application of
 a particular therapy . Because there may be dif ferent types of conditions that af fect
 the choice of therapy , it is not possible to be very precise about their nature in the
 application ontology . Using guideline B . 5 , it is decided to model therapeutic
 problems using the general concept finding . Although guideline B . 5 advises on
 making a specialization of the general concept , this is not done yet , because it is not
 clear in what way the specialization could be more specific than finding itself .

 Therapeutic data . As was the case with diagnostic data , the data that are used to
 derive the therapeutic problems are coming from the computerized record .
 Therefore , these data are also modelled using the concept ars-datum .

 Therapeutic abduction . In the theory therapy , the relation has-therapy is defined
 as a relation between disorders and therapies . Therefore , this relation is used as a
 first guess for an appropriate abductive relation .

 However , in the ARS application the therapies are not related to disorders but to
 lesion gradings , which are modelled as a sub-type of findings . This is the same
 situation that occurred with the manifestation-of relation for diagnostic abduc-
 tion . According to guideline B . 4 , the concept must be copied to ars-application ,
 modified and renamed . The renamed concept is called ars-has-therapy .

 For modelling the factors that are important for deciding whether a particular
 therapy is the right therapy for a disorder , therapy provides the relations

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 268

 has-indicator and has-contra-indicator . These are defined as relations
 between tuples of has-therapy and findings . However , because the application
 ontology uses ars-has-therapy instead of has-therapy , has-indicator and
 has-contra-indicator must also be modified and copied to ars-application . The
 modified concepts are named ars-has-indicator and ars-has-contra-
 indicator .

 Therapeutic abstraction . There are many dif ferent kinds of therapeutic abstraction
 with varying degrees of complexity . Thus , the same arguments that were used for
 modelling the diagnostic abstractions in broad terms , are also applicable for
 therapeutic abstraction . For this reason , the ars-abstracted-from relation is used
 again to describe the relation between data and therapeutic problems .

 Figure 45 shows a large part of the application ontology for the ARS application ,
 using QUOTE ’s graphical representation . The figure also illustrates which parts of the
 ontology are library concepts , specializations of library concepts or modifications of
 library concepts and which concepts are new .

 7 . 4 . EXTENDING THE LIBRARY

 As described in Section 3 , the concepts that were newly defined for the ARS
 application can be used to extend CUE ’s ontology library . To do this , they must be
 scored on the domain-specificity index and the method-specificity index . In cases
 where the present domain and the used methods are not in the domain and method
 hierarchies , these must also be added . Table 4 shows how the newly defined
 concepts were scored on the domain- and method-specificity attributes .

 Domain specificity . In Section 7 . 3 it was mentioned that the current domain—ARS
 management—is related to four medical sub-domains : haemotology , dermatology ,
 neurology and gastroenterology , but that there are as yet no entries for these
 sub-domains in the library . In this situation , there are two options . We could add the
 sub-domains to the domain hierarchy and make ARS management a specialization
 of each of them . This strategy is appropriate when there are new concepts in the
 application ontology that are specific to these subdomains . However , inspection of
 the concepts in ars-application shows that this is not the case . The other option is
 to make ARS management a direct specialization of the domains from which it uses
 concepts . As was explained in the previous section , most of the newly defined
 concepts are specializations or modifications of core library concepts . The other
 newly defined concepts (ars-abstracted-from and ars-indicator-value) were
 defined from scratch . For this reason it is decided to make ARS management a
 direct specialization of ‘‘medicine’’ , the root of the domain hierarchy .

 Now it must be decided whether the newly defined concepts are specific for ARS
 management or whether they are generic for the medical domain . For the concepts
 that are specializations or modifications of core library concepts it is evident that
 they are specific to ARS management . Therefore this domain becomes their domain
 specificity value . Also ars-indicator-value gets ARS treatment as its domain-
 specificity value . This concept is only intended for modelling the set of possible
 values for ars-lesion-indicator . Because the two concepts are closely related ,
 they should have the same values on the domain- and method-specificity attributes .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 269

1
2

1
2part-of component connected-to

body-part disorder

organ automatic-space

human-body organ-system

disorder.location

1
2

syndrome is-aggregation-of

finding-type
thing operator

expressionpatient-parameter

1

clinical
personal
laboratory

one-of

observable ars-abstracted-from finding 1
2

ars-datum ars-lesion-indicator ars-lesion-grading

time-descriptor

time-interval time-point

ars-lesion-iindicator ars-indicator-value

therapy

Library
concept library

concept

Newly
defined
concept

time-point

abstracted-from

finding-type

finding-generalization

ars-has-contra-indicator

ars-has-indicator

ars-manifestation-of

ars-has-therapy

ars-datum.time-stamp

time-interval.end

time-interval.start

fatal
very-severe
severe
moderate
mild

ars-organ-system-lesion

<
=<
=
>
=>

one-of

3 2

1

1

1

1 1

1 3
1 1

one-of

2
2

1

1

1

finding type

clinical
personal
laboratory

Ontolingua class

Ontolingua relation

Ontolingua class

Ontolingua class

Type of nth parameter
of relation pointed atn

Modified
library
concept

Subclass

Type of parameter and
value of function

Enumerated class pointed
from has instances pointed at.

one-of

Legend

2

Specialized

 F IGURE 45 . The ARS ontology .

 The concept ars-abstracted-from was used for modelling the situation where the
 abstractions are made using diverse (mathematical) procedures which are not
 directly related to the expertise required for problem solving . Because this is a
 situation which is often found in medicine , it is decided to rename this concept as
 abstracted-from and assign the value ‘‘medicine’’ to it for the domain-specificity
 attribute .

 Method specificity . In the ARS application two types of methods were used :
 ‘‘abduction by direct associations’’ and ‘‘abstraction by invoking mathematical
 procedures’’ . Both methods are represented in the method hierarchy . To score the

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 270

 T ABLE 4
 The domain - and method - specificity y alues of the concepts that were newly
 defined in the ARS application . Abduction by D .A . stands for abduction by
 direct associations , and Abstraction by M .P . stands for abstraction by

 mathematical procedures

 Concept Domain specificity Method specificity

 ars-datum
 ars-datum . time-stamp
 ars-lesion-indication
 ars-indicator-value
 ars-has-therapy
 ars-has-indicator
 ars-has-contra-indicator
 ars-manifestation-of
 abstracted-from
 ars-lesion-grading
 ars-lesion-indicator
 ars-organ-system-lesion

 ARS Management
 ARS Management
 ARS Management
 ARS Management
 ARS Management
 ARS Management
 ARS Management
 ARS Management
 Medicine
 ARS Management
 ARS Management
 ARS Management

 Medical method
 Medical method
 Medical method
 Medical method
 Abduction by D . A .
 Abduction by D . A .
 Abduction by D . A .
 Abduction by D . A .
 Abstraction by M . P .
 Medical method
 Medical method
 Medical method

 concepts on this attribute , the following guideline is used . When a concept plays a
 primary role in the reasoning process (e . g . hypothesis , datum or patient finding in
 diagnosis) , it gets the method-specificity value ‘‘medical method’’ , which is the root
 of the method hierarchy . If the concept is used for an inference , the method
 specificity value of the concept is similar to the method specificity value of the
 concept that it is a specialization or modification of , except when the specialization
 or the modification was introduced for enabling the use of a more specialized
 method . In the latter case , the specialized method is used as method-specificity
 value .

 7 . 5 . MAPPING TASK MODEL AND ONTOLOGY

 Because application ontology construction was initiated by determining the on-
 tological features of the concepts that play the primary roles in the reasoning
 process , the mapping between the roles in the STModels and the ontology is
 straightforward . As illustrated in Figure 46 , QUITE has specialized editors for defining
 the mappings between the task model components and the concepts in the
 application ontology . The mappings are summarized in Table 5 and Table 6 . The
 tables also indicate how the ontological concepts were included in the application
 ontology : (i) directly from the library (library) , (ii) by specializing a library concept
 (specialized) , (ii) by making a modified copy of a library concept (modified) or (iv)
 defined from scratch (new) .

 In Section 7 . 2 , the two generic-task instances were connected by means of a
 control link . When the ontology mappings have been defined , it is also possible to
 specify the role-to-role mappings . The purpose of these role-to-role mappings is to
 specify how the knowledge roles of the dif ferent generic-task instances in the task
 model are related . If there is a role-to-role mapping between two knowledge roles ,

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 271

 F IGURE 46 . Ontology mappings and role-to-role mappings in the ARS task model . The figure shows that
 the diagnostic hypotheses are mapped onto the ontological type ars-lesion-indication and that the
 therapeutic abstraction inference is mapped onto the relation ars-abstracted-from . Further , the
 figure shows role-to-role mappings between diagnostic hypotheses and therapeutic problems and between

 diagnostic therapeutic data .

 a piece of knowledge that plays the role that the role-to-role mapping points from
 automatically also plays the role that the mapping points to . As can be seen in
 Figure 46 , there are two role-to-role mappings in the ARS task model : diagnostic
 data are mapped onto therapeutic data and diagnostic hypotheses are mapped onto
 therapeutic problems . The first of these mappings is essential for the reasoning
 process . It explicates that the hypothesized diagnoses are therapeutic problems ,

 T ABLE 5
 Ontology mappings between the diagnostics STModel of the
 task model and the application ontology . The table also shows
 how the ontological concepts were included in the application

 ontology

 Diagnostic role Ontological concept How included

 Data
 Patient findings
 Hypotheses
 Abstraction
 Abduction
 Ranking
 Deduction
 Induction

 ars-datum
 ars-lesion-indication
 ars-lesion-grading
 ars-abstracted-from
 ars-manifestation-of

 —
 —
 —

 Specialized
 Modified
 Specialized
 New
 Modified

 —
 —
 —

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 272

 T ABLE 6
 Ontology mappings between the therapeutic STModel of the task model
 and the application ontology . The table also shows how the ontological

 concepts were included in the application ontology

 Therapeutic role Ontological concept How included

 Data
 Therapeutic problems
 Hypotheses
 Abstraction
 Abduction

 Ranking
 Deduction
 Induction

 ars-datum
 finding
 therapy
 ars-abstracted-from
 ars-has-therapy
 ars-has-indicator
 ars-has-contra-indicator

 —
 —
 —

 Specialized
 Library
 Library
 New
 Modified
 Modified
 Modified

 —
 —
 —

 thereby connecting the two generic task instances . The other role-to-role mapping is
 for convenience . It explicates that the data that are used for ARS grading may also
 be used for planning a therapy . For the current application , this has no impact since
 both the diagnostic data and the therapeutic data are retrieved from the same
 database . However , such mappings are important when data acquisition is a
 laborious task .

 7 . 6 . ACQUIRING DOMAIN KNOWLEDGE

 7 . 6 . 1 . Generating the elicitation agenda
 For the acquisition of the actual domain knowledge QUAKE is invoked . When the
 tool is started , its first task is to generate an initial elicitation agenda . For generating
 this agenda it must be determined which of the concepts in the application ontology
 need to be instantiated in the knowledge base , and which are only used for adding
 higher-level structure to the application ontology .

 This decision can be made manually or automatically in QUAKE . When performed
 manually , the tool presents all the classes , relations and functions and invites the
 user to specify which of these concepts will have instances or tuples in the
 knowledge base . In automatic mode , QUAKE uses the mappings between the task
 model and the application ontology to decide which classes and relations need to be
 instantiated . The underlying idea is that only the concepts mentioned in those
 mappings are used in the actual reasoning process . Therefore , these are the only
 ones that can af fect the behaviour of the KBS . For the ARS application , the initial
 agenda is generated automatically .

 7 . 6 . 2 . Defining the knowledge elicitation strategy
 When it has been decided which knowledge must be elicited , the next step is to
 decide in which order the knowledge must be elicited . In QUOTE this is specified by
 means of a knowledge elicitation strategy .

 In Section 5 , two general principles were formulated for specifying knowledge

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 273

 elicitation strategies . Firstly , it was observed that there are usually basic objects in an
 application domain . For medical domains these are typically disorders , and in
 engineering domains components . Secondly , it was observed that the elicitation
 strategy is usually based on some kind of graph traversal : already elicited knowledge
 is used to prompt for related knowledge . From these principles and the application
 ontology in the ARS domain the following elicitation strategy was derived .

 (1) Elicit the diagnostic hypotheses (ars-lesion-gradings) .
 (2) For each of the elicited hypotheses , use the main abductive relation to elicit the

 abstract findings that would trigger that hypothesis . In this case , this is the
 relation ars-manifestation-of . Note that the abductive knowledge and the
 patient findings (lesion-indications) are elicited in one step .

 (3) For each of the abstract findings , elicit the knowledge used to make the
 abstractions (the ars-abstracted-from tuples and the instance of ars-
 datum) .

 (4) Elicit for each of the diagnostic hypotheses the associated therapies , using the
 basic therapeutic abduction relation (ars-has-therapy) .

 (5) Elicit the findings that are indicators and contra-indicators for using a particular
 therapy for a lesion grading .

 (6) Elicit for each of the findings that are indicators or contra-indicators for the
 therapies the data that they are abstracted from .

 Note that in this strategy a number of ordering decisions have been taken which
 are not derived from the principles mentioned above . For example , the principles do
 not suggest that the knowledge used for diagnosis should be elicited before the
 knowledge used in therapy planning . In other words , it is not possible to derive a
 unique best strategy from the principles . There are a number of sensible strategies
 possible . From these , one has been chosen arbitrarily . Figure 47 shows how this
 strategy was formulated in QUAKE ’s knowledge-elicitation-strategy language .

 7 . 6 . 3 . Eliciting the application knowledge
 Given the application ontology and the knowledge elicitation strategy , elicitation is a
 straightforward activity . QUAKE prompts the domain expert with a series of questions
 of the type ‘‘Enter a possible grading of the haemopoietic lesion’’ . Figure 48 shows a
 transcript of the part of the scenario where the system elicits the indicators and
 contra-indicators of therapies .

 7 . 7 . BUILDING THE DESIGN MODEL

 When the knowledge model has been completed , it must be transformed into an
 executable system . In our approach , the design process consists of three steps : (i)
 implementing the problem solving method , (ii) selecting problem solvers and (iii)
 translating the knowledge . This section will concentrate mainly on the first two of
 these steps . When the problem solvers are selected and the mappings between the
 application ontology and the representational meta models have been specified , the
 translation step can be done automatically .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 274

 (define-ka-strategy main ()
 ; ; Elicit the organ system lesions
 (elicit-all ?lesion (ars-organ-system-lesion ?lesion)
 (elicit-all ?grading (ars-lesion-grading ?lesion 5 ?grading)))

 ; ; For each of the elicited hypotheses , use the abductive relation
 ; ; to elicit the findings that would trigger that hypothesis .
 (for-each $1g (ars-lesion-grading $1g)
 (elicit-all $1i (manifestation-of (ars-lesion-indication $1i)

 (ars-lesion-grading $1g))))
 ; ; For each of the abstract findings , elicit the knowledge that is
 ; ; used to make the abstractions
 (for-each $1i (ars-lesion-indication $1i)
 (elicit-all $datum (ars-abstracted-from (ars-lesion-indication $1i)

 (ars-datum $datum))))
 ; ; Elicit for each of the diagnostic hypotheses the associated
 ; ; therapies , using the basic therapeutic abduction relation
 (for-each $1g (ars-lesion-grading $1g)
 (elicit-all ?t (ars-has-therapy (ars-lesion-grading $1g)

 (therapy ?t))))
 ; ; Elicit the findings that are indicators and contra-indicators for
 ; ; using a particular therapy for a lesion grading .
 (let (ê findings)
 (for-each $aht (ars-has-therapy $aht)
 (elicit-all $finding (ars-has-indicator $aht $finding)
 (push $finding ê findings))

 (elicit-all $finding (ars-has-contra-indicator $aht $finding)
 (push $finding ê findings)))

 ; ; Finally , elicit the data from which the findings are abstracted .
 (for-each $finding (member-of $finding ê findings)
 (elicit-all $datum (ars-abstracted-from (finding $finding)

 (ars-datum $datum))))))

 F IGURE 47 . The knowledge elicitation strategy used for the ARS application . The language used for
 defining strategies distinguishes three types of variables : (i) instance variables (?varnames) , which unify
 with class instances , (ii) tuple variables ($varname) , which unify with tuples of the indicated types and
 (iii) set variables (ê varname) which can be used for the temporary storage of elicited instances and
 tuples . The basic constructs in the language are elicit-all and for-each . Both have as their first
 parameter a variable , and as their second parameter an expression that constrains the instances and tuples
 with which the variable can unify . The (optional) remaining arguments must be operations that are to be
 performed on each of the instances or tuples that are unified with the variable . The dif ference between
 elicit-all and for-each is that the former obtains the objects that are unified with the variable by
 asking the QUAKE user , whereas the latter searches for objects that unify with the variable in QUAKE ’s
 knowledge repository . Further , the ARS strategy uses the constructs push , which includes-an object in a
 set , and let , for (lexical) variable scoping . Besides these constructs , the language also provides simple

 constructs for conditional branching , supports user-defined procedures and allows recursion .

 7 . 7 . 1 . Implementing the problem - sol y ing method
 The problem-solving method has been implemented by means of meta rules which
 specify the high-level control of the reasoning process . This involves both sequenc-
 ing of the inferences within an instantiated task model and switching between these
 models .

 At the highest level , it must be specified that diagnosis is performed before
 therapy planning . This is the most common situation . Only in time-critical situations
 it might occur that the two processes are interleaved . However , it is not intended
 that the ARS system be embedded in a real-time environment . Further , the amount

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 275

 At a certain moment in the scenario , the system is eliciting therapies for the y arious lesion -
 gradings :
 (ars-has-therapy (HPS 5 4) k therapy l)
 Enter therapy : autologous-BMT
 The user enters that autologous - BMT is a possible therapy for grading 4 of HPS (haemopoetic
 syndrome) . The system continues by asking for possible therapies for e y ery lesion - grading . It
 then starts asking for the indicators and contra - indicators of these therapies .
 (ars-has-contra-indicator (ars-has-therapy (HPS 5 4) autologous-BMT) k finding l)
 Enter Finding : stem-cells-preserved 5 no
 (ars-has-contra-indicator (ars-has-therapy (HPS 5 4) autologous-BMT)
 k finding l)
 Enter Finding :
 identical-twin-available 5 no

 F IGURE 48 . A transcript of a part of the knowledge elicitation session for the ARS application .

 of knowledge in the knowledge model is limited and well structured , so it is not
 expected that the system will have to traverse huge search spaces . The following
 meta rules specify when the two generic task instances may be invoked . It is
 assumed that when control is passed to the task invocation module , the presence of
 hypotheses in the hypotheses space indicates whether the task has been completed .

 IF Hypotheses-space of ARS-Grading 5 empty
 THEN invoke-task-instance ARS-grading

 IF Hypotheses-space of ARS-Grading 5 NOT empty AND
 Hypotheses-space of Select-ARS-Treatment 5 empty

 THEN invoke-task-instance Select-ARS-Treatment

 For each of the generic task instances , the local control regimes must also be
 specified . The suitability of a particular control regime depends on the goal that is
 associated with the task . For ARS-grading this is ‘‘grading the disease’’ . Computa-
 tionally , this is an easy kind of diagnosis , because it allows us to make the single
 fault assumption : according to the application ontology a lesion can only have one
 true grading . Because of the single fault assumption and because there is a finite
 number of possible gradings , the search space is finite . Furthermore , in this
 particular case the search space is very small . The attractive computational
 characteristic allow for a straightforward control regime . First the data are
 obtained , then all the possible abstractions are made , and then the hypotheses are
 generated . The following meta rules implement this strategy for ARS-grading .

 IF Observable-Data-Space 5 empty
 THEN Invoke-inference Request-Data

 IF Observable-Data-Space 5 NOT empty AND
 Patient-Findings Space 5 Empty

 THEN Invoke-inference Abstraction

 IF Hypotheses-space 5 empty AND
 Patient-Findings Space 5 NOT empty

 THEN Invoke-inference Abduction

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 276

 7 . 7 . 2 . Selecting problem sol y ers
 As argued in Section 6 , the problem solvers that implement the inferences should be
 both epistemologically and computationally adequate . Considering the limited
 amount of domain knowledge , it is not likely that computational complexity will be
 an important issue in this case . Therefore , the discussion will focus on epistemologi-
 cal adequacy . A problem solver is epistemologically adequate if the distinctions
 between dif ferent kinds of knowledge in the domain are preserved in the data
 structures used by the problem solver . In Section 6 this idea was operationalized by
 means of mappings between the application ontology and representational meta
 models of the problem solvers . When the mappings are simple , the problem solver is
 epistemologically adequate .

 Diagnostic abduction . Diagnostic abduction is performed by traversing tuples of the
 relation ars-manifestation-of . As can be seen in Figure 45 , the abductive
 inferences are straightforward : the findings are directly associated with the hypoth-
 eses that they trigger and no uncertainty is involved . Such associational reasoning
 can easily be performed by a forward-chaining production-rule interpreter . There-
 fore , the representational meta model of a simple rule interpreter is selected from
 CUE ’s problem solver library . Figure 49 shows this model using QUOTE ’s graphical
 representation .

 The representational meta model specifies that a rule consists of three sets of
 attribute expressions : conditions , counter-conditions and actions . Attribute expres-
 sions are the symbol-level equivalent of findings in the application ontology . They
 consist of an attribute , an operator and an attribute-value . The representational
 meta model makes an explicit distinction between conditions and counter-
 conditions . A rule may fire when all of its conditions and none of its counter-
 conditions are true . There are two reasons for making this distinction . Firstly ,
 without this distinction , modelling of attribute expressions would be more compli-
 cated , since there would be a need for ‘‘negative’’ attribute expressions . Secondly , as
 will see later , conditions and counter-conditions are often mapped onto dif ferent
 ontological concepts . The semantics of the representational meta model are that a
 rule may fire when all of its conditions are satisfied and when none of its
 counter-conditions are satisfied .

operator

expression

1

thingthing

2 3

counter-condition contains

2

1

expression-list

condition

action

has counter
conditionrule

has-condition

has-action

 F IGURE 49 . The representational meta-model of a production-rule interpreter , represented using QUOTE ’s
 graphical language .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 277

 (ars-manifestation-of (ars-lesion-indication ?1i 5 ?v)
 (ars-lesion-grading ?1g 5 ?g))

 : 5

 (and (rule ?rule)
 (has-condition ?rule ?condition)
 (contains ?condition (attribute-expression ?1i patient ?v))
 (has-action ?rule ?action)
 (contains ?action (attribute-expression ?1g patient ?g)))

 F IGURE 50 . A simple mapping from the ars-manifestation-of relation onto the representational
 meta-model of the production rule system . The mappings are specified by means of mapping rules . On
 both sides of a mapping rule are expressions in CUE ’s logical notation . The expressions may contain
 variables . When the mappings rules are applied , every expression that can be unified with the left-hand

 side of the mapping rule can be rewritten as the right-hand side .

 There are dif ferent ways to map the relevant parts of the application ontology
 onto the representational meta model . The main ontological concept for the
 mapping is the ars-manifestation-of relation . A straightforward way of mapping
 this relation onto the representational meta model is to generate a rule for every
 tuple of the relation . The mappings could then be specified as shown in Figure 50 .

 One complication that must be handled is that the second argument of finding (of
 which ars-lesion-indication and ars-lesion-grading are sub-types) may be
 either , , 5 , , 5 , . or . 5 , whereas in the attribute expressions in the
 representational meta model it can only be specified that an object has a particular
 value for an attribute . Thus , only the 5 operator may be used . Further , there is no
 explicit representation of the object of the attributes (the patient) in the application
 ontology . In the mappings in Figure 50 this is handled by enforcing that only findings
 with the 5 operator may be mapped and by using the constant patient as a
 dummy object in the attribute expressions in production rules . Inspection of the
 application knowledge shows that the restriction to the 5 operator does not cause
 problems .

 A problem with the mapping in Figure 50 is that it generates a large number of
 hypotheses . As soon as one of the manifestations of a particular grading has been
 established , the hypothesis will be generated . In the ARS domain a more
 conservative abductive strategy is preferred : a lesion grading should only be
 hypothesized if all of its manifestations are present . This can be realized by
 specifying the mapping rules in such a way that all the manifestations are grouped in
 the condition part of a single rule .

 Note that the representational meta model does not allow disjunctive conditions .
 Although allowing disjunction does not af fect the representational power of the
 formalism—it is equivalent to the introduction of extra rules—it may af fect the
 mapping relations . For example , if disjunctions are allowed , it is always possible to
 generate one and only one rule for every possible action . If disjunction is not
 allowed , this is only possible in cases where every condition is a necessary condition ,
 and if there are no subsets of the set of conditions that are suf ficient for the action .
 In terms of the application ontology , this means that a particular lesion grading can
 only be the true grading if all of its associated manifestations are present . As
 described in Section 7 . 3 , this requirement is met in the ARS domain . (It was for this
 reason that the attributes frequency and evoking-strength were left out of the

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 278

 (ars-lesion-grading ?1g 5 ?g)
 : 5

 (and (rule ?rule)
 (has-action ?rule ?action)
 (contains ?action (attribute-expression ?1g patient ?g)))

 (ars-manifestation-of (ars-lesion-indication ?1i 5 ?v)
 (ars-lesion-grading ?1g 5 ?g))

 : 5

 (é (and (rule ?rule)
 (has-action ?rule ?action)
 (contains ?action (attribute-expression ?1g patient ?g))
 (has-condition ?rule ?condition))

 (contains ?condition (attribute-expression ?1i patient ?v)))

 F IGURE 51 . The mapping rules that are used for diagnostic abduction in the ARS application .

 application ontology .) The mapping is realized by means of the rules shown in
 Figure 51 .

 The first mapping rule in Figure 51 states that for every lesion grading in the
 knowledge model there is a rule in the design model , where the action part of the
 rule asserts a particular lesion-grading . The second mapping expresses that for every
 tuple of the ars-manifestation-of relation which has the particular lesion-
 grading as its second argument , the rule that is based on that grading has a condition
 that corresponds to the first argument of the tuple .
 Diagnostic abstraction . In the application ontology , the abstractions are modelled by
 means of ars-abstracted-from relations between findings and lesion indications .
 In the design model , we must specify the procedures that compute the abstractions
 and build a wrapper around these procedures to ensure that they can be invoked in
 the same way as ‘‘real’’ problem solvers . As mentioned , the complexity of the
 abstractions in the ARS domain ranges from simple table lookups to complex
 computational procedures . We will concentrate here on one abstraction of each
 type .

 An example of a simple qualitative abstraction is the derivation of the lesion-
 indicator vomiting-severity from the data vomiting-time and accident-time .
 The value of this indicator must be one of five time periods , which represent the
 time period in hours between the exposure to radiation and the moment of
 vomiting . The Lisp function shown in Figure 52 is used to compute the vomiting
 severity .

 (defun compute-vomiting-severity (accident-time vomiting-time)
 (let ((period (- vomiting-time accident-time)))
 (cond ((, period 9 . 2)

 9 (0 0 . 2))
 ((, period 0 . 5)

 9 (0 . 2 0 . 5))
 ((, period 2 . 0)

 9 (0 . 5 2 . 0))
 ((, period 6 . 0)

 9 (2 . 0 6 . 0))
 (t 9 (6 . 0 : infinity)))))

 F IGURE 52 . The Lisp function that computes the vomiting severity abstraction .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 279

 A complex kind of abstraction is the derivation of the severity of the granulocyte
 decrease . This lesion indicator , which is an indicator of the severity of the lesion to
 the haemopoietic system , is abstracted from a measurement of the granulocytes
 concentration and the measurement time relative to the date of the radiation
 exposure . The severity of the decrease is expressed by a number between 1 , meaning
 not severe , and 5 , meaning very severe . The value of the granulocyte decrease is
 computed by comparing the measured granulocyte concentration with time-
 dependent threshold values . The computation of the threshold values is based on a
 quantitative model of the development of the granulocytes concentration , which can
 be expressed by means of the function g :

 g (t) 5
 a

 2 a 1 b
 ? e 2 at ? x 1

 a
 a 2 b

 e 2 bt ? x 1 a ? e 2 bt ? y

 The model is based on four parameters : x , the number of maturing granulocytes
 in the home marrow ; y , the number of granulocytes in the blood ; a , the maturation
 time of granulocytes and b , the loss rate of granulocytes . The severity of the
 haemopoietic lesions can be modelled in terms of values for the four parameters in
 the model . To generate the functions that discriminate between the five levels of
 severity of the haemopoietic lesion , the parameter values shown in Table 7 are used .
 (These values are based on empirical results .)

 The Lisp function that computes the granulocyte-decrease abstraction is shown in
 Figure 53 .

 To embed the Lisp function in the KBS they must be wrapped in an object that
 can be invoked as a problem solver . In the current application this is realized by
 wrapping the abstraction functions into production rules . The conditions of these
 production rules are used to bind the parameters of the Lisp functions to particular
 values , and the actions are used to write the function result to the appropriate space
 of the blackboard .

 Diagnostic data entry . In the ARS application , the diagnostic data are derived from
 computerized medical records . In Section 7 . 3 it was explained that the diagnostic
 data are modelled by means of ars-datum , a specialization of finding . However ,
 the data are not represented in this format in the medical record .

 In order to enable the ARS application to make use of the data in the database , a
 transformation must be defined between the ars-datum concept and the database

 T ABLE 7
 Parameter y alues for the threshold
 functions to discriminate between
 dif ferent y alues of the granulocyte -

 decrease abstraction

 Degree x y a b

 1 – 2
 2 – 3
 3 – 4
 4 – 5

 101
 120
 105
 100

 5
 5
 5
 5

 1
 0 . 475
 0 . 166
 0 . 062

 2 . 4
 2 . 4
 2 . 4
 1 . 185

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 280

 ((defun compute-granulocyte-decrease (concentration time)
 (flet ((threshold-function (x y a b)

 (1 (* (/ a (2 b a))
 (exp (* 2 1 a time))
 x)

 (* (/ a (2 a b))
 (exp (* 2 1 b time))
 x)

 (* a
 (exp (* 2 1 b time))
 y))))

 (cond ((, concentration (threshold-function 101 5 1 2 . 4))
 5)
 ((, concentration (threshold-function 120 5 0 . 475 2 . 4))
 4)
 ((, concentration (threshold-function 105 5 0 . 166 2 . 4))
 3)
 ((, concentration (threshold-function 100 5 0 . 062 2 . 4))
 (t 1))))

 F IGURE 53 . The Lisp function that computes the granulocyte decrease abstraction .

 schema . As with problem solvers , this is done in two steps : first , make a mapping
 between the ontology and a representational meta model of the database , and then
 use a translation program to translate between the representational meta model and
 the actual database representation .

 For the present purpose , a simple database representational meta model is used : a
 database consists of sections , and each of these sections consists of a number of
 records . In turn , records consist of a number of fields . Dif ferent sections of the
 database may have dif ferent kinds of records , but , within a section , all records must
 have the same type of fields . Figure 54 shows the mappings between the
 representational meta model and the application ontology for the erythema part of
 the database (see Table 3) .

 The mapping between the database records and the application ontology has a
 dif ferent nature from the mappings between the ontology and the representational
 meta models of the problem solvers described earlier . In contrast with the earlier
 mappings , the mapping shown in Figure 54 is specific for one particular kind of
 ars-datum , namely data about erythema . For each of the dif ferent kinds of data
 used in the application another mapping must be defined . This is necessary because
 the ARS database uses a variety of record structures .

 (has-record erythema-section
 ?erythema-location ?yes no ?unknown ?begin ?end ?maximum ?degree)

 : 5

 (ars-datum ?erythema-location 5 no)

 (has-record erythema-section
 ?erythema-location yes ?no ?unknown ?begin ?end ?maximum ?degree)

 : 5

 (and (ars-datum ?erythema-location 5 ?degree)
 (ars-datum . time-stamp (ars-datum ?erythema-location 5 ?degree)

 (time-interval ?begin ?end)))

 F IGURE 54 . The mapping rules used for diagnostic data entry .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 281

 (ars-has-therapy (lesion-grading ?11 5 ?v) ?t)
 : 5

 (and (rule ?rule)
 (has-action ?rule ?action)
 (contains ?action (attribute-expression therapy patient ?t))
 (has-condition ?rule ?condition)
 (contains ?condition (attribute-expression ?l1 patient ?v)))

 (ars-has-indicator (ars-has-therapy (lesion-grading ?l1 5 ?g) ?t)
 (finding ?ob 5 ?v))

 : 5

 (é (and (rule(and ?rule)
 (has-action ?rule ?action)
 (contains ?action (attribute-expression therapy patient ?t))
 (has-condition ?rule ?condition)
 (contains ?condition (attribute-expression ?l1 patient ?g))

 (contains ?condition (attribute-expression ?ob patient ?v)))

 (ars-has-contra-indicator (ars-has-therapy (lesion-grading ?l1 5 ?g) ?t)
 (finding ?ob 5 ?v))

 : 5

 (é (and (rule ?rule)
 (has-action ?rule ?action)
 (contains ?action (attribute-expression therapy patient ?t))
 (has-condition ?rule ?condition)
 (contains ?condition (attribute-expression ?l1 patient ?g))
 (has-counter-condition ?rule ?counter-condition))

 (contains ?counter-condition (attribute-expression ?ob patient ?v)))

 F IGURE 55 . The mapping rules used for therapeutic abduction in the ARS application .

 Therapeutic abduction . For the therapeutic abduction inference , three relations are
 used : ars-has-therapy , ars-has-indicator and ars-has-contra-indicator .
 ars-has-therapy directly connects the therapeutic problems to the therapies . This
 suggests that , as for diagnostic abduction , the production rule interpreter might be
 suitable . However , for therapy planning the situation is more complicated because
 we must also deal with the indicators and the contra-indicators .

 The indicators are conditions that must hold for the therapy to be appropriate . It
 is clear that these can be realized computationally as additional conditions in the
 production rules . The contra-indicators can be realized as counter-conditions in the
 production rules . Figure 55 shows the mapping rules that implement this
 operationalization .
 Therapeutic abstraction and data entry . We can be brief about the problem solvers
 that are selected for therapeutic abstraction and therapeutic data entry . Both
 inferences make the same ontological commitments as the corresponding steps in
 the diagnostic sub-task , and are therefore implemented in a similar way .

 Table 8 summarizes which problem solvers were selected to implement the
 inferences in the ARS task model .

 7 . 7 . 3 . Translating the knowledge
 Once the mappings between the ontology and the representational meta models
 have been specified , translating the knowledge to the particular formalisms is largely
 an automatic process . As was mentioned in Section 6 , the representational meta

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 282

 T ABLE 8
 Problem sol y ers used in the ARS application

 Inference Problem solver

 Diagnostic request data
 Diagnostic abstraction
 Diagnostic abduction
 Therapeutic request data
 Therapeutic abstraction
 Therapeutic abduction

 ARS Database
 Lisp functions
 production rules
 ARS Database
 Lisp functions
 production rules

 models are associated with procedures that translate back and forth between the
 representational meta models and the internal representations of the problem
 solvers . The mappings between the application ontology and the representational
 meta models can therefore be considered as a specification of how the knowledge in
 the knowledge model should be represented in the design model . For example , the
 knowledge pieces which were elicited in Figure 48 are translated according to the
 mapping rules shown in Figure 55 into the following attribute expression in terms of
 the representational meta model :

 (rule rule34)
 (has-action rule34 action34)
 (contains action34 (attribute-expression therapy patient
 autologous-BMT))
 (has-counter-condition rule34 counter-condition34)
 (contains counter-condition34

 (attribute-expression identical-twin-available patient no))
 (contains counter-condition34)

 (attribute-expression stem-cells-preserved patient no))

 These attribute expressions are then translated automatically into production rules
 in the syntax of the particular production rule interpreter :

 IF NOT identical-twin-available patient no AND
 NOT stem-cells-preserved patient no

 THEN therapy patient autologous-BMT

 7 . 8 . QUAARS IN ACTION

 To illustrate how the final system solves problems in the ARS domain , we now
 present an execution trace where the system diagnoses the haemopoietic syndrome .
 In the trace , the system retrieves eight pieces of data from the database and uses
 these to abstract the severity of the vomiting reaction , the severity of the diarrhoea
 reaction and the severity of the granulocyte decrease . Based on these findings , the
 system derives that the haemopoietic syndrome has grading 4 .

 . (quaars)
 ; ; ; -
 ; ; ; QSHELL (Version 0 . 1)
 ; ; ; -
 - - - - - - Invoking Task ARS-GRADING

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 283

 - - - - - - Invoking Inference REQUEST-DATA
 - - - - - - Retrieving data from database
 Retrieved : (ars-datum radiation-exposure 5 yes)
 Retrieved : (ars-datum . time-stamp

 (ars-datum radiation-exposure 5 yes)
 (time-point k 1965 / 04 / 28 / 23 . 11 l))

 Retrieved : (ars-datum vomiting 5 yes)
 Retrieved : (ars-datum . time-stamp

 (ars-datum vomiting 5 yes)
 (time-point k 1965 / 04 / 28 / 23 . 52 l))

 Retrieved : (ars-datum diarrhea 5 yes)
 Retrieved : (ars-datum . time-stamp

 (ars-datum diarrhea 5 yes)
 (time-point k 1965 / 04 / 28 / 23 . 40 l))

 Retrieved : (ars-datum granulocyte-count 5 3 . 5)
 Retrieved : (ars-datum . time-stamp

 (ars-datum granulocyte-count 5 3 . 5)
 (time-point k 1965 / 05 / 02 / 12 . 30 l))

 - - - - - - Invoking Inference ABSTRACTION
 - - - - - - Mapping inputs from DATA space to Representational
 Meta Model of ABSTRACTION-WRAPPER
 Mapped : (ars-datum radiation-exposure 5 yes) : 5

 (attribute-expression radiation-exposure patient yes)
 Mapped : (ars-datum . time-stamp

 (ars-datum radiation-exposure 5 yes)
 (time-point k 1965 / 04 / 28 / 23 . 11 l)) : 5

 (attribute-expression time radiation-exposure
 k 1965 / 04 / 28 / 23 . 11 l)

 Mapped : (ars-datum vomiting 5 yes) : 5

 (attribute-expression vomiting patient yes)
 Mapped : (ars-datum . time-stamp

 (ars-datum vomiting 5 yes)
 (time-point k 1965 / 04 / 28 / 23 . 52 l)) : 5

 (attribute-expression time vomiting k 1965 / 04 / 28 / 23 . 52 l)
 Mapped : (ars-datum diarrhea 5 yes) : 5

 (attribute-expression diarrhea patient yes)
 Mapped : (ars-datum . time-stamp

 (ars-datum diarrhea 5 yes)
 (time-point k 1965 / 04 / 28 / 23 . 40 l)) : 5

 (attribute-expression time diarrhea k 1965 / 04 / 28 / 23 . 40 l)
 Mapped : (ars-datum granulocyte-count 5 3 . 5) : 5

 (attribute-expression granulocyte-count patient 3 . 5)
 Mapped : (ars-datum . time-stamp

 (ars-datum granulocyte-count 5 3 . 5)
 (time-point k 1965 / 05 / 02 / 12 . 30 l)) 5

 (attribute-expression time granulocyte-count
 k 1965 / 05 / 02 / 12 . 30 l)

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 284

 - - - - - - Translating inputs to representation of ABSTRACTION-WRAPPER
 Finished
 - - - - - - Invoking Problem solver ABSTRACTION-WRAPPER
 Finished
 - - - - - - Translating outputs of ABSTRACTION-WRAPPER to Representational
 Meta Model
 Finished
 - - - - - - Mapping outputs from Representational Meta Model of
 ABSTRACTION-WRAPPER to PATIENT-FINDINGS
 Mapped : (attribute-expression vomiting patient severe) : 5

 (ars-lesion-indication vomiting 5 severe)
 Mapped : (attribute-expression diarrhea patient severe) : 5

 (ars-lesion-indication diarrhea 5 severe)
 Mapped : (attribute-expression granulocyte-decrease patient severe) : 5

 (ars-lesion-indication granulocyte-decrease 5 severe)
 - - - - - - Invoking Inference ABDUCTION
 - - - - - - Mapping inputs from PATIENT-FINDINGS space to Representational
 Meta Model of Q-CHAIN
 Mapped : (ars-lesion-indication vomiting 5 severe) : 5

 (attribute-expression vomiting patient severe)
 Mapped : (ars-lesion-indication diarrhea 5 severe) : 5

 (attribute-expression diarrhea patient severe)
 Mapped : (ars-lesion-indication granulocyte-decrease 5 severe) : 5

 (attribute-expression granulocyte-decrease patient severe)
 - - - - - - Translating inputs to internal representation of Q-CHAIN
 Finished
 - - - - - - Invoking Problem Solver Q-CHAIN
 Finished
 - - - - - - Translating outputs of Q-CHAIN to Representational Meta Model
 Finished
 - - - - - - Mapping outputs from Representational Meta Model of Q-CHAIN to
 HYPOTHESES space
 Mapped : (attribute-expression HPS patient 4) : 5

 (ars-lesion-grading HPS 5 4)

 8 . Conclusions

 An ontology is an explicit , knowledge level specification of a conceptualization . This
 paper has described a number of ways in which ontologies can be used in the
 knowledge engineering process .

 To maximize the leverage of explicit ontologies , an application-specific ontology
 should be constructed early in the knowledge engineering process . We have called
 such an ontology an application ontology . However , in Section 3 it was argued that
 the contents of an application ontology may depend heavily on the task at hand .
 Therefore , application ontologies can more easily be constructed when a task model

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 285

 is at hand . On the basis of these observations we have proposed the following
 organization of the knowledge engineering process .
 (1) Construct a task model for the application .
 (2) Select and / or construct appropriate ontologies , and if necessary refine these .
 (3) Map the application ontology onto the knowledge roles in the task model .
 (4) Instantiate the application ontology with domain knowledge .
 (5) Select or construct meta rules that implement the task model .
 (6) Select problem solvers that implement the inferences in the task model .
 (7) Translate the domain knowledge into the representations of the selected
 problem solvers .

 Ontologies can be constructed by selecting and configuring ontological theories
 from a library and by defining ontologies ‘‘from scratch’’ . To guide navigation in a
 library of reusable ontological theories , the theories should be indexed according to
 domain specificity and method specificity . The underlying idea is that some concepts
 are more reusable than others , and that the reusability of concepts depends on (i)
 how specific these are for particular domains and (ii) how specific these are for
 particular problem-solving methods .

 An ontology library should be organized in a core part , containing definitions of
 the basic concepts in the field , and a peripheral part , containing definitions that are
 only needed for specific methods and specific sub-domains . By indicating which
 sub-domains and which methods are to be used in an application , the library indexes
 can be used to find definitions that are likely to be useful for the application . The
 core part is thus specific for a field (e . g . medicine) but generic across all
 specializations and tasks within that field .

 Often , the library will not contain entries for the sub-domain and for the methods
 used by an application . For this situation , a number of guidelines have been
 developed for using the library as a source of inspiration . These guidelines were
 based on the considerations that (i) only concepts that are referred to by the
 task-model (and the concepts that they depend on) are needed for an application
 ontology , (ii) similar concepts will often have similar names , and (iii) it is easier to
 define new concepts by specifying or modifying existing concepts than to define
 concepts from scratch .

 When there is no library available , application ontologies must be developed by
 the knowledge engineer . For defining an ontological concept , the following
 guidelines can be used : (i) a concept should be suf ficiently general to cover all the
 elements of knowledge that the concept is intended for , (ii) a concept should be
 suf ficiently specific to cover only those elements of knowledge that the concept is
 intended for , and (iii) a concept should have a name that is meaningful in the
 application domain .

 We have described two ways in which explicit ontologies can be used during
 knowledge engineering : for knowledge elicitation and for computational design .
 Because ontologies specify which constraints domain knowledge should satisfy , they
 can be used to direct the knowledge elicitation process . Further they can be used to
 drive an automated knowledge elicitation tool . In Section 5 this was illustrated with
 QUAKE , a tool in the CUE workbench , which is able to inspect application ontologies
 written in Ontolingua . QUAKE uses a knowledge-acquisition oriented interpretation

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 286

 of the vocabularly defined in the Frame ontology—a representational ontology
 which defines the vocabularly for specifying Ontolingua ontologies—to support
 model instantiation by consistency checking , completeness checking , using domain-
 specific terminology , intuitive visualization and dialogue structuring .

 During computational design application ontologies can be used to determine the
 suitability of problem solvers for the particular application . To decide whether a
 particular problem solver is suitable , its representational capacity must be compared
 with the epistemological distinctions in the domain knowledge . The application
 ontology is an explicit representation of these epistemological distinctions .

 An important final question raised in this paper concerns the reusability of
 ontologies . Handling the interaction problem was identified as a key to reusability .
 The interaction problem states that the way in which knowledge is represented is
 determined by knowledge use . The interaction problem can be managed by means
 of the explicit interaction principle as follows .

 Dif ferent elements of an ontology are af fected in dif ferent ways by the nature of the
 method that is used by an intelligent agent . By making the nature of the interaction
 between the method and the elements of the ontology explicit , it can be determined
 under which conditions ontological elements can be reused .

 In Section 3 the explicit interaction principle was used to organize an ontology
 library . The method-specificity index was used here to make explicit with which
 method or group of methods an ontological element could be (re-)used .

 Most ontology-related research in AI is done for the purpose of knowledge
 sharing . Knowledge sharing means that a knowledge base can act as a knowledge
 provider (a server) for other knowledge bases (clients) . An influential research
 project in this context is the knowledge sharing ef fort (KSE) described in Neches et
 al . (1991) . In an analysis of the obstacles that prohibit knowledge sharing between
 existing knowledge bases , one of the problems is that servers and clients can make
 dif ferent ontological commitments . The solution proposed in the KSE project is to
 develop a library of standardized ontologies , and to enforce KBS developers to
 adhere to these ontological standards . To help KBS developers to comply with the
 standards , the Ontolingua language and support software were developed . The
 Ontolingua language is the language which is used for encoding the library of
 ontologies . This language was also used for ontological modelling in the work
 described here . The Ontolingua program consists of a collection of translation
 routines that translate ontologies formulated in the Ontolingua language into the
 representation formalisms of a number of dif ferent problem solvers .

 The view on knowledge engineering that underlies the Ontolingua approach is
 that knowledge engineers first decide which ontological commitments must be made ,
 then use the ontology library to make these commitments explicit , and then use their
 favourite tool for developing the knowledge base . Roughly speaking , this approach
 is similar to the approach to knowledge engineering advocated in this paper ,
 although in the Ontolingua approach many subtleties of the use of reusable
 ontologies for knowledge engineering remain unaddressed . For example , in theory
 the builders of the KSE ontology library do not take into account that a
 problem-solving method may require particular ontological commitments . That is ,
 the approach does not provide guidelines for dealing with the interaction problem .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 287

 In practice , however , the importance of the interaction problem is certainly
 recognized , as can be seen in the Ontolingua theories developed as part of the VT
 experiment (Schreiber & Birmingham , 1996) . The ontology for this application is
 split into two theories : one which models concepts that are specific to elevators (the
 domain) , and one that is specific to engineering design (the task) . This is exactly
 what the principles put forward in Section 3 prescribe .

 A potential problem with the Ontolingua approach is that it requires that the
 knowledge bases are based on the same ontological commitments . Therefore ,
 knowledge can only be shared between knowledge bases developed with that very
 purpose in mind . Unfortunately , the world is filled with knowledge bases and
 databases which are not developed according to this philosophy . The information in
 these servers cannot be shared . The approach to this problem presented in this
 paper was to wrap an external database into an ontological theory which conformed
 to the commitments in the application ontology . The wrapper was then connected to
 the database by means of access functions .

 A more generic solution to this problem is to use more flexible ways of specifying
 which ontological commitments are made in a knowledge base . In both the KSE
 library and our library , committing to the ontological distinctions defined in a theory
 means including that theory . That is , making the concepts in the included theory
 directly accessible to the includer . A more flexible way of connecting ontologies is to
 allow ontology mappings . The idea here is that knowledge bases have a base
 ontology and a number of ontologies that are developed for specific uses of the
 knowledge base . These use-specific ontologies are then connected to the knowledge
 base by means of mappings between the base ontology and the use-specific
 ontologies . The mappings , which specify dif ferent viewpoints on the contents of a
 knowledge base , can be used to reformulate the ontological commitments in the
 knowledge base in such a way that it is possible to share knowledge with another
 knowledge base . This approach is currently being investigated in the European
 KACTUS project (Schreiber , Wielinga & Jansweijer , 1995) .

 Parts of this article are based on earlier publications with other co-authors . In particular ,
 Section 2 is partially based on an article which was co-authored by Giordano Lanzola and
 Mario Stefanelli and published in Knowledge Acquisition . Section 3 is based on an article
 published in Artificial Intelligence in Medicine and was co-authored by Ameen Abu-Hanna ,
 who did the analysis of CASNET , Sabina Falasconi , who developed the core part of the
 ontology library and Mario Stefanelli . Section 6 is based on a paper presented at the
 European Conference on Artificial Intelligence (ECAI) ‘94 and is co-authored by Wilfried
 Post . Hauke Kindler and Dirk Densow provided the domain knowledge for the acute
 radiation syndrome application .

 We are grateful to Lynda Hardman , Manfred Aben , Peter Terpstra , Anjo Anjewierden ,
 Jan Wielemaker and Frank van Harmelen for their comments on earlier versions of (parts of)
 this article , and we thank Nicolaas Mars , Nigel Shadbolt , Joost Breuker , Robert de Hoog and
 Pieter de Vries Robbe ́ for their comments on the thesis on which this article is based .

 The research reported in this paper was carried out in the course of the GAMES-II project
 and the KACTUS project . These projects are partially funded by the Commission of the
 European Communities . The partners in GAMES-II are SAGO (Italy) , Foundation of Research
 and Technology (Greece) , Geneva University Hospital (Switzerland) , the University of
 Amsterdam (The Netherlands) , University College of London (United Kingdom) , the
 University of Pavia (Italy) and the University of Ulm (Germany) . The partners in the KACTUS

 project are Integral Solutions Limited (United Kingdom) , Labein (Spain) , Lloyd’s Register

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 288

 (United Kingdom) , Statoil (Norway) , Cap Programator (Sweden) , University of Amsterdam
 (The Netherlands) , University of Karlsruhe (Germany) , Iberdrola (Spain) , Delos (Italy) ,
 Fincantieri (Italy) and Sintef (Norway) .

 This article expresses the opinions of the authors and not necessarily those of the consortia .

 References
 A BEN , M . (1995) . Formal methods in knowledge engineering , Ph . D . Thesis , University of

 Amsterdam , Amsterdam , The Netherlands .
 A BU -H ANNA , A . (1994) . Multiple domain models in diagnostic reasoning . Ph . D . Thesis ,

 University of Amsterdam , Amsterdam , The Netherlands .
 A BU -H ANNA , A ., B ENJAMINS , V . R . & J ANSWEIJER , W . N . H . (1991) . Functional models in

 diagnostic reasoning . Proceedings of The Ele y enth International Workshop on Expert
 Systems and Their Applications , General Conference on Second Generation Expert
 Systems , pp . 243 – 256 , Avignon , France .

 A LBERT , P . & J ACQUES , G . (1993) . Putting CommonKADS at work using Kads-Tool . In
 Kennis - technologie ’ 9 3 , Amsterdam , The Netherlands .

 A LBERTS , L . K . (1993) . YMIR : an ontology for engineering design . Ph . D . Thesis , University of
 Twente ,

 A NJEWIERDEN , A ., S HADBOLT , N . R . & W IELINGA , B . J . (1992 a) . Supporting knowledge
 acquisition : the Acknowledge project . In Enhancing the Knowledge Engineering
 Process — Contributions from ESPRIT , pp . 143 – 172 . Amsterdam : Elsevier Science .

 A NJEWIERDEN , A ., W IELEMAKER , J . & T OUSSAINT , C . (1992 b) . Shelley—computer aided
 knowledge engineering . Knowledge Acquisition , 4 .

 B ARANOV , A ., D ENSOW , D ., F LIEDNER , T . M . & K INDLER , H . (1994) . Clinical Pre - Computer
 Proforma for the International Computer Database for Radiation Exposure Case
 Histories . Heidelberg : Springer .

 B ENNETT , J . S . (1985) . ROGET : a knowledge-based system for acquiring the conceptual
 structure of a diagnostic expert system . Journal of Automated Reasoning , 1 , 49 – 74 .

 B OOSE , J . H . (1985) . A knowledge acquisition program for expert systems based on personal
 construct psychology . International Journal of Man – Machine Studies , 23 , 495 – 525 .

 B OOSE , J . H . & B RADSHAW , J . M . (1988) . Expertise transfer and complex problems : using
 AQUINAS as a knowledge acquisition workbench for knowledge-based systems . In J . H .
 B OOSE . & B . R . G AINES , Ed . Knowledge Acquisition For Knowledge Based Systems , Vol .
 2 . pp . 39 – 64 . Academic Press .

 B RACHMAN , R . J ., F IKES , R . E . & L EVESQUE , H . J . (1985) . K RYPTON : A functional approach
 to knowledge representation . In R . J . B RACHMAN . & H . J . L EVESQUE , Eds . Readings in
 Knowledge Representation , pp . 411 – 429 . Los Altos , CA : Morgan Kaufmann .

 B REUKER , J . A . & W IELINGA , B . J . (1989) . Model driven knowledge acquisition . In P .
 G UIDA , & G . T ASSO . Topics in the Design of Expert Systems , pp . 265 – 296 . Amsterdam ,
 North-Holland .

 B REUKER , J . A ., W IELINGA , B . J ., VAN S OMEREN , M ., DE H OOG , R ., S CHREIBER , A . T ., DE

 G REEF , P ., B REDEWEG , B ., W IELEMAKER , J ., B ILLAULT , J . P ., D AVOODI , M . &
 H AYWARD , S . A . (1987) . Model dri y en knowledge acquisition : interpretation models .
 ESPRIT Project P1098 Deliverable D1 (task A1) , University of Amsterdam and STL
 Ltd , Amsterdam , The Netherlands .

 B URTON , A . M ., S HADBOLT , N . R ., R UGG , G . & H EDGECOCK , A . P . (1990) . The ef ficacy of
 knowledge elicitation techniques : a comparison across domains and levels of expertise .
 Knowledge Acquisition , 2 , 167 – 178 .

 B YLANDER , T . & C HANDRASEKARAN , B . (1988) . Generic tasks in knowledge-based reason-
 ing : The right level of abstraction for knowledge acquisition . In B . R . G AINES , & J . H .
 B OOSE , Ed . Knowledge Acquisition for Knowledge Based Systems , Vol . 1 , p . 65 – 77 .
 London : Academic Press .

 C HANDRASEKARAN , B . (1987) . Towards a functional architecture for intelligence based on
 generic information processing tasks . In Proceedings of the 1 0 th IJCAI , pp . 1183 – 1192 ,
 Milan , Italy .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 289

 C LANCEY , W . J . & L ETSINGER , R . (1984) . NEOMYCIN : reconfiguring a rulebased expert system
 for application to teaching . In W . J . C LANCEY , & E . H . S HORTLIFFE , Eds . Readings in
 Medical Artificial Intelligence : the First Decade , pp . 361 – 381 . Reading , MA : Addison-
 Wesley .

 C ONSOLE , L ., P ORTINALE , L ., D UPR E ́ , D . T . & T ORASSO , P . (1993) . Combining heuristic
 reasoning with causal reasoning in diagnostic problem solving . in J . H . D AVID , J . P . &
 K RIVINE , & R . S IMMONS , Ed . Second Generation Expert Systems , p . 46 – 68 Berlin :
 Springer-Verlag .

 C ONSOLE , L . & T ORASSO , P . (1988) . Heuristic and causal reasoning in CHECK . In Proceedings
 of the 1 2 th IMACS World Conference on Scientific Computation 8 8 , pp . 283 – 286 , Paris ,
 France .

 D AVIS , R . (1979) . Interactive transfer of expertise . Artificial Intelligence , 12 , 121 – 157 .
 D AVIS , R ., S HROBE , H . & S ZOLOVITS , P . (1993) . What is a knowledge representation? AI

 Magazine , Spring , 17 – 33 .
 DE K LEER , J . H . & W ILLIAMS , B . C . (1987) . Diagnosing multiple faults . Artificial Intelligence ,

 32 , 97 – 130 .
 D UDA , R . O ., G ASCHING , J . G . & H ART , P . E . (1979) . Model design in the PROSPECTOR

 consultant system for mineral exploration . In D ., M ICHIE , Ed . Expert Systems in the
 Micro - Electronic Age , pp . 153 – 1674 . Edinburgh University Press .

 E RIKSSON , H ., P UERTA , A . R . & M USEN , M . A . (1994) . Generation of knowledge acquisition
 tools from domain ontologies . In B . R . G AINES , & M . A . M USEN , Eds . Proceedings of the
 8 th Banf f Knowledge Acquisition for Knowledge - Based Systems Workshop , pp . 7-1 – 7-20 ,
 Alberta , Canada .

 E SHELMAN , L . (1988) . MOLE : A knowledge-acquisition tool for cover-and-dif ferentiate
 systems . In S ., M ARCUS , Ed . Automating Knowledge Acquisition for Expert Systems ,
 pp . 37 – 80 . Boston , MA : Kluwer .

 F ALASCONI , S . (1993) . Ontological foundations of knowledge based systems in medicine .
 Master’s thesis , University of Pavia , Italy . (In Italian .)

 F ALASCONI , S . & S TEFANELLI , M . (1994) . A library of implemented ontologies . In
 Proceedings of the ECAI Workshop on Comparison of Implemented Ontologies ,
 pp . 81 – 91 , Amsterdam , The Netherlands .

 F IKES , R . E . & K EHLER , T . (1985) . The role of frame based representation in reasoning .
 Communications of the ACM , 28 , 904 – 920 .

 F ORD , K . M ., B RADSHAW , J . M ., A DAMS -W EBBER , J . R . & A GNEW , M . M . (1993) .
 Knowledge acquisition as a constructive modelling activity . International Journal of
 Intelligent Systems , 8 , 9 – 32 .

 G RUBER , T . R . (1992) . Ontolingua : a mechanism to support portable ontologies . Version 3 . 0 .
 Technical report , Knowledge Systems Laboratory , Stanford University , CA , U . S . A .

 G RUBER , T . R . (1993) . A translation approach to portable ontology specifications . Knowledge
 Acquisition , 5 , 199 – 220 .

 G RUBER , T . R . (1994) . Towards principles for the design of ontologies used for knowledge
 sharing . In N . G UARINO , & R . P OLI . Eds . Formal Ontology in Conceptual Analysis and
 Knowledge Representation . Boston , MA : Kluwer .

 G UARINO , N . & B OLDRIN , L . (1993) . Ontological requirements for knowledge sharing . Paper
 presented at the IJCAI workshop for knowledge sharing and information interchange ,
 Chambery , France .

 K INDLER , H ., D ENSOW , D . & F LIEDNER , T . M . (1993) . A knowledge-based advisor to deal
 with rare diseases . In Proceedings AIME ’ 9 3 Munich , 3 – 6 October , Medical Artificial
 Intelligence . Amsterdam : Elsevier Science Publishers .

 K IRSH , D . (1990) . When is information explicitly represented . In P . H ANSON , Ed . Vancou y er
 Studies in Cogniti y e Science 1 , pp . 340 – 365 . Vancouver , BC : University of British
 Columbia Press .

 K LINKER , G ., B HOLA , C ., D ALLEMAGNE , G ., M ARQUES , D . & M C D ERMOTT , J . (1991) .
 Usable and reusable programming constructs . Knowledge Acquisition , 3 , 117 – 136 .

 L ANZOLA , G . & S TEFANELLI , M . (1992) . A specialized framework for medical knowledge
 based systems . Computers and Biomedical Research , 25 , 351 – 365 .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 290

 L ENAT , D . B . & G UHA , R . V . (1990) . Building Large Knowledge - Based Systems . Representa-
 tion and Inference in the Cyc Project . Reading , MA . Addison-Wesley .

 L EVESQUE , H . J . & B RACHMAN , R . J . (1985) . A fundamental tradeof f in knowledge
 representation and reasoning . In R . J . B . H . J . L EVESQUE , Ed . Readings in Knowledge
 Representation , pp . 41 – 70 . San Mateo , CA : Morgan Kaufmann .

 L INDBERG , D . A . B ., H UMPHREYS , B . L . & M C C RAY , A . T . (1993) . The unified medical
 language system . Methods of Information in Medicine , 32 , 281 – 291 .

 M AC G REGOR , R . (1991) . The evolving technologyof classification-based knowledge represen-
 tation systems . In J . S OWA , Principles of Semantic Networks : Explorations in the
 Representation of Knowledge , pp . 385 – 400 . San Mateo , CA : Morgan Kaufmann .

 M AJOR , N . & R EICHGELT , H . (1990) . ALTO : an automated laddering tool . In B . J ., W IELINGA ,
 J . H . B OOSE , B . R . G AINES , A . T . S CHREIBER , & M . VAN S OMEREN , Eds . Current Trends
 in Knowledge Acquisition , pp . 222 – 236 . Amsterdam : IOS Press .

 M ARCUS , S ., Ed . (1988) . Automatic Knowledge Acquisition for Expert Systems . Boston , MA :
 Kluwer .

 M ARCUS , S . & M C D ERMOTT , J . (1989) . S ALT : a knowledge acquisition language for
 propose-and-revise systems . Artificial Intelligence , 39 , 1 – 38 .

 M C D ERMOTT , J . (1988) . Preliminary steps towards a taxonomy of problem-solving methods .
 In S . M ARCUS , Ed . Automating Knowledge Acquisition for Expert Systems , pp . 225 – 255 .
 Boston , MA : Kluwer .

 M OTTA , E ., R AJAN , T ., D OMINGUE , J . & E ISENSTADT , M . (1990) . Methodological foundations
 of K EATS , the knowledge engineering assistant . In B . J . W IELINGA , J . H . B OOSE , B . R .
 G AINES , A . T . S CHREIBER , & M . VAN S OMEREN , Eds . Current Trends in Knowledge
 Acquisition , pp . 257 – 275 . Amsterdam : IOS Press .

 M USEN , M . A . (1989 a) . Automated Generation of Model - Based Knowledge - Acquisition Tools .
 London : Pitman .

 M USEN , M . A . (1989b) . Automated support for building and extending expert models .
 Machine Learning , 4 , 347 – 376 .

 M USEN , M . A ., F AGAN , L . M ., C OMBS , D . M . & S HORTLIFFE , E . H . (1988) . Use of a domain
 model to drive an interactive knowledge editing tool . In J . H . B OOSE , & B . R ., G AINES ,
 Eds . Knowledge - Based Systems , Vol . 2 : Knowledge Acquisition Tools for Expert Systems ,
 pp . 257 – 273 . London : Academic Press .

 M USEN , M . A . & S CHREIBER , A . T . (1995) . Architectures for intelligent systems based on
 reusable components . Artificial Intelligence in Medicine . Editorial Special Issue .

 N ECHES , R ., F IKES , R . E ., F ININ , T ., G RUBER , T . R ., P ATIL , R . S ., S ENATOR , T . &
 S WARTOUT , W . R . (1991) . Enabling technology for knowledge sharing . AI Magazine ,
 Fall , 36 – 56 .

 N EWELL , A . (1982) . The knowledge level . Artificial Intelligence , 18 , 87 – 127 .
 P ATIL , R . S . (1981) . Causal Representation of Patient Illness for Electrolyte and Acid - Base

 Diagnosis . Ph . D . Thesis , Laboratory for Computer Science , MIT , U . S . A .
 P OST , W . M ., K OSTER , R . W ., Z OCCA , V . & S RAMEK , M . (1993) . Cooperative medical

 problem solving . In AIME 9 3 – 4 th Conference on Artificial Intelligence in Medicine
 Europe , Munich , Germany .

 P UERTA , A . R ., E GAR , J ., T U , S . W . & M USEN , M . A . (1992) . A multiple-method shell for the
 automatic generation of knowledge acquisition tools . Knowledge Acquisition , 4 , 171 – 196 .

 R AMONI , M ., S TEFANELLI , M ., B AROSI , G . & M AGNANI , L . (1992) . An epistemological
 framework for medical knowledge based systems . IEEE Transactions on Systems , Man
 and Cybernetics , 22 , 1361 – 1375 .

 R ECTOR , A . L ., N OWLAN , W . A ., K AY , S ., G OBLE , C . A . & H OWKINS , T . J . (1993) . A
 framework for modelling the electronic medical record . Methods of Information in
 Medicine , 32 , 109 – 119 .

 R OSCH , E . (1973) . Natural categories . Cogniti y e Psychology , 4 .
 R UNKEL , J . T . & B IRMINGHAM , W . P . (1994) . Separation of knowledge : a key to reusability .

 In B . R . G AINES , & M . A . M USEN , Eds . Proceedings of the 8 th Banf f Knowledge
 Acquisition for Knowledge - based Systems Workshop , pp . 36-1 – 36-19 .

 S CHREIBER , A . T . (1993) . Operationalizing models of expertise . In A . T . S CHREIBER , B . J .

 USING EXPLICIT ONTOLOGIES IN KBS DEVELOPMENT 291

 W IELINGA , & J . A . B REUKER , Eds . KADS : A Principled Approach to Knowledge - Based
 System De y elopment , pp . 119 – 149 . London : Academic Press .

 S CHREIBER , A . T . & B IRMINGHAM , W . P . (1996) . Editorial : the sisyphus VT initiative .
 International Journal on Human Computer Studies , 44 , 275 – 280 .

 S CHREIBER , A . T ., W IELINGA , B . J ., A KKERMANS , J . M ., V AN DE V ELDE , W . &
 A NJEWIERDEN , A . (1994) . CML : the CommonKADS conceptual modelling language . In
 L ., S TEELS , A . T . S CHREIBER , & W . V AN DE V ELDE , Eds . A Future for Knowledge
 Acquisition . Proceedings of the 8 th European Knowledge Acquisition Workshop
 EKAW ’ 9 4 , pp . 1 – 25 . Berlin : Springer-Verlag .

 S CHREIBER , A . T ., W IELINGA , B . J . & J ANSWEIJER , W . H . J . (1995) . The KACTUS view on the
 ‘O’ word . In IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing ,
 Montreal , Canada .

 S HADBOLT , N . R . & W IELINGA , B . J . (1990) . Knowledge based knowledge acquisition : the
 next generation of support tools . In B . J ., W IELINGA , J . H . B OOSE , B . R . G AINES , A . T .
 S CHREIBER , & M . W . V AN S OMEREN , Eds . Current Trends in Knowledge Acquisition ,
 pp . 313 – 338 . Amsterdam : IOS Press .

 S HAW , M . L . G . & G AINES , B . R . (1987) . An interactive knowledge elicitation technique
 using personal construct technology . In A . L ., K IDD , Ed . Knowledge Acquisition for
 Expert Systems : A Practical Handbook . New York : Plenum Press .

 S HAW , M . L . G . & G AINES , B . R . (1989) . Comparing conceptual structures : consensus ,
 conflict correspondence and contrast . Knowledge Acquisition , 4 , 341 – 364 .

 S HORTLIFFE , E . H . (1979) . Computer - Based Medical Consultations : Mycin . New York :
 American-Elsevier .

 S IMMONS , R . (1992) . The roles of associational and causal reasoning in problem solving .
 Artificial Intelligence , 53 , 159 – 208 .

 S IMMONS , R . (1993) . Generate test and debug : a paradigm for combining associational and
 causal reasoning . In J . M . D AVID , J . P . K RIVINE , & R . S IMMONS , Eds . Second Generation
 Expert Systems , pp . 79 – 92 . Berlin : Springer-Verlag .

 S RINIVAS , S . & B REESE , J . (1990) . Ideal : a software package for analysis of influence
 diagrams . In Proceedings of 6 th Conference on Uncertainty in AI , Cambridge , MA , U . S . A .

 S TEELS , L . (1985) . Second generation expert systems . FGCS , 1 , 213 – 221 .
 S TEELS , L . (1990) . Components of expertise . AI Magazine , 11 , 30 – 49 .
 S TEELS , L . (1993) . The componential framework and its role in reusability . In J . M . D AVID , J .

 P . K RIVINE , & R . S IMMONS , Eds . Second Generation Expert Systems , p . 273 – 298 . Berlin :
 Springer-Verlag .

 T U , S . W ., E RIKSSON , H ., G ENNARI , J . H ., S HAHAR , Y . & M USEN , M . A . (1995) .
 Ontology-based configuration of problem-solving methods and generation of knowledge
 acquisition tools : the application of PROT E ́ G E ́ -II to protocol-based decision support .
 Artificial Intelligence in Medicine , 7 , 257 – 289 .

 V AN H EIJST , G ., T ERPSTRA , P ., W IELINGA , B . J . & S HADBOLT , N . R . (1992) . Using
 generalized directive models in knowledge acquisition . In T . W ETTER , K . D . A LTHOFF , J .
 H . B OOSE , B . R . G AINES , M . L INSTER , & F . S CHMALHOFER , Eds . Current De y elopments
 in Knowledge Acquisition : EKAW - 9 2 , pp . 112 – 132 , Berlin : Springer-Verlag .

 V AN M ELLE , W . (1979) . A domain independent production rule system for consultation
 programs . In IJCAI - 7 9 , pp . 923 – 925 , Tokyo , Japan .

 W EISS , S . M . & K ULIKOWSKI , C . A . (1979) . EXPERT : a system for developing consultation
 modles . In Proceedings of IJCAI , pp . 826 – 832 .

 W EISS , S . M ., K ULIKOWSKI , C . A ., A MAREL , S . & S AFIR , A . (1984) . A model-based method
 for computer-aided medical decision making . In W . J . C LANCEY , & E . H ., S HORTLIFFE ,
 Eds . Readings in Medical Artificial Intelligence , the First Decade . Reading , MA : Addison
 Wesley .

 W IELEMAKER , J . & A NJEWIERDEN , A . (1989) . Separating user interface and functionality
 using a frame based data model . In Proceedings Second Annual Symposium on User
 Interface Software and Technology , pp . 25 – 33 . Williamsburg , VA : ACM Press .

 W IELINGA , B . J . & B REUKER , J . A . (1986) . Models of expertise . In Proceedings ECAI -86 ,
 pp . 306 – 318 , Brighton , UK .

 G . VAN HEIJST , A . TH . SCHREIBER AND B . J . WIELINGA 292

 W IELINGA , B . J . & S CHREIBER , A . T . (1993) . Reusable and sharable knowledge bases : a
 European perspective . In Proceedings International Conference on Building and Sharing
 of Very Large - Scaled Knowledge Bases , pp . 103 – 115 . Tokyo , Japan : Japan Information
 Processing Development Center .

 W IELINGA , B . J ., S CHREIBER , A . T . & B REUKER , J . A . (1992) . KADS : a modelling approach
 to knowledge engineering . Knowledge Acquisition , 4 5 – 53 . Reprinted in B UCHANAN , B .
 & W ILKINS , D . Ed . (1992) . Readings in Knowledge Acquisition and Learning , pp . 92 – 116 .
 San Mateo , CA : Morgan Kaufmann .

 W IELINGA , B . J ., V AN DE V ELDE , W ., S CHREIBER , A . T . & A KKERMANS , J . M . (1993) .
 Towards a unification of knowledge modelling approaches . In J . M . D AVID , J . P .
 K RIVINE , & R . S IMMONS , Eds . Second Generation Expert Systems , pp . 299 – 335 . Berlin :
 Germany , Springer-Verlag .

 Y OST , G ., K LINKER , G ., L INSTER , M ., M ARQUES , D . & M C D ERMOTT , J . (1994) . The SBF
 framework , 1989 – 1994 : from applications to workplaces . In L . S TEELS , W . V AN DER

 V ELDE , & A . T . S CHREIBER , Eds . Proceedings European Knowledge Acquisition
 Workshop EKAW ’94 . Berlin : Springer Verlag .

